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Abstract

“Exploratory” and “confirmatory” data analysis can both be viewed as methods for com-

paring observed data to what would be obtained under an implicit or explicit statistical model.

For example, many of Tukey’s methods can be interpreted as checks against hypothetical linear

models and Poisson distributions. In more complex situations, Bayesian methods can be useful

for constructing reference distributions for various plots that are useful in exploratory data anal-

ysis. We propose an approach to unify exploratory data analysis with more formal statistical

methods based on probability models. We develop these ideas in the context of examples from

fields including psychology, medicine, and social science.

Keywords: Bayesian inference, bootstrap, graphs, multiple imputation, posterior predictive

checks

1 Introduction

We propose a unified approach to exploratory and confirmatory data analysis, based on considering

graphical data displays as comparisons to a reference distribution. The comparison can be explicit,

as when data are compared to sets of fake data simulated from the model, or implicit, as when

patterns in a two-way plot are compared to an assumed model of independence. Confirmatory

analysis has the same structure, but the comparisons are numerical rather than visual.

From the standpoint of exploratory data analysis, our methodology has three major benefits:

1. Explicit identification of a comparison model allows one to simulate replicated data to be used

as a reference distribution for an exploratory plot.

2. Symmetries in the underlying model can be used to construct exploratory graphs that are easier

to interpret, sometimes (as with a residual plot) without the need for explicit comparison to a

reference distribution.
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3. Inclusion of imputed missing and latent data can allow more understandable completed-data

exploratory plots.

From the standpoint of complex modeling, our theory has the key benefit of suggesting exploratory

plots that address the fit of data to whatever model is being fit, in comparison to the usual graphical

methods that are constructed in the absence of an explicit model. In addition, the placement

of exploratory data analysis within the general theory of model checking allows the potential for

graphical methods to become a more automatic presence in statistical modeling.

Models have been evaluated by comparing real to simulated data for a long time (e.g., Bush and

Mosteller, 1955, and Ripley, 1988), and methods have also been developed for graphically assessing

the fit of specific models (e.g., Landwehr, Pregibon, and Shoemaker, 1984). This paper attempts to

encompass statistical graphics within the general theory of statistical inference to point out ways in

which new graphical displays can be routinely developed and interpreted.

1.1 Background

In the past few decades, the scope of statistics has been broadened to include exploratory analysis

and data visualization—going beyond the standard paradigms of estimation and testing, to look for

patterns in data beyond the expected (see Tukey, 1972, 1977, Chambers et al., 1983, Cleveland,

1985, 1993, Tufte, 1983, 1990, Buja, Cook, and Swayne, 1996, and Wainer, 1997, among others).

At the same time, methods have been developed to fit increasingly complex and realistic models

to data. The complex modeling methods include nonparametric and semiparametric methods, sieve

models, tree-based models, and adaptive nonlinear regression approaches (see Hastie, Tibshirani,

and Friedman, 2002, for a review). In this paper we focus on parametric and Bayesian methods,

where hierarchical models allow the fitting of high-dimensional models capturing heterogeneity,

interactions, and nonlinearity; see, for example, Gelman et al. (1995), Carlin and Louis (1996), and

Denison et al. (2002) for recent reviews.

Improvements in computation have spurred developments both in exploratory data analysis and

in complex modeling. For exploratory data analysis and data visualization, higher-resolution graph-

ics, more sophisticated interactive user interfaces, and more accessible software have given room for

graphical methods to become more elaborate and also more widely available. For modeling, new

algorithms ranging from neural networks to genetic algorithms to Markov chain simulation allow

users to fit models that have no closed-form expressions for estimates, uncertainties, and posterior

distributions. And, of course, both graphics and modeling have benefited from the sheer increase in

the speed and storage capacity of desktop computers. The connections between statistics, graphics,

and computation appear even in the title of this journal.
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Unfortunately, there has not been much connection made between research in the two areas

of exploratory data analysis and complex modeling. On one hand, exploratory analysis is often

considered in the absence of models. From the other direction, in Bayesian inference, exploratory

data analysis is typically used only in the early stages of model formulation but seems to have no

place once a model has actually been fit.

We argue in this paper that (a) exploratory and graphical methods can be especially effective

when used in conjunction with models, and (b) model-based inference can be especially effective

when checked graphically. Our key step is to formulate (essentially) all graphical displays as model

checks, so that new models and new graphical methods go hand in hand.

1.2 The complementary nature of exploratory data analysis and modeling

Exploratory analysis is often presented as model-free. However, the early paper on the topic by

Tukey (1972) focuses on “graphs intended to let us see what may be happening over and above what

we have already described,” which suggests that these graphs can be built upon existing models.

Tukey contrasts exploratory analysis with calculations of p-values, or confirmatory data analysis.

These two sets of methods are both forms of model checking: exploratory data analysis is the search

for unanticipated areas of model misfit, and confirmatory data analysis quantifies the extent to which

these discrepancies could be expected to occur by chance. The exploratory methods of Tukey tend

to be based on fairly simple models such as additive fits and the Poisson distribution for counts;

we would like to apply the same principles to the more complex models that can be fit today using

methods such as Bayesian inference and nonparametric statistics.

In some standard model diagnostics, the connection between exploratory and confirmatory anal-

ysis is clear: for example, in a quantile-quantile plot (Wilk and Gnanadesikan, 1968), the shape of

the line shows the discrepancy between the empirical distributions of model and data (or between

two data sets), and the magnitude of the discrepancies from the 45◦ line can be calibrated at any

given level of statistical significance based on simulation or the theory of order statistics. More

recently, Buja and Rolke (2003) have shown how to calibrate such tests to account for simultaneous

comparisons.

More generally, complex modeling makes exploratory analysis more effective in the sense of being

able to capture more subtle patterns in data. Conversely, when more complex models are being used,

graphical checks are more necessary than ever to detect areas of model misfit.

• On a practical level, we suggest to modelers that they check the fit of their models using

simulation-based model checks—comparisons of observed data to replications under the model.

Conversely, we suggest to exploratory data analysts that they proceed iteratively, fitting as
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much structure as possible into a model and then using graphs to find patterns that represent

deviations from the current state-of-the-art model. In addition, we suggest applying the meth-

ods and ideas of exploratory data analysis to structures other than raw data, such as plots of

parameter inferences, latent data, and completed data.

• On a theoretical level, we identify different sorts of graphical displays with different symme-

tries or invariances in an explicit or implicit reference distribution of test variables. In one

direction, this is an attempt to put some theoretical structure on graphics and exploratory

data analysis, so that existing and proposed graphical methods can be interpreted in terms of

implicit models. In the other direction, this theory is intended to give some guidelines into

how to most effectively express a model check as a graphical procedure.

In Section 2 of this paper, we review the Bayesian theory of posterior predictive model checking

(which we recommend as a method for interpreting statistical graphics even if Bayesian inference is

not being used to fit the model). Section 3 applies this theory to categorize exploratory graphs in a

modeling context. We conclude in Section 4 with a discussion of the steps that would be required

to integrate graphics with complex modeling in routine statistical practice.

2 Statistical graphics as model checking

We view model checking as the comparison of data to replicated data under the model. This includes

both exploratory graphics and confirmatory calculations. In either case, our goal is not the classical

goal of identifying whether the model fits or not (and certainly not the goal of classifying models

into correct or incorrect, which is the focus of the Neyman-Pearson theory of Type 1 and Type 2

errors), but rather to understand in what ways the data depart from the fitted model.

From this perspective, the two key components to an exploratory model check are (1) the graph-

ical display and (2) the reference distribution to which the data are compared. As we discuss in

Section 3, the appropriate display depends on the aspects of the model being checked. In this sec-

tion, we discuss the reference distribution, that is, the procedure for generating replicated datasets

yrep to be compared to observed data y.

2.1 Posterior predictive checking

Consider data y that are used to estimate a parameter vector θ. For the purpose of model checking,

the data are summarized by a test statistic T (y) (which can be a graphical display, as discussed in

Section 3.2). The posterior predictive distribution, p(yrep|y), represents the distribution of future

data under the model being fit. Checks of model fit can be framed as comparisons of T (y) to the
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replication distribution of T (yrep) under the posterior predictive distribution. From the Bayesian

standpoint, the parameters, data, and replicated data have a joint distribution, p(y, yrep, θ) which

is symmetric in y and yrep (Meng, 1994, Gelman, 2003).

The statistical literature features a variety of ways of defining reference distributions, including

permutation tests, bootstraps (Efron and Tibshirani, 1993), cross-validation (Stone, 1974, Gelfand,

Dey, and Chang, 1992), and posterior predictive checks (Rubin, 1984, Gelman, Meng, and Stern,

1996). Buja et al. (1988, Section 5) consider several methods of constructing reference distributions

for visual comparisons, including the bootstrap and the parametric bootstrap. For example, if θ

is estimated by maximum likelihood, it might be convenient to sample yrep from the distribution

p(y|θ̂), which we would view as an approximate posterior predictive distribution. In Section 3, we

shall also consider implicit reference distributions and symmetry properties of reference distributions

that are not fully specified (for example, regression residuals that are modeled as independent with

zero mean but with no necessary distributional specification).

In general, the reference distribution corresponds to a model for data generation. For the purposes

of this paper, it is not so important where the reference distribution comes from, just that it has

been defined in some way. This general perspective is implicit in Tukey (1977) and is more explicitly

presented by Finch (1979) and Buja et al. (1988), who consider the application of permutation tests

even in the absence of probability models or randomization. As is common in statistics, various

standard approaches can be derived in more than one possible way. For example, the binomial

distribution, which has long been a reference distribution for count data (see, e.g., Stigler, 1986),

can also be derived as a conditional form of the Poisson distribution or as a permutation distribution

from a superpopulation of trials.

In the standard theory of posterior predictive model checking (e.g., Gelman, Meng, and Stern,

1996), the test statistic T (y) is a scalar, and its discrepancy with the model is summarized by

a p-value, Pr(T (y) > T (yrep)|y). Here, however, we are interested in vector test statistics T (y),

which can be displayed graphically; that is, the graph itself is the test statistic, and its replication

distribution is indicated by several random simulations of this graph, as it might appear in replicated

datasets if the model were true. If the visual inspection of the data (that is, of the plot we have

labeled T (y)) shows patterns that do not generally appear in the replications, T (yrep), then the

exploratory analysis has indicated a potential misfit of model to data. This idea was presented in

the context of permutation tests by Buja, Cook, and Swayne (1999). Our treatment here can be

seen as a generalization to reference distributions based on parametric models.
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2.2 Example of predictive checking for exploratory and confirmatory data

analysis

Figure 1 shows an example from a model fit to the delays of capital appeals in state courts, from

1973, when the death penalty was reintroduced in the United States, through 1995 (see Gelman,

Liebman, West, and Kiss, 2004). The upper-left plot in the figure shows the actual data of delays

plotted against the year of sentencing. Delays are variable, but the average delays increase gradually

through the mid-1980s and then decrease. However, some of the pattern is an artifact of the data

collection: no information was available after 1995, and thus the observed delay for sentences at

year t can never exceed 1995− t.

We modeled these data (along with information on the states in which each death sentence

arose, and information on later stages of appellate review) with a hierarchical Weibull regression

with censoring. The three plots in Figure 1 labeled as replications display random draws yrep from

the posterior predictive distribution under the model. There is a clear visual discrepancy between

the data and the replications, with the actual data having consistently shorter delays, on average,

in the first few years.

At this point, we can move from exploratory to confirmatory analysis and quantify the discrep-

ancy by defining a relevant scalar test statistic T (y) and calculating its p-value. For example, suppose

we define T (y) to be the number of cases with delays observed to be at least 10 years. The observed

value of this test statistic is 26. By comparison, in 200 simulations of from the model, T (yrep) had a

median of 79 and a 95% interval of [61, 98]. In fact, T (yrep) > T (y) for all 200 replications, implying

a p-value of less than 0.005. The model predicts about three times as many cases with long delays

than are actually observed, and that discrepancy is statistically significant.

This example illustrates (a) how a straightforward data display such as the upper-left plot in

Figure 1 can be viewed as a model check, and (b) the view that exploratory and confirmatory data

analysis are both forms of predictive model checking. We continue with some theoretical discussion

and then in Section 3 consider the relation between EDA techniques and invariance properties of

replication distributions.

2.3 Using the posterior predictive framework to inspire more general

forms for exploratory graphics

In the posterior predictive framework, one can define test variables T (y, θ) that depend on unknown

parameters as well as data (Gelman, Meng, and Stern, 1996). For example, in a regression context,

one can plot realized residuals, y−Xβ, rather than estimated residuals, y−Xβ̂ (Chaloner and Brant,

1988). The advantage of realized residuals is that their reference distribution is more simply specified
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under the model, without needing to correct this distribution for the process of estimating β̂. For

example, consider a nonlinear regression model with independent normal errors and a mix of equality

and inequality constraints on the regression coefficients. Depending on the structure of the nonlinear

link function and the constraints, the distribution of the estimated residuals can potentially be quite

complicated. In contrast, the realized residuals have independent normal distributions under the

model.

Realized residuals are particularly useful in hierarchical regressions. Consider a logistic regres-

sion model predicting survey respondents’ voter preferences yi from demographic variables Xi and

indicators ji for states, with a second-level linear regression model predicting state coefficients αj

from a state-level linear predictor γWj including information such as past election results. The

distribution of the realized state-level residuals αj − γWj is conveniently specified by the model, but

the estimated residuals α̂j − γ̂Wj are more difficult to interpret. For example, a national survey will

have fewer respondents from small states, and thus their estimated residuals will be shrunken more

toward zero in a hierarchical analysis (see, e.g., Raudenbush and Bryk, 2002). A plot of estimated

residuals would then show a misleading pattern of higher variances for the small states, even if the

underlying variances were equal. Our point here is not that realized residuals are always preferred

but rather that the posterior predictive framework is flexible enough to allow them.

Another way that test variables can be generalized is by working with missing and latent data

(Gelman, Van Mechelen, et al., 2004), so that the dataset that is being replicated can be written as

y = (yobs, ymis, ylatent). Plots of these completed datasets y can be easier to interpret, in the sense of

having invariance properties that allow simple implicit comparisons to a reference distribution. For

a very simple example, consider a model of normally-distributed data that are randomly censored

in some range. Then it can make sense to view the completed dataset (including imputed values

for the censored data) and compare it with a normal distribution. As an exploratory view of the

data, this completed-data plot can be more revealing than a plot of the observed data, which must

be compared to a nonstandard censored distribution. We present an example of a completed-data

plot near the end of this paper.

From an exploratory data analysis perspective, test variables that involve parameters or miss-

ing/latent data provide a graphical challenge since the test variable is now itself random and can

be represented by several draws from the posterior distribution of completed data and parameters.

The completed data can be displayed as multiple graphs—a graphical analogue to the method of

multiple imputation for missing data (Rubin, 1996).

Comparisons between data and replications can sometimes be sharpened by viewing differences,

D(y, yrep) = T (y) − T (yrep), or more generally, any discrepancy measure that is an antisymmetric
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function of y and yrep. (In this and subsequent notation, we are implicitly allowing y and yrep to

include parameters and missing/latent data.) Predictive simulations of an antisymmetric measure

D(y, yrep) can then be compared to the random distribution centered about 0 that would be expected

if the observed data actually came from the model (Berkhof, Van Mechelen, and Gelman, 2002).

2.4 A simple theoretical example showing the potential of exploratory

data analysis to resolve difficulties in statistical modeling

We are used to thinking of exploratory data analysis as an approach to finding unexpected aspects of

the data; that is, aspects not captured by an existing model. In addition, exploratory data analysis

can reveal modeling problems that could have been anticipated theoretically but were not. As a

result, routine use of predictive model comparison can reduce the need for statistical theory. This is

related to the idea from the bootstrap literature that simulation can replace mathematical analysis

(Efron and Tibshirani, 1993).

We illustrate with an example (from Gelman, 2003) where an inherent difficulty of estimation is

revealed by comparing data to predictive simulations. The example is the fitting of a simple mixture

model with unconstrained variances:

p(yi|µ1, µ2, σ1, σ2) = 0.5
1

σ1

φ

(

yi − µ1

σ1

)

+ 0.5
1

σ2

φ

(

yi − µ2

σ2

)

, (1)

where φ is the unit normal density function. When fit to data yi, i = 1, . . . , n, the likelihood can be

made to approach infinity by setting µ1 equal to yi—for any of the data points yi—and letting σ1

approach 0. At this limit, the likelihood for yi approaches infinity, and the likelihoods for the other

data points remain finite (because of the second mixture component), so the complete likelihood

blows up. This will happen for any data vector y.

Bayesian inference does not necessarily resolve this problem. For example, if a uniform prior

distribution is assigned to θ = (µ1, µ2, σ1, σ2), then the posterior modes will still be at the points

where one or another of the σ’s approach 0, and these modes in fact contain infinite posterior mass.

But now suppose that we use exploratory data analysis—plotting the data vector y (as a his-

togram, since the data are unordered and univariate) and comparing to replicated data from the

model. Under maximum likelihood, these would be datasets yrep drawn from p(yrep|θ̂); a Bayesian

would use simulations from the posterior predictive distribution, p(yrep|θ, y). For this problem, it is

not particularly important which method is used. In either case, there are two likely possibilities:

1. At least one of the modes (with their infinite likelihood and infinite posterior mass) is found,

in which case each simulated yrep will look like a mixture of a spike at one point and a

broad distribution for the other half of the data. (Recall that in this example the model is
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constrained to give the two modes equal weight, so in any replicated dataset, approximately

half the points will fall in each mode.) The misfit of model to data will then be apparent,

either from a visual comparison of the histogram of the data y to the histogram of the yrep’s, or

using an antisymmetric discrepancy function such as the difference between the histograms of

yrep and y. The discrepancy could be summarized by the p-value from a numerical discrepancy

such as the Kolmogorov-Smirnoff distance between the empirical distributions of yrep and y.

2. Or, the estimation procedure could behave well and fail to find the degenerate modes. In this

case, simulated replicated data could look quite similar to the actual data, and no problem

will be found. And this would be fine, since the computational procedure is in effect fitting a

truncated model that fits the data well.

In either case, exploratory data analysis techniques applied to the fitted model have succeeded in

discovering an important problem, if it arose in the estimation. In contrast, a key problem with

model-based inference—if exploratory analysis is not performed—is that if an inappropriate model

is fit to data, it is possible to end up with highly precise, but wrong, inferences.

3 Relating methods of exploratory data analysis to proper-

ties of statistical models

It has long been noted that exploratory data analysis techniques are particularly effective when they

exploit symmetry properties, so that the eye is drawn to patterns violating expected symmetries

or repetitions (Tukey, 1977, Tufte, 1990). Buja et al. (1988) and Buja, Cook, and Swayne (1999)

use symmetries to conduct permutation tests, thus constructing reference distributions for visual

comparisons. In this section, we use these ideas to understand exploratory plots in terms of implicit

models, and to suggest ways in which model-based tests can be displayed graphically.

3.1 Theories of statistical graphics

One of the frustrating aspects of teaching and practicing statistics is the difficulty of formalizing

the rules, if any, for good statistical graphics. As with written language, it takes time to develop

a good eye for which graphical displays are appropriate to which data structures, and it is a chal-

lenge to identify the “universal grammar” underlying our graphical intuitions (see Wilkinson, 1999).

Meanwhile, students and researchers untrained in graphical methods often seem to have a horrible

tendency toward graphical displays that seem perversely wasteful of data (see Gelman, Pasarica,

and Dodhia, 2002). For an embarrassing example from our own work, Table 7.5 of Gelman et al.

(1995) displays tiny numbers with far too many significant figures. The reader can see little but the

9



widths of the columns of numbers; the implicit comparison is then to columns of equal width, which

is not particularly interesting from a substantive perspective in that example.

Many interesting perspectives have been given in recent years evaluating the choices involved in

graphical displays (for example, Ehrenberg, 1975, Tukey, 1977, Tufte, 1983, Cleveland and McGill,

1984, Cleveland, 1985, and Wilkinson, 1999). This work has often taken a psychological perspective,

assessing the visual judgments made in reading a table or graph, with reference to psychological mod-

els of cognition and visual perception. Empirical studies have compared the understandability of the

same data graphed different ways, following the principles and methods of experimental psychology.

In parallel with this research have come developments of new graphical methods (examples in static

graphical displays include Chambers et al., 1983, Tufte, 1990, Wegman, 1990, and Cleveland, 1993).

Existing theories of statistical graphics—that is, what sorts of graphs are good or bad, and when

should different sorts of graphs be used—seem to fall in three categories. First, there are general

guidelines that seem to make sense (at least to the proposer of the guidelines), such as minimizing

non-data-ink (Tufte, 1983) and avoiding pie charts (suggested by many authors). Second, there

have been some psychological studies (see Cleveland, 1984, and Gelman, Pasarica, and Dodhia,

2002, for brief reviews). These are interesting and ultimately essential to statistical communication

but somehow they do not seem to tell the whole story. Third, it is sometimes possible to use

theoretical arguments for graphical procedures (for example, in deciding the number of bins in a

histogram; see Scott, 1992, and Wand, 1997).

We seek here to formalize statistical graphics in a slightly different way—related to the idea

of quantifying information context, but focused on the idea of a graph as an explicit or implicit

comparison, as discussed in Buja, Cook, and Swayne (1999) and later, in a Bayesian context, in

Gelman (2003). Once we systematically think of graphs as model checking, we can think of ways

that a graphical display can take advantage of symmetries in the reference distribution of T (yrep, θ).

Conversely, certain graphical displays can be misleading because they implicitly assume symmetries

that are inappropriate to the model being considered.

3.2 Adapting graphical forms to the structures of test statistics

The mathematical structure of test statistics and their reference distributions can be used to set

up graphical structures to best allow us to detect discrepancies between model and data. Gelman

(2003) lays out the following structure to interpret statistical graphics in terms of implicit models,

or conversely to display model summaries graphically. This is related to the discussion of “informal

statistical inference” by Buja et al. (1988), who categorize graphical structures for permutation tests.

1. The most basic exploratory graphic is simply a display of an entire dataset (or as much of it
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as can be conveyed in two dimensions). If we think of this display as a test variable T (y),

then alongside it we can compare to displays of several draws of T (yrep) from the reference

distribution. Figure 1 gives an example.

As discussed by Tufte (1983), Cleveland (1985), and others, displaying data is not simply a

matter of dumping a set of numbers on a page (or a screen). For example, Wainer (2001)

and Friendly and Kwan (2002) demonstrate the benefits of ordering data before tabulating or

graphing them. From a “complex modeling” perspective, there is an advantage to displays

whose references distributions have invariance properties, as we discuss in point 7 below.

2. Figure 2 shows the perils of attempting to interpret data without comparing to a reference

distribution—the apparent patterns in these maps can be explained by sampling variation.

The counties in the center-west of the country have relatively small populations, hence more

variable cancer rates and a greater proportion of the highest and lowest values.

It is not immediately clear how best to perform a posterior predictive check in this example—a

model would be required—but it is clear that if the map display is used to detect patterns

in the data (that is, as an exploratory data analysis), then some reference distribution is

required. Simply looking at the maps for patterns is, implicitly, a comparison to a reference

distribution in which all counties are independently and equally likely to be shaded on the map.

Such a reference distribution does not make sense statistically. As discussed by Gelman and

Price (1999), other approaches to mapping the data also yield “artifacts,” that is, systematic

patterns that would be expected under the replication distribution. This is an example where

statistical modeling is needed in order to perform a reasonable exploratory data analysis.

3. If the dataset is large enough, it may have enough internal replication so that the display of

a single replicated dataset may be enough to make a clear comparison. Ripley (1988, p. 6)

discusses why internal replication is crucial in time series and spatial statistics (where one is

often called upon to make inferences from a single sample), and Ripley (1988, chap. 6) presents

a striking example of visual comparison of a dataset to simulated data from various models.

In this latter example, a spatial model fit to an image fits the second-order statistics (spatial

covariance function) of the data essentially perfectly, but a single simulated replicated image

yrep from the estimated model looks much different from the data image. These systematic

differences motivate the construction of an improved model that fits well, both in its second-

order statistics and its overall appearance.

4. At the opposite extreme, if we have a scalar test summary, we can overlay it on a histogram

of its simulated reference distribution and thus see both the magnitude of the discrepancy and
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the p-value. Figure 3 presents an example, in this case showing two test statistics that are

consistent with replications under the model.

5. A two-dimensional summary can similarly be shown in comparison to a scatterplot, as in

Figure 4.

6. A multidimensional summary, T (y) = (T1(y), . . . , Tk(y)), can be shown as a scatterplot of

Tk(y) vs. k, in comparison with several scatterplots of Tk(yrep) vs. k. But this comparison

can be displayed much more compactly using line plots or parallel coordinate plots (Inselberg,

1985): a single graph can show the line of Tk(y) vs. k in bold, overlaying several lines of Tk(yrep)

vs. k, each corresponding to a different draw from the reference distribution. Figure 5 presents

an example. Wegman (1990) and Miller and Wegman (1991) discuss parallel coordinate plots

in detail and in the larger context of displaying multivariate data.

Our suggestion here is to view such plots as model checks, and to apply them to test summaries

as well as to raw data.

7. Plots can be usefully simplified if the reference distribution has certain invariance properties.

For example, consider a binned residual plot of averages of residuals ri vs. predicted values xi.

The range of the predicted values x is divided into K bins, and within each bin k we compute

x̄k, the average of the predicted values in the bin, residual in the bin, and r̄k, the average of

the corresponding residuals. Figure 6 illustrates with an example of a regression model fit to

precinct-level election data.

Under the reference distribution, the residuals are independent, with mean zero, and thus their

binned averages also have these properties. As a result, we do not need to display the overlain

lines in the reference distribution—since the values r̄
rep

k at each point k are independent, no

information is conveyed by their joint distribution—the connections of the lines, if displayed,

would be purely random. As a side benefit, we are also able to remove the lines connecting the

dots for the data residuals, since there is no longer a background of replication lines. Instead,

the dots are compared to the implicit independence distribution.

The binned residual plot can display more information about the reference distribution by

showing pointwise error bounds under the reference distribution, which can be computed via

simulation. If the number of points averaged within each bin is reasonably large, the mean

residuals r̄k are approximately normally distributed. We can then display the reference distri-

bution as 95% error bounds. Figure 7 illustrates with binned residuals of pain measurements

scores from a nonlinear model in a medical study. Under the model, the residuals are inde-

12



pendent with mean zero, and so the systematic pattern of negative residuals at one end and

positive residuals at the other indicates a systematic problem.

8. For both of the examples shown in Figures 6 and 7, the model parameters were estimated

precisely enough that it was acceptable to display point residuals, yi−E(yi|θ̂). More generally,

one could work with realized residuals (see Section 2.3), in which case the residual plots would

be random variables. The uncertainty in these plots could be shown by connecting the dots

by lines and displaying several overlain, as in Figure 5. That earlier figure is not a residual

plot (it graphs replicated data minus observed data) but shares the property that, under the

model, its points would be expected to have mean 0.

9. Conversely, confusion can arise when an invariance is wrongly assumed when it is not implied

by the reference distribution. We have already shown one example with the maps of extreme

values in Figure 2.

For another example, students are often confused about the interpretation of plots of observed

data vs. expected values, or expected vs. observed. In either case, we can go back to the

conception of graphs as comparisons to a reference distribution. Under the reference distri-

bution of any model, E(observed|expected) = expected, which implies that the regression line

in the plot of observed vs. expected should have a slope of 1 (and, of course, the regression

line of residuals vs. expected should have a slope of 0). The plots of expected vs. observed (or

residuals vs. observed) do not in general have any simple reference distribution, and so they

are more difficult to interpret.

10. A key principle of exploratory data analysis is to exploit regular structure to display data more

effectively (e.g., the “small multiples” of Tufte, 1990). The analogy in modeling is hierarchical

or multilevel modeling, in which batches of parameters capture variation at different levels.

When checking model fit, hierarchical structure can allow us to compare batches of parameters

to their reference distribution. In this scenario, the replications correspond to new draws of a

batch of parameters.

The top row of Figure 8 shows an example of poor fit (clearly revealed by a single simulation

draw of the parameter vectors) from a model in psychometrics. We can see the lack of fit

clearly using the a suspended rootogram, a plot of the difference between the square root of

the histogram counts and the square root of the expected counts from the model. Under the

model, the histogram counts are Poisson distributed, and the suspended rootogram values

should be independent with approximate mean 0 and standard deviation 0.5 (Tukey, 1972).

This is an example of a traditional exploratory data analysis plot being used in a modeling
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setting. We need not display simulations from the reference distribution: the symmetries in

the rootogram make this comparison implicit.

The bottom row in Figure 8 shows the histogram and the suspended rootogram for 50 random

posterior draws of the parameter vector. The shading is omitted from the histograms in order

to make the distinct simulations more readable. A large proportion of the 90 parameters are

clearly estimated to be near zero, in contradiction to the Beta(2, 2) prior distribution. In

the context of the psychometric model, these correspond to individuals that have very low

probabilities of having particular psychiatric syndromes.

The misfit in the distribution motivated a new model to be fit—a mixture of beta distributions

that allow the individual parameters to have a high probability of being near zero. The new

model, and the distribution of the parameters as estimated, appear in Figure 9. The fit is

much improved. Our procedure of fitting, checking, and replacing models could be considered

a “manual Gibbs sampler,” in the sense that the model is being iteratively altered to fit

the inferences from the data. This example is typical of hierarchical models in having many

parameters with only a moderate amount of data per parameter, thus having the possibility

of checking by comparing the histogram of estimated parameters to their prior distribution.

11. Finally, in some cases, aspects of a reference distribution are implied, not from symmetries in

the model or test statistic, but from external subject-matter knowledge. Figure 10 shows an

example from the model of death penalty appeals discussed earlier. The two plots in Figure

10 show simulated completed datasets from two different fitted models. Each plot includes the

observed data (as shown in the upper-left plot of Figure 1) and a single random imputation for

the vector of the missing data—the cases censored because they were still in the review process

as of 1995, the endpoint of our study. The left plot in Figure 10 shows a problem with the

model, in that the waiting times for cases from early years are bimodal, with a gap between

the cases with delays of less than 10 years and those of waits of more than 15 years. Even in

the absence of any comparison to a reference distribution, this pattern in the complete data

is not plausible. This plot motivated us to go back and clean the data, after which the model

was refit, yielding a completed-data plot shown on the right side of Figure 10. (As discussed

in point 3 above, the internal replication in this dataset allows us to confidently examine just

one completed-data plot as a representative of the entire distribution.)

3.3 Using graphical design to highlight statistical comparisons

Many of the principles of statistical graphics can now be interpreted in light of the dictum that graphs

are comparisons to a reference distribution, explicit or implicit. For example, if we follow the dicta to
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minimize “chartjunk” and unnecessary “ink” (Tufte, 1983), we are removing irrelevant information

that cannot possibly be informative as a model check. Tufte’s (1990) recommendation of “small

multiples” (that is, arrays of several small displays with different data but identical structure) uses

the replication in the display to facilitate comparison to the implicit model of no change between

the displays. Tukey (1977) recommends rotating plots by 45◦ so that they can be compared to

horizontal lines, and Cleveland (1985) suggests aligning data displays so that lengths, rather than

angles, can be compared.

Even very simple recommendations, such as omitting unnecessary grid lines (Tufte, 1983) and

displaying graphs as square only if the two axes are on a common scale, can be interpreted as

removing the opportunity for irrelevant comparisons to focus more clearly on the implicit model

checking involved in virtually any data display.

4 Integrating graphics and complex modeling into statistical

practice

We expect that exploratory data analysis would be more effectively used in modern statistical

analyses if it could be routinely implemented as part of software for complex modeling. To some

extent this is already done with residual plots in regression models, but there is the potential for

much more progress by explicitly defining model-checking plots and replication distributions.

We see room for improvement, leading toward statistical packages with automatic features for

simulating replication distributions and performing model checks. We anticipate four challenges:

1. The computational environment. We propose to implement replications into statistical com-

putation in two steps. We start with the idea from Bayesian inference (Smith and Roberts,

1993) and multiple imputation (Rubin, 1996) of representing all unknown quantities by some

number L of simulation draws. Thus, a scalar parameter or missing value θ is represented

by a vector of L posterior simulations; a vector of length J is stored as an L × J matrix of

simulations; an uncertain quantity that is a J ×K matrix (for example, a set of J parameters

for each of K groups, or a set of J latent measurements on each of K persons) is stored as

an L × J × K array; and so forth. This part of our structure is already present in the BUGS

package for Bayesian inference (Spiegelhalter et al., 1994, 2002) and the MICE software for

multiple imputation (Van Buuren and Oudshoom, 2000).

Just as the concept of “data frame” expands “data matrix” to allow for more general structures

(Chambers and Hastie, 1992, Chambers, 1998, Billard and Diday, 2003), we would like to be

able to work with parameters and data directly, with the details of the simulations hidden
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by the storage structure. Thus, for example, if a data matrix y has some observed and some

missing values, we can simply work with y as a matrix, with the understanding that each

missing value is represented by a vector of L simulations.

The second part of our proposal is to duplicate the entire “data and parameter space” for the

replications. The structure of the replications will depend on the complexity of the model. For

a simple nonhierarchical model with parameter vector θ estimated by maximum likelihood,

the replications yrep can be simulated from the model given θ̂. The Bayesian counterpart is

posterior predictive checking, where for each posterior simulation of θ is used to simulate a

predictive dataset yrep (Meng, 1994).

With missing/latent data, the vector of inclusion indicators I should be added to the model

(where, for each potential observation i, Ii = 1 if data point yi is observed), and the replication

process creates both yrep and Irep given the parameters estimated from the model; thus simu-

lating a completed underlying dataset as well as indicators for which data would be observed

in the replication (Gelman, Van Mechelen, et al., 2004). Each of these would be represented

by L simulation draws but these would be transparent to the user.

In hierarchical models, the replicated structure can become more complicated (see Gelman,

Meng, and Stern, 1996). For a model with lower-level parameters θ and hyperparameters φ, it

can make sense to simulate replicated parameters θrep along with data yrep. This is similar to

the “empirical Bayes” approach in classical statistics (see Morris, 1983) in which lower-level

parameters are treated as missing data. The implicit replication of parameters is the basis of

the model checks in Figures 8–9.

2. The replication distribution. Constructing a replication distribution is analogous to the prob-

lem of specifying the prior distribution in a Bayesian analysis (Gelman, 2003). It can never be

automatic, but standard options will be possible. For example, in a language such as BUGS

(Spiegelhalter et al., 1994), replications will have to be defined for all data and parameters

in the model, and a simple start would be to choose, for each, the option of resampling it or

keeping it the same as with the current inference.

Resampling a parameter might require more modeling effort than keeping a parameter fixed,

which is as it should be, since ultimately it defines an assumption about how the model will

be used. For example, in analyzing sample survey data, the sample size n could be drawn

from a Poisson distribution (with a model n ∼ Poisson(λ) and a replication distribution

nrep ∼ Poisson(λ)) or simply fixed (so that nrep ≡ n). The choice would depend on the design

of the study, and more complicated replication models could be appropriate, for example if
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analyzing data collected sequentially.

In more conventional software such as SAS, SPSS, and Stata, standard models of replications

can be assigned along with the currently-implemented menus of models for inference. Options

can be created to allow different replication structures, in the same way that model classes

such as generalized linear models have options for assigning different link functions.

3. The test variables. In the spirit of exploratory data analysis, it would be appropriate to look

at many data summaries rather than trying to select a single test statistic. The computational

environment should allow the user to simply identify a data summary as a “test variable” and

then plot it, comparing to its reference distribution. These would include plots of the observed

dataset, as in Figure 1, and completed data, as in Figure 10. In addition, it would make sense

to have a set of automatically-chosen test variables, going beyond the current defaults such as

residual and quantile plots for continuous regression models and their analogies in discrete-data

regressions (e.g., Atkinson, 1981, 1985, Landwehr, Pregibon, and Schoemaker, 1984, Gelman

et al., 2000).

In complex models (the subject of this paper), test variables can be constructed using structure

in the model or data. For example, data and residuals can be averaged at the group level and

plotted vs. group-level predictors (see Figure 5), and vectors of exchangeable variables at any

level of the model can be displayed as histograms (as in Figures 8–9). More complicated cross-

level structures, such as occur in latent class models, could also be plotted. This is still an

open area, but we envision that structure in the model could define default structures in the

test variables, generalizing the ideas of Tukey (1972, 1977) on two-way plots.

The parameterization under which the model is set up would then affect the way the model is

tested, which makes sense since we often understand models in terms of their parameters and

variables. For example, consider two equivalent ways of expressing a regression in BUGS. If

we write,

y[i] ∼ dnorm (y.hat[i], tau)

y.hat[i] <- a + b*x[i],

then the vectors y, y.hat, and x are each vectors that could automatically be included in the

model checks, for example as separate histograms and as a plot of y vs. y.hat. But if we write

the model as,

y[i] = a + b*x[i] + e[i]

e[i] ∼ dnorm (0, tau),
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then an automatic model-checking program would display the vector of errors e as well, which

might be useful for exploratory analysis.

4. Graphical display. Finally, the display of the test variables would depend on the dimension-

ality, structure, symmetry properties, and internal replication of their reference distributions,

as discussed in Section 3. For example, a vector of exchangeable parameters can be displayed

as histograms or quantile plots, and any 2 × n matrix structures in the data or model can be

displayed as scatterplots. More complicated structures would require some default means of

display, perhaps parallel plots with observed or realized data on the left and replicates on the

right, and the entire system would need to be linked to a language such as R (R Project, 2000)

or S-Plus (Mathsoft, 2000) that allows programmable graphics.

There is need for further work in this area in various directions. The statistical theory of model

checking has now been set up in a Bayesian framework, but there are various open problems, es-

pecially in understanding the sampling properties of predictive p-values (Meng, 1994, Bayarri and

Berger, 1998) and simultaneous inference (Buja and Rolke, 2003). Theory has also been developed

for the related method of cross-validation (Stone, 1994, Gelfand, Dey, and Chang, 1992). In the

direction of statistical graphics, it is not always clear how to best display a given data structure

when the goal is comparison to a reference distribution with given invariance properties. The kind

of subtle structures that we look for in exploratory data analysis involve many simultaneous visual

comparisons, and the problem becomes potentially more difficult once dynamic graphics are allowed

(see, e.g., Buja, Cook, and Swayne, 1996).

However, we believe that the current state of statistical theory and graphics allows for effective

exploratory data analysis in a wide range of complex modeling situations. As models and data struc-

tures become more complex, we anticipate corresponding developments in exploratory data displays,

with the “replicated data” idea being used to interpret data displays in models with structure, high

dimensionality, and missing and latent data.
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Figure 1: Delays in state appeals court for death penalty cases, plotted vs. year of sentencing
(jittered to allow individual data points to be visible). The upper-left plot shows the observed data,
and the other three plots show replications under the fitted model. (The delays are jittered for the
observed data but not for the replications, which have been simulated under a continuous model.)
The observed data show a pattern—a steady increase in delay times for the first decade—that is
not captured by the replicated datasets. This is an example of how replicated datasets can be used
in exploratory data analysis to assess whether an observed pattern is explained by a fitted model.
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Highest kidney cancer death rates Lowest kidney cancer death rates

Figure 2: The counties of the United States with the (a) highest and (b) lowest 10% age-standardized
death rates for cancer of kidney/ureter for U.S. white males, 1980–1989. Either of these maps appears
to show patterns (most of the shaded counties are in the center-west of the country) but they can
in fact be explained as artifacts caused by varying sample sizes. (The counties in the center-west
of the country have low populations, and so they are more likely to have very high or very low raw
rates, just from small-sample variability.) From Gelman and Nolan (2002).

6 7 8 9
mean number of shocks

1.5 2.0 2.5 3.0 3.5 4.0
sd of number of shocks

Figure 3: Posterior predictive checks from a stochastic model fit to data of dogs learning to avoid
shocks. Each dog was given 25 trials, and the test statistics shown here are the mean and standard
deviation, across dogs, of the total number of shocks received. For each plot, the vertical line shows
the observed value T (y), and the histogram shows the distribution of the values T (yrep) in simulated
replications of the model.
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Figure 4: Simultaneous posterior predictive check for the two test statistics shown in Figure 3. The
observed value is shown as a bold X on the plot.
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Figure 5: (a) Plot of the proportion of avoidances among the dogs in the shock-avoidance experiment,
as a function of the trial number. The solid line shows the data, and the light lines represent 20
simulated replications from the model. This plot can be seen as a posterior predictive check of a
vector test statistic, T (y), compared to replications T (yrep). (b) Plots of T (yrep) − T (y) for the 20
simulations of yrep. The systematic differences from the horizontal line represent aspects of the data
that are not captured by the model.
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Figure 6: Average residuals r̄k vs. average predicted value x̄k, for regression residuals averaged into
40 bins. The regression was a model of voter turnout on demographics for 5000 precincts in a New
York City mayoral election. Under the model, the binned residuals are independent with mean
zero. The systematic discrepancies from zero thus indicate a model misfit, without need for explicit
comparison to a reference distribution. From Gelman et al. (2001).
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Figure 7: Plot of average residuals vs. expected values for a nonlinear model of data from a pain
relief experiment, with responses divided into 20 equally-sized bins defined by ranges of expected pain
scores. The prediction errors are relatively small but with a consistent pattern that low predictions
are too low and high predictions are too high. Dotted lines show 95% bounds under the model.
Adapted from Gelman and Bois (1997).
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Figure 8: Top row: (a) Histogram of 90 patient parameters θj from a single draw from the posterior
distribution of a hierarchical model in psychometrics, with the assumed Beta(θ|2, 2) prior density
overlain. (b) The suspended rootogram (i.e., square root of the histogram counts, minus the square
root of expected counts from the model) clearly shows the misfit. If the model were true, the heights
of the suspended rootogram bars would have mean 0 and standard deviation approximately 0.5;
hence the dotted lines at ±1 represent approximate pointwise 95% error bounds (Tukey, 1972).

Bottom row: the same plots, but showing histograms and suspended rootograms of 50 random draws
of the vector θ from its posterior distribution. The counts for the plots in the bottom row have been
jittered so the different simulations are distinct.
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Figure 9: Top row: (a) Histogram of 90 patient parameters θj as estimated from an expanded psy-
chometric model, with the fitted mixture prior distribution overlain. (b) The suspended rootogram
shows the simulations to fit the model reasonably well. Compare to Figure 8.

Bottom row: the same plots, but showing (jittered) histograms and suspended rootograms of 50
random draws of the vector θ from its posterior distribution.

28



1975 1980 1985 1990 1995

0
5

10
15

20

Completed Data (original model)

Year of Sentencing

T
im

e 
to

 A
pp

el
la

te
 D

ec
is

io
n 

(y
ea

rs
)

1975 1980 1985 1990 1995

0
5

10
15

20

Completed Data (new model)

Year of Sentencing

T
im

e 
to

 A
pp

el
la

te
 D

ec
is

io
n 

(y
ea

rs
)

Figure 10: Completed-data plots for the capital appeals data, fit by two different models. In each
plot, the observed data are the same points shown in the upper-left plot of Figure 1, and the missing
cases (in this example, censored because appellate decisions after 1995 were not in the dataset)
have been imputed. The completed data in the left plot do not seem reasonable, in particular as
evidenced by the bimodal distribution of delays for the early cases. The data were cleaned, and the
new completed-data plot looks more reasonable, although still not perfect (noticeably for the cases
from 1995).
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