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Abstract

Analysis of variance (ANOVA) is a statistical procedure for summarizing a classical linear
model—a decomposition of sum of squares into a component for each source of variation in the
model—along with an associated test (the F-test) of the hypothesis that any given source of
variation in the model is zero. When applied to generalized linear models, multilevel models,
and other extensions of classical regression, ANOVA can be extended in two different directions.
First, the F-test can be used (in an asymptotic or approximate fashion) to compare nested
models, to test the hypothesis that the simpler of the models is sufficient to explain the data.
Second, the idea of variance decomposition can be interpreted as inference for the variances of
batches of parameters (sources of variation) in multilevel regressions.

1 Introduction

Analysis of variance (ANOVA) represents a set of models that can be fit to data, and also a set of
methods for summarize an existing fitted model. We first consider ANOVA as it applies to classical
linear models (the context for which it was originally devised; Fisher, 1925) and then discuss how
ANOVA has been extended to generalized linear models and multilevel models. Analysis of variance
is particularly effective for analyzing highly structured experimental data (in agriculture, multiple
treatments applied to different batches of animals or crops; in psychology, multi-factorial experiments
manipulating several independent experimental conditions and applied to groups of people; industrial
experiments in which multiple factors can be altered at different times and in different locations).

At the end of this article, we compare ANOVA to simple linear regression.

2 Analysis of variance for classical linear models

2.1 ANOVA as a family of statistical methods

When formulated as a statistical model, analysis of variance refers to an additive decomposition
of data into a grand mean, main effects, possible interactions, and an error term. For example,
Gawron et al. (2003) describe a flight-simulator experiment that we summarize as a 5 × 8 array of
measurements under 5 treatment conditions and 8 different airports. The corresponding two-way
ANOVA model is yij = µ + αi + βj + εij . The data as described here have no replication, and so
the two-way interaction becomes part of the error term.1
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Degrees of Sum of Mean
Source freedom squares square F -ratio p-value

Treatment 4 0.078 0.020 0.39 0.816
Airport 7 3.944 0.563 11.13 < 0.001
Residual 28 1.417 0.051

Figure 1: Classical two-way analysis of variance for data on 5 treatments and 8 airports with no
replication. The treatment-level variation is not statistically distinguishable from noise, but the
airport effects are statistically significant. This and the other examples in this article come from
Gelman (2005) and Gelman and Hill (2006).

This is a linear model with 1+4+7 coefficients, which is typically identified by constraining the∑5
i=1 αi = 0 and

∑8
j=1 βj = 0. The corresponding ANOVA display is shown in Figure 1:

• For each source of variation, the degrees of freedom represent the number of effects at that
level, minus the number of constraints (the 5 treatment effects sum to zero, the 8 airport effects
sum to zero, and each row and column of the 40 residuals sums to zero).

• The total sum of squares—that is,
∑5

i=1

∑8
j=1(yij − ȳ..)

2—is 0.078 + 3.944 + 1.417, which
can be decomposed into these three terms corresponding to variance described by treatment,
variance described by airport, and residuals.

• The mean square for each row is the sum of squares divided by degrees of freedom. Under
the null hypothesis of zero row and column effects, their mean squares would, in expectation,
simply equal the mean square of the residuals.

• The F -ratio for each row (excluding the residuals) is the mean square, divided by the residual
mean square. This ratio should be approximately 1 (in expectation) if the corresponding effects
are zero; otherwise we would generally expect the F -ratio to exceed 1. We would expect the
F -ratio to be less than 1 only in unusual models with negative within-group correlations (for
example, if the data y have been renormalized in some way, and this had not been accounted
for in the data analysis.)

• The p-value gives the statistical significance of the F -ratio with reference to the Fν1,ν2
, where

ν1 and ν2 are the numerator and denominator degrees of freedom, respectively. (Thus, the two
F -ratios in Figure 1 are being compared to F4,28 and F7,28 distributions, respectively.) In this
example, the treatment mean square is lower than expected (an F -ratio of less than 1), but
the difference from 1 is not statistically significant (a p-value of 82%), hence it is reasonable to
judge this difference as explainable by chance, and consistent with zero treatment effects. The
airport mean square, is much higher than would be expected by chance, with an F -ratio that
is highly statistically-significantly larger than 1; hence we can confidently reject the hypothesis
of zero airport effects.

More complicated designs have correspondingly complicated ANOVA models, and complexities
arise with multiple error terms. We do not intend to explain such hierarchical designs and analyses
here, but we wish to alert the reader to such complications. Textbooks such as Snedecor and Cochran
(1989) and Kirk (1995) provide examples of analysis of variance for a wide range of designs.

2.2 ANOVA to summarize a model that has already been fitted

We have just demonstrated ANOVA as a method of analyzing highly structured data by decomposing
variance into different sources, and comparing the explained variance at each level to what would
be expected by chance alone. Any classical analysis of variance corresponds to a linear model (that
is, a regression model, possibly with multiple error terms); conversely, ANOVA tools can be used to
summarize an existing linear model.
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The key is the idea of “sources of variation,” each of which corresponds to a batch of coefficients
in a regression. Thus, with the model y = Xβ + ε, the columns of X can often be batched in a
reasonable way (for example, from the previous section, a constant term, 4 treatment indicators,
and 7 airport indicators), and the mean squares and F -tests then provide information about the
amount of variance explained by each batch.

Such models could be fit without any reference to ANOVA, but ANOVA tools could then be
used to make some sense of the fitted models, and to test hypotheses about batches of coefficients.

2.3 Balanced and unbalanced data

In general, the amount of variance explained by a batch of predictors in a regression depends on
which other variables have already been included in the model. With balanced data, however, in
which all groups have the same number of observations (for example, each treatment applied exactly
eight times, and each airport used for exactly five observations), the variance decomposition does
not depend on the order in which the variables are entered. ANOVA is thus particularly easy to
interpret with balanced data. The analysis of variance can also be applied to unbalanced data, but
then the sums of squares, mean squares, and F -ratios will depend on the order in which the sources
of variation are considered.

3 ANOVA for more general models

Analysis of variance represents a way of summarizing regressions with large numbers of predictors
that can be arranged in batches, and a way of testing hypotheses about batches of coefficients. Both
these ideas can be applied in settings more general than linear models with balanced data.

3.1 F tests

In a classical balanced design (as in the examples of the previous section), each F -ratio compares a
particular batch of effects to zero, testing the hypothesis that this particular source of variation is
not necessary to fit the data.

More generally, the F test can compare two nested models, testing the hypothesis that the smaller
model fits the data adequately and (so that the larger model is unnecessary). In a linear model,

the F -ratio is (SS2−SS1)/(df2−df1)
SS1/df1

, where SS1, df1 and SS2, df2 are the residual sums of squares and

degrees of freedom from fitting the larger and smaller models, respectively.
For generalized linear models, formulas exist using the deviance (the log-likelihood multiplied by

−2) that are asymptotically equivalent to F -ratios. In general, such models are not balanced, and
the test for including another batch of coefficients depends on which other sources of variation have
already been included in the model.

3.2 Inference for variance parameters

A different sort of generalization interprets the ANOVA display as inference about the variance of
each batch of coefficients, which we can think of as the relative importance of each source of variation
in predicting the data. Even in a classical balanced ANOVA, the sums of squares and mean squares
do not exactly do this, but the information contained therein can be used to estimate the variance
components (Cornfield and Tukey, 1956, Searle, Casella, and McCulloch, 1992). Bayesian simulation
can then be used to obtain confidence intervals for the variance parameters. As illustrated below,
we display inferences for standard deviations (rather than variances) because these are more directly
interpretable. Compared to the classical ANOVA display, our plots emphasize the estimated variance
parameters rather than testing the hypothesis that they are zero.
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Source df Est. sd of coefficients
0 0.5 1 1.5

sex 1
ethnicity 1

sex * ethnicity 1

age 3
education 3

age * education 9

region 3
region * state 46

0 0.5 1 1.5

Source df Est. sd of coefficients
0 0.5 1 1.5

sex 1
ethnicity 1

sex * ethnicity 1
age 3

education 3
age * education 9

region 3
region * state 46

ethnicity * region 3
ethnicity * region * state 46

0 0.5 1 1.5

Figure 2: ANOVA display for two logistic regression models of the probability that a survey respondent
prefers the Republican candidate for the 1988 U.S. Presidential election, based on data from seven
CBS News polls. Point estimates and error bars show median estimates, 50% intervals, and 95%
intervals of the standard deviation of each batch of coefficients. The large coefficients for ethnicity,
region, and state suggest that it might make sense to include interactions, hence the inclusion of
ethnicity × region and ethnicity × state interactions in the second model.

3.3 Generalized linear models

The idea of estimating variance parameters applies directly to generalized linear models as well as
unbalanced datasets. All that is needed is that the parameters of a regression model are batched
into “sources of variation.” Figure 2 illustrates with a multilevel logistic regression model, predicting
vote preference given a set of demographic and geographic variables.

3.4 Multilevel models and Bayesian inference

Analysis of variance is closely tied to multilevel (hierarchical) modeling, with each source of variation
in the ANOVA table corresponding to a variance component in a multilevel model (see Gelman,
2005). In practice, this can mean that we perform ANOVA by fitting a multilevel model, or that we
use ANOVA ideas to summarize multilevel inferences. Multilevel modeling is inherently Bayesian
in that it involves a potentially large number of parameters that are modeled with probability
distributions (see, for example, Goldstein, 1995, Kreft and De Leeuw, 1998, Snijders and Bosker,
1999). The differences between Bayesian and non-Bayesian multilevel models are typically minor
except in settings with many sources of variation and little information on each, in which case some
benefit can be gained from a fully-Bayesian approach which models the variance parameters.

4 Related topics

4.1 Finite-population and superpopulation variances

So far in this article we have considered, at each level (that is, each source of variation) of a model, the
standard deviation of the corresponding set of coefficients. We call this the finite-population standard
deviation. Another quantity of potential interest is the standard deviation of the hypothetical
superpopulation from which these particular coefficients were drawn. The point estimates of these two
variance parameters are similar—with the classical method of moments, the estimates are identical,
because the superpopulation variance is the expected value of the finite-population variance—but
they will have different uncertainties. The inferences for the finite-population standard deviations
are more precise, as they correspond to effects for which we actually have data.

Figure 3 illustrates the finite-population and superpopulation inferences at each level of the
model for the flight-simulator example. We know much more about the 5 treatments and 8 airports
in our dataset than for the general populations of treatments and airports. (We similarly know more
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σy

0 0.2 0.4 0.6 0.8

Figure 3: Median estimates, 50% intervals, and 95% intervals for (a) finite-population and (b)
superpopulation standard deviations of the treatment-level, airport-level, and data-level errors in
the flight-simulator example from Figure 1. The two sorts of standard deviation parameters have
essentially the same estimates, but the finite-population quantities are estimated much more precisely.
(We follow the general practice in statistical notation, using Greek and Roman letters for population
and sample quantities, respectively.)

Source df Est. sd of coefficients

0 10 20 30 40

row 4

column 4

treatment 4

error 12

0 10 20 30 40

Source df Est. sd of coefficients
0 10 20 30 40

row 4
row.linear 1
row.error 3

column 4
column.linear 1
column.error 3

treatment 4
treatment.linear 1
treatment.error 3

error 12
0 10 20 30 40

Figure 4: ANOVA displays for a 5 × 5 latin square experiment (an example of a crossed three-way
structure): (a) with no group-level predictors, (b) contrast analysis including linear trends for rows,
columns, and treatments. See also the plots of coefficient estimates and trends in Figure 5.

about the standard deviation of the 40 particular errors in out dataset than about their hypothetical
superpopulation, but the differences here are not so large, because the superpopulation distribution
is fairly well estimated from the 28 degrees of freedom available from these data.)

There has been much discussion about fixed and random effects in the statistical literature (see
Eisenhart, 1947, Green and Tukey, 1960, Plackett, 1960, Yates, 1967, LaMotte, 1983, and Nelder,
1977, 1994, for a range of viewpoints), and unfortunately the terminology used in these discussions
is incoherent (see Gelman, 2005, Section 6). Our resolution to some of these difficulties is to always
fit a multilevel model but to summarize it with the appropriate class of estimand—superpopulation
or finite-population—depending on the context of the problem. Sometimes we are interested in the
particular groups at hand; other times they are a sample from a larger population of interest. A
change of focus should not require a change in the model, only a change in the inferential summaries.

4.2 Contrast analysis

Contrasts are a way to structuring the effects within a source of variation. In a multilevel modeling
context, a contrast is simply a group-level coefficient. Introducing contrasts into an ANOVA allows
a further decomposition of variance. Figure 4 illustrates for a 5 × 5 latin square experiment (this
time, not a split plot): the left plot in the figure shows the standard ANOVA, and the right plot
shows a contrast analysis including linear trends for the row, column, and treatment effects. The
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Figure 5: Estimates ±1 standard error for the row, column, and treatment effects for the latin square
experiment summarized in Figure 4. The five levels of each factor are ordered, and the lines display
the estimated linear trends.

linear trends for the columns and treatments are large, explaining most of the variation at each of
these levels, but there is no evidence for a linear trend in the row effects.

Figure 5 shows the estimated effects and linear trends at each level (along with the raw data
from the study), as estimated from a multilevel model. This plot shows in a different way that the
variation among columns and treatments, but not among rows, is well explained by linear trends.

4.3 Nonexchangeable models

In all the ANOVA models we have discussed so far, the effects within any batch (source of variation)
are modeled exchangeably, as a set of coefficients with mean 0 and some variance. An important
direction of generalization is to nonexchangeable models, such as in time series, spatial structures
(Besag and Higdon, 1999), correlations that arise in particular application areas such as genetics
(McCullagh, 2005), and dependence in multi-way structures (Aldous, 1981, Hodges et al., 2005).
In these settings, both the hypothesis-testing and variance-estimating extensions of ANOVA be-
come more elaborate. The central idea of clustering effects into batches remains, however. In this
sense, “analysis of variance” represents all efforts to summarize the relative importance of different
components of a complex model.

5 ANOVA compared to linear regression

The analysis of variance is often understood by economists in relation to linear regression (e.g.,
Goldberger, 1964). From the perspective of linear (or generalized linear) models, we identify ANOVA
with the structuring of coefficients into batches, with each batch corresponding to a “source of
variation” (in ANOVA terminology).

As discussed by Gelman (2005), the relevant inferences from ANOVA can be reproduced using
regression—but not always least-squares regression. Multilevel models are needed for analyzing
hierarchical data structures such as “split-plot designs,” where between-group effects are compared
to group-level errors, and within-group effects are compared to data-level errors.

Given that we can already fit regression models, what do we gain by thinking about ANOVA?
To start with, the display of the importance of different sources of variation is a helpful exploratory
summary. For example, the two plots in Figure 2 allow us to quickly understand and compare two
multilevel logistic regressions, without getting overwhelmed with dozens of coefficient estimates.

More generally, we think of the analysis of variance as a way of understanding and structur-
ing multilevel models—not as an alternative to regression but as a tool for summarizing complex
high-dimensional inferences, as can be seen, for example, in Figure 3 (finite-population and super-
population standard deviations) and Figures 4–5 (group-level coefficients and trends).
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