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Summary. Ecological regression is based on assumptions that are untestable from aggregate data.
However, these assumptions seem more questionable in some applications than in others. There
has been some research on implicit models of individual data underlying aggregate ecological
regression modelling. We discuss ways in which these implicit models can be checked from
aggregate data. We also explore the differences in applications of ecological regressions in two
examples: estimating the effect of radon on lung cancer in the United States and estimating voting
patterns for different ethnic groups in New York City.
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1. Introduction

Ecological regression is the statistical method of running regressions on aggregates (typically,
averages within geographic districts) and interpreting these regressions as predictive relations
on the level of individual units. For as long as ecological regression methods have been
formally used, it has been recognized that they rely on assumptions that are untestable
with aggregate data (see Robinson (1950), Goodman (1953, 1959) and, for a recent review,
Greenland and Robins (1994)). Nevertheless, in many settings ecological regressions will be
used to make as much sense as possible out of existing aggregate data.

For some applications, ecological regression seems quite natural, whereas for others the
untestable assumptions seem to pose an impossible barrier to interpretation of the results.
The fundamental difficulty with the use of ecological regression lies in checking the adequacy
of the model’s assumptions. For example, Freedman ez al. (1991) demonstrate that con-
ventional model assessment statistics such as the mean-squared error cannot distinguish
among the possible models.
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Despite the broad concern about the assumptions underlying ecological regression, little
has been done on developing data-based methods for checking the reasonableness and fit of
these models. In this paper we study strategies for model checking based on predictions of the
estimates at different levels of aggregation. We explore the assumptions underlying ecological
regression in two examples: the estimation of the effect of radon on lung cancer in the United
States and the estimation of voting patterns for different ethnic groups in New York City. For
both examples, we find evidence from the data themselves that the models do not fit; thus, the
modelling assumptions can be falsified by data, though never confirmed. We also discuss
issues of internal consistency of ecological regression and proposed alternative models.

2. Ecological regression

2.1. Models

2.1.1. Notation and basic model

We work with a modified version of the notation of Ansolabehere and Rivers (1991a, b),
which is derived from Goodman (1953, 1959). Consider a population of units i partitioned
into districts j =1, . . ., J, with »; units in each district j. For each unit there is a predictor
variable x;; and an outcome y;;, and interest lies in the linear prediction of y from x within
each district:

Vi =+ Bix; + €,

where the ¢;; have zero mean and are independent of the x;; and each other. We would like to
estimate the «; and 3;; however, the individual measurements x;; and y;; are unavailable; we
observe only the means, X; and y;, within each district. Assuming that the »; are reasonably large
within each district j, we ignore the average errors ¢€;, to yield the approximate relation

Vi =0a;+ 5. (1)

Ecological regression is the procedure of estimating the parameters in model (1) using a
regression of y; on X;, with one data point for each of the J districts:

Vp = a+ B+, ()

where the 7, have zero mean and are independent of the X; and each other. The basic idea is to
use the aggregate parameters o and 3 in place of the local regression coefficients «; and 3;, but
such a step requires justification, as discussed in Section 2.2.

2.1.2. Re-expression for binary data

Ecological regression is often used for binary predictors x; and binary outcomes y;;. In this
case, X; and y; are interpreted as observed proportions within districts, and the identity (1) is
often reparameterized as

Vi = B+ Bp(l = %)) 3)
and fitted with the ecological regression model
J7;‘ = /313_?/“"52(1 _?_Cj)+77j- “4)

In the notation of equation (1), 8;; = o; + 3; and §j, = ;. These new parameters 3;; and 3,
are the conditional probabilities of y = 1 given x = 1 or x = 0. The most important feature of
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this new model is not the linear transformation of the parameters but rather the restriction,
caused by the binary nature of x and y, that the 3;; and 3, lie between 0 and 1. In fact, this
information alone can be used to bound the values of the aggregate population quantities.
This technique is known as the method of bounds (Shively, 1991).

2.1.3. Quantities of interest

Ecological regression is commonly used for two purposes, corresponding to two different
estimands or quantities of interest based on equations (1) and (3). The first purpose, which
we illustrate in Section 3 with the radon example, is to understand the individual level
relation between the outcome y and the predictor x, in which case the parameters j3; in
equation (1) are of direct interest, and they are typically estimated all at once by estimating 3
in equation (2). In this setting, the ecological regression is difficult to interpret if the 3; vary
much from district to district, because this corresponds to an interaction between district and
the predictive relation of interest.

The second potential goal of ecological regression, which we illustrate in Section 4 with the
voting example, is to estimate the average value of y for different categories of x. Voting
rights litigation, in particular, relies heavily on ecological regression, as experts use the
technique to estimate the voting patterns of individuals of different ethnic groups. In the
notation of equation (3), the variance among the 3;; and 3, corresponds to local variation in
voting patterns within each ethnic group, and the aggregate quantities of interest are

®)

J

52:;”_/(1 X)ﬁ,z/zn(l

Unlike the coefficient estimates described in the previous paragraph, the aggregate estimands
in equations (5) can be of interest even if the coefficients vary greatly with j and even if the
models underlying ecological regression are not even approximately true (although then some
other set of assumptions would be required to obtain estimates). In any case, 5, and /3, are
directly interpretable as the population averages of y for the x = 1 and x = 0 subpopulations.

Under the ecological regression assumptions, inference for the parameters « and 3 (or,
equivalently, 3, and 3,) is straightforward. For inference about /3, and /3,, however, we can
sometimes do considerably better in the binary case by constraining the individual 3;; and 3,
to be bounded between 0 and 1 (Duncan and Davis, 1953; Goodman, 1959; Ansolabehere
and Rivers, 1991a; King, 1997).

2.14. Adding more predictor variables

The model can be most obviously expanded by replacing the data vector x with a data matrix
X of k variables, in which case k + 1 ecological regression coefficients can be estimated.
Another way to add covariates, in the context of the partitioning model (3), is to allow each
of 8;, and 3, to depend on additional covariates X. The advantage of this formulation is that
it keeps the interpretation of 3,; and 3;, as E(y|x = 1) and E(y|x = 0), which would not work
if additional Xs were simply added as predictors in model (3). Hanushek ez al. (1974)
demonstrated how to estimate ecological regressions with multiple predictors and how to use
the regression results to estimate aggregate quantities such as the literacy rates of blacks,
native whites and foreign-born whites.
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Another variant, which we shall discuss in Section 4, involves categorical data, in which
each unit in the population must fall in one of M categories, with a set of binary variables
Xijm» m =1, ..., M, indicating which category is appropriate for unit 7 in district j. It is then
natural to write the ecological regression model as

Vp = B -+ B X with &) +... + % = 1, (6)
and to fit it with the regression
Vi=06%1 + .+ BuXy + 1 (7

Aggregate summaries are defined by
. J J
ﬂm = Zn/)z]mﬁ/m Z”/Xj]m, for m = 1, e ey M (8)
=1 =1

As described in the previous paragraph, additional covariates can be added by applying
regression models to the 3.

2.2. Assumptions and alternative models

Under what assumptions are the parameters o and 3 in equation (2) reasonable substitutes
for the district level parameters o; and 3; in equation (1)? Ansolabehere and Rivers (1991a)
identify two such models. The simplest assumption,

constancy model, a;=aand §, =3, for all j,
corresponds to the regression (2) with errors 7; all equal to 0. More interestingly,
zero-correlation model E(ay|x;) = o and E(G)|X) = 5, for all j,

corresponds to errors 7; that are uncorrelated with each other and with the X;.

Without making some major assumptions, ecological regression has a fundamental
indeterminacy, which can be seen in equation (1) which, given the data X;, j;, is one equation
with two unknowns. This problem can be illustrated by a plot that takes advantage of the
mathematical identity of the random-coefficient regression (1) and positron emission
tomography (Budinger et al. (1977); see also Shepp and Vardi (1982), Beran et al. (1996) and
Feuerverger and Vardi (1999)). In the parameterization (3), the axes of the plot represent the
parameters 3;; and (3, and the linear constraint on each district j inherent in equation (3) is
represented by a line with slope —X;/(1 — &) that goes through the point (j;, 3;). This sort of
plot is standard in tomography and was borrowed by King (1997) for ecological regression.

Fig. 1 gives an example. Fig. 1(a) plots the turn-out against the proportion black in 5035
election districts for the 1993 New York City mayoral election, an example which we return
to in Section 4. Fig. 1(b) is the associated tomography plot, where each line corresponds to a
point on Fig. 1(a) and represents the possible values of 3;, and 3;, that are consistent with the
data x;, y;. (For visual clarity, only a tenth of the districts are displayed in Fig. 1(b).)

This picture corresponds to emission tomography with a limited range of angles (since,
if x is a binary variable, all the lines must have negative slope). The key independence
assumption, which is satisfied by the physics of emission tomography (but is not in general
true in ecological regression applications), is that the emission angles (characterized by ;) are
independent of the locations (i.e. the parameters (3,1, 3,)). The tomography lines do not go
through a common point, which is equivalent to the fact that the points on the scatterplot do
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Fig. 1. (a) Voter turn-out y; (as a proportion of the estimated adult population) versus proportion black x;, for
districts in the 1993 New York City mayoral election, and (b) tomography plot (each line corresponds to a point on
the scatterplot and represents the possible values of 3;; and 3, that are consistent with the data x;, y;; for visual
clarity, only a tenth of the districts are displayed)

not all fall on a straight line, and implies that the within-district conditional expectations, (3;,
and (3, must vary between districts.

Before continuing with the ecological regression model, it is important to realize that
other models can be set up, consistent with ecological data, under which the ecological
regression parameters « and 3 in equation (2) are not reasonable substitutes for the o; and
B; in equation (1). The simplest such model is to assume 3; =0 in all districts j, Wthh
corresponds to 3 = 3, and thus all points falling on the 45° line in the tomography plot.
Freedman et al. (1991) call this the ‘neighbourhood model’ (because the assumption is that
the expectation of y depends only on its district, or neighbourhood, and does not otherwise
vary with x) and note that it is consistent with any aggregate data set— this can be seen
on the tomography plot by noting that all the lines intersect the 45° line of 3, = 3.
Ansolabehere and Rivers (1991b) derive systematic relations between the estimates from the
ecological and neighbourhood models of the population proportions in equations (5).

The neighbourhood model is important as a reminder that more than one model can be
completely consistent with the data (or, to put it another way, that there are many rules that
one could use to put one point on each line in the tomography plot). However, unlike the
ecological regression models, the neighbourhood model has the serious flaw that it cannot be
generally correct—it can only be valid at, at most, one level of aggregation. For example, if
the neighbourhood model is valid at the county level, then it will not be valid for towns, and
it will not be valid for states. This problem arises because, if the variable x has systematic
geographic variation (i.e. if x is higher in some areas than in others), then any neighbourhood
effects will aggregate up to correlations of y; with x;; conversely, zero correlation within
neighbourhoods (i.e. 3, = 0) cannot be produced unless there is correlation of averaged x and
y at smaller levels of aggregation.

2.3. Model checking

Any ecological regression model is based on a huge set of untestable assumptions, since there
will be an infinite set of parameters o; and ﬂ/ that are consistent with the observed X; and y;. It
is perhaps surprising, then, to reahze that in many data sets information is avaﬂable to reject
the model.
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First consider Fig. 2, which displays hypothetical data that are consistent with the
ecological regression model. Fig. 2 displays a scatterplot of (x;, y;) and the associated
tomography plot, corresponding to model (3) with (5;;, ;) close to constant (near the value
(0.2, 0.4)) with variation independent of x;. The lines in Fig. 2(b) all go near the point
(0.2, 0.4), indicating that the data are consistent with the ecological regression model with
nearly constant parameters 3;; and 3.

In contrast, the scatterplot in Fig. 3(a) and tomography plot in Fig. 3(b) are inconsistent
with the zero-correlation assumption underlying ecological regression. This can be seen
because an ecological regression (4) fit to these data would correspond to 5, = —0.2 and
B> = 0.4. We know that these cannot be mapped directly to 3;; and (3, because with discrete
data a negative value of 3, makes no sense. To put it another way, the data in Fig. 3 are
inconsistent with the assumption that E(y;|x; = 1) and E(y;|x;; = 0) are independent of X;.

Another model check uses the fact that, under the zero-correlation model underlying
model (4), E(y,1X;) should be a linear function of X;. For example, the scatterplot of turn-
out versus proportion black in Fig. 1(a) looks like a curved regression. We can fit a linear
regression model and then plot the binned residuals, which, as can be seen in Fig. 4, display a
clear pattern, indicating that the data reject the hypothesis that the within-district rates of
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Fig. 2. (a) Scatterplot and (b) tomography plot corresponding to simulated data where the ecological regression
model is appropriate
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Fig. 3. (a) Scatterplot and (b) tomography plot corresponding to simulated data where the ecological regression
model is inappropriate
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Fig. 4. Average residuals of the voter turn-out y; from the ecological regression (2), with x; divided into 40 bins:
the systematic discrepancies from a mean of 0 indicate a model misfit; this plot reveals that the proportions 3;,
and §;,, defined in equation (3), cannot be uncorrelated with x;

voter turn-out among blacks and non-blacks are independent of the proportion of blacks in
the district.

In considering model violations, we might focus our thinking by asking how we would
interpret a plot of y; versus X; with clear curvature and a low variance. In this hypothetical
setting, we would know that 3;; and (3, are correlated with X;, but we would suspect that this
variation had a systematic pattern, either related to unobserved covariates (in the epi-
demiological examples) or possibly to community effects that are mediated by the ethnic mix
of the district (in the voting example).

Different methods of fitting ecological models react differently to data that are inconsistent
with the model. One strength of the straight linear regression fit to equation (2) is that non-
linear residuals indicate model misfit, as do estimated parameters outside the range [0, 1] for
model (4) fitted to aggregates of binary data. In contrast, the Bayesian method reviewed by
King (1997) always gives estimates for model (4) that lie between 0 and 1; this is presented as
a benefit, but it is in fact misleading if it causes the user to ignore signs of model failure. We
must distinguish between out-of-bounds estimates of the parameters (which indicate model
violation) and bounds on the individual coefficients 3;, (which hold in any case, and can be
used to increase the precision of estimates of aggregates).

Finally, as noted earlier, whether or not the model fits, the quantities 3, and /3, are well
defined, and different assumptions that are consistent with the data can imply a range of
possibilities for these population quantities (Duncan and Davis, 1953; Freedman et al., 1991;
Ansolabehere and Rivers, 1991a).

3. Home radon and lung cancer

3.1. Background

Radon is a radioactive gas whose decay products, which are also radioactive, are known to
cause lung cancer if high concentrations are inhaled, as has been convincingly demonstrated
in studies of highly exposed populations such as miners. Radon occurs naturally in air and
can become concentrated indoors; most of the lifetime radiation exposure for most people is
attributable to radon. However, the extent to which risk estimates based on highly exposed
populations can be used to estimate risks for more typical exposures is unknown. A
conventional linear—no-threshold extrapolation suggests that even fairly ordinary levels of
radon might cause a substantial risk, but some researchers believe that such an extrapolation
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greatly overestimates the risks due to low exposures, and a few researchers even think that
low levels of radiation are good for you.

The ideal way to address this issue would be to perform a study on a large random sample
from the general population, measuring the lifetime radon concentration and smoking habits
for many people and recording whether or not they die of lung cancer. Smoking must be
included because it is a key confounder: even under the most pessimistic assumptions about
radon risk, the vast majority of lung cancers should occur among smokers; moreover, radon
is thought to pose a larger risk (per unit exposure) to smokers than to non-smokers.

Unfortunately the actual data are much inferior to the ideal case. Indoor radon con-
centrations have been measured in random surveys including thousands of houses in the
United States, but the smoking habits of the occupants are unknown, as is the eventual cause
of death. Additional complications include population mobility, temporal variability of
radon concentrations, the fact that people spend only part of the day in their homes and the
existence of other factors that contribute to lung cancer. A few case—control studies have been
performed to address these problems, basically by attempting to approach the ideal case
discussed above. Significant effects appear at high doses (breathing large amounts of
radioactive gas really does cause cancer), but the studies are too small to be helpful for low
doses — the confidence intervals are so wide that, although they are consistent with the effect
extrapolated from high doses by using the linear—no-threshold model, they are also consistent
with no effect or even with a small protective effect from exposure to radon at low doses.

One seemingly natural way to address the problem of insufficient individual level data is to
perform an ecological regression. Although radon concentrations, smoking habits and causes
of death are not all known for most individuals, county-average values can be measured or
estimated. Perhaps a regression of county lung cancer death-rate on county-average indoor
radon concentration and county-average smoking intensity could shed some light on the
matter.

Such an analysis has been done, by Cohen (1995a), who found that, both before and after
an adjustment for smoking, county lung cancer rates are negatively correlated with county-
average indoor radon concentrations. (Fig. 5 illustrates this for the states of Georgia and
Iowa, which we selected to include one southern and one non-southern state, each with a
reasonably large variation in county-average home radon levels.) Moreover, the results are
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Fig. 5. Age-adjusted annual lung cancer death-rates (per 100000) versus estimated average home radon levels
(in picocuries per litre) by county for (a) Georgia and (b) lowa: the (slight) negative correlation in these plots is at
first surprising, given that most experts believe that, for any individual, an increase in radon exposure increases
the probability of lung cancer
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the same for various subsets of the counties obtained by stratifying on a large number of
socioeconomic variables. Cohen pointed out that, even if the estimated county smoking rates
are seriously in error, the errors would need to be (implausibly) strongly correlated with
county mean radon concentrations for those errors to be the cause of the negative correlation
between lung cancer and radon doses. Some people, including Cohen, take this as convincing
evidence that the linear—no-threshold assumption is incorrect and radon is possibly harmless,
or perhaps protective, at low doses (see also Bogen (1996)). Are they right: should this
ecological regression convince us that radon is good for you?

We address this question in two parts. First, we look at whether the observed negative
correlation between county lung cancer deaths and county-average radon concentrations
could be due to some sort of aggregation effect; second, we perform some model checking on
Cohen’s results to see whether there is evidence of significant violations of the modelling
assumptions.

3.2. Effects of aggregation
As mentioned in Section 1, warnings against a naive interpretation of ecological regression
are common. Yet sometimes, as with the radon case, the results seem so clear: counties with
higher radon concentrations have lower lung cancer death-rates, whether or not the death-
rates are adjusted for county smoking rates. Realistically, how could this not indicate a
protective effect from radon? The answer to this question is addressed in a very interesting
paper by Lubin (1998), which we briefly summarize here to allow discussion.

We adapt the notation of Lubin (1998) and express the standard linear—no-threshold
model in terms of the death-rate for any individual as a function of smoking status s and
radon exposure x, with

probability of lung cancer death = Pr(y = 1) = ¢(1 + 6s)(1 + Bx), 9)

where s = 1 for smokers and s = 0 for non-smokers, and x is the cumulative exposure to
radiation from radon decay products. The parameter ¢ represents a sort of base-line risk for
non-smokers who are unexposed to radon; 6 defines the relative risk in smokers compared
with non-smokers, and this can be well estimated from other studies (perhaps not adjusting
for radon exposure, but this is a minor adjustment compared with the effect of smoking); and
(3 determines the rate at which the relative risk increases as a function of exposure. In Cohen’s
(or any) county-aggregate model, the observed lung cancer death-rate is used to estimate a
county-average risk y;, which is modelled as linearly proportional to county-average radon
level X;, and also depends on the county’s proportion of smokers, 5;:

7= (1 +05)(1 + B%) + 1, (10)

This is a slight elaboration of the models considered in Section 2, in that smoking comes in as
a multiplicative rather than additive covariate.

Suppose that the simple model (9) is true: the risk of lung cancer for both smokers and
non-smokers increases linearly with radon exposure, and at a much higher rate for smokers
than for non-smokers. Under this model, would not Cohen’s regression necessarily reveal a
positive correlation between county-average radon level and county lung cancer death-rates?
As Lubin showed, the answer is no. Built into the derivation of equation (10) from equation
(9) is an important assumption: that the distribution of radon concentrations for smokers is
the same as that for non-smokers. In fact, this assumption is known to be false. Smokers tend
to have somewhat lower indoor radon concentrations than do non-smokers (Cohen, 1995a),
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perhaps partly because smokers open their windows more often, but also because of more
subtle effects: smoking varies with age and socioeconomic status, as do housing type,
duration of home occupancy during the day, time of residence in a particular house, etc. If
sufficient individual level (i.e. non-aggregated) data were available, then the correlation
between smoking and radon could be incorporated into the model. However, eliminating the
effects of radon—smoking correlation in the ecological regression would require enough
individual level data to obtain very precise estimates of the correlation within counties, for
reasons that we discuss next.

If the correlation between smoking and radon exposure varies from county to county, even
by a very small amount, this variation can cause a very large discrepancy between the
underlying parameter 3 in equation (9) and the estimated (3 in the ecological regression (10);
indeed, the two parameters can be of opposite signs, and their magnitudes can vary
arbitrarily. (By the way, we have discussed this problem in terms of smoking but, as Lubin
(1998) pointed out, the same argument holds for other potential confounders, such as age:

‘U.S. lung cancer mortality for ages 70-74 y is over 20 times the rate for ages 4044 y (NRC 1988)’.

In addition, any analysis of the relationship between radon exposure and lung cancer has
the problem that the most important predictor of lung cancer—smoking status—is not
available at the county level. Some attempts have been made to estimate county-average
smoking levels from surveys, cigarette sales or constructing proxies from demographic
variables (Cohen, 1995a), but none of these methods are very reliable. One could presumably
construct a very accurate estimate of smoking levels by using age-adjusted lung cancer rates,
but this cannot be used in the ecological regression, of course, as it would eliminate any
attempt to estimate the effects of radon conditional on smoking rate.

3.3. Internal evidence of problems with the model

Ecological regressions generate misleading results (in that coefficients for aggregated data
differ from those for individual data) if the causes of variation between aggregation units
differ from the causes of variation within aggregation units. Since there is no way of
investigating within-unit effects by using only aggregated data, it might seem that there is no
way of performing data-based model checking for this sort of problem, but that is not always
the case, as we illustrate.

Cohen (1995a) performed a large number of validation checks, mostly based on stratification:
in addition to regressing the lung cancer death-rate on average radon concentration for every
county for which data were available, regressions were also performed on various subsets of
the data. For each of 56 county level socioeconomic variables taken from census data,
counties were stratified into quintiles and the regression was performed on each stratum. For
instance, separate regressions were performed for counties in each quintile of percentage
urbanization. Results of these regressions show remarkable stability for all the quintiles and
all the socioeconomic variables. Thus the regression passes one test that could have revealed
the presence of important confounding variables.

Many researchers would be tempted to stop there, but Cohen performed several additional
checks. One of these was to stratify geographically, by both state and region (using the
Census Bureau’s division of the United States into nine regions). This is important because
both radon level and smoking vary geographically, as most confounding variables would
be expected to do as well. In contrast with the stability of the results on stratification
by socioeconomic variables, regional stratification led to substantial variation, with the
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regression coefficient for radon level varying from 0.03 in the East North-Central region to
—0.39 in the West South-Central region (in units of per cent per becquerel per cubic metre).

As Price (1995) pointed out, the regressions within individual states, though subject to
substantial stochastic noise due to small sample sizes for radon levels and lung cancer deaths,
show a remarkable pattern: of the 12 states with estimated coefficients below the overall
average, 11 are in the south. Cohen (1995b) suggested that this is caused by a non-linearity
in the effect of radon: radon is strongly protective at low concentrations, leading to a sub-
stantial negative coefficient for Southern states (in which most counties have low radon
concentrations), whereas it is less protective, or even harmful, at higher concentrations.

However, this is unlikely to be the real explanation: several non-Southern states have low
radon concentrations but do not have large negative coefficients for risk from radon, and
some Southern states have moderate radon concentrations, similar to those in non-Southern
states, but still show large negative correlations. In short, there is a ‘Southernness’ con-
founder: on the basis of Cohen’s results, it appears that radon is much more protective in the
south than elsewhere in the United States, an effect that can be only partially explained by a
hypothesized non-linearity in the risk from radon. This effect is apparent even in the county-
aggregated data; of course, there may be additional within-county confounding that cannot
be found this way.

Given the inherent problems with ecological regression, the fact that a protective effect
from breathing radioactive gas seems unlikely on the basis of both non-ecological studies at
higher doses and biological understanding of the low dose effects of a-particles (which differ
from other radiation for technical reasons outside the scope of this paper), and the model
violation (the Southernness confounder) that is evident in this particular ecological regression
analysis, we do not think that the regression provides meaningful evidence for a protective
effect at low doses.

Of course, the regression does not provide evidence the other way, either. Suppose that the
ecological regression generated results which were more in line with the miner studies and
expectations from cellular biology, showing a linear or nearly linear increase in risk with
exposure. Almost certainly, many of the same people who disparage Cohen’s analysis in
which radon appears protective would embrace it if radon appeared dangerous. This should
be a caution to us when interpreting any ecological regression; in particular, rigorous model
checks should be attempted no matter what the results of the analysis are, and the results of
any ecological analysis should be treated with caution.

4. Ethnicity and voting

4.1. Ecological regression in voting studies

Ecological regression and correlation have been used for many years to estimate individual
political behaviour given aggregate information at the level of precincts or election districts.
Gosnell (1937), for example, used ecological regressions to estimate how different ethnic
groups in the city of Chicago voted for different candidates, parties and political machines,
and how newspaper readership and endorsements affected individual level voting behaviour.
In the voting rights field, experts today rely heavily on ecological regression because the
United States Supreme Court concluded in Thornburgh v. Gingles that ecological regression
provides evidence of the voting behaviour of individuals of different ethnic groups.
Ansolabehere and Rivers (1991a) provide a further review of this literature. Ecological
regression is also used to study the transition probabilities from aggregate voting data
(Brown and Payne, 1986; McCue, 1995).
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We focus on the problem of estimating votes and turn-out for different ethnic groups:
y;; = Lif person iin district j turns out to vote in a given election, and x;; = 1 if that person is
in a given ethnic group. The units j are electoral districts; the aggregate election numbers y;
are public information and the demographic proportions by district, X;, can be approximated
by putting together census numbers.

We begin by fitting a standard ecological regression, but our diagnostic tools reveal model
errors, and so we go beyond the usual model, which in turn requires us to abandon the
individualistic political assumptions that underlie it. We illustrate with an example.

4.2. New York City mayoral election

The 1993 New York City mayoral election between the (black) Democratic incumbent,
David N. Dinkins, and his (white) Republican challenger, Rudolph W. Giuliani, was racially
polarized, as indicated by campaign issues, rhetoric and opinion polls. This is the sort of
election for which political scientists would be interested in the voting patterns of different
ethnic groups, which here we categorize as black, non-black latino, white and other. These
terms are of course somewhat arbitrary, and we follow the standard practice for census and
opinion polls and rely on self-categorization.

The margins of Table 1 give the total votes and population for New York City adults, and
the goal of the analysis is to estimate the interior cells. The data analysed come from two
sources: the 1990 census of population and Housing Public Law 94-171, and computerized
voting returns for the 1993 mayoral general election obtained from the New York City Board
of Elections (see Park er al. (1998)). The Public Law 94-171 data present counts of the
population by ethnicity at the census block level. The voting returns file contains votes cast
for each candidate in the 1993 mayoral general election in the 5694 election districts in the
city. To estimate the population by ethnicity in each district, we aggregated the census block
information to the election district level and used a conversion file from the New York City
Districting Commission to aggregate census block fragments created where election district
lines split the census block geography. In some cases, the census data were obviously flawed
(e.g. more registered voters listed than adults in the district). After removing these from our
data set we were left with 5133 election districts representing 96% of the adult population and
94% of the voters. This large sample size means that, in interpreting our model results below,
essentially all observed differences are statistically significant. Finally, for our model fitting
we excluded the districts with fewer than 100 voters (because we did not want to have to
worry about variability due to discreteness within districts, since that is peripheral to the
main concerns of this paper); these 525 districts contained fewer than 0.1% of the population
and voters in the city.

Table 1. 2 x 3 contingency table for the ecological regression model for the turn-out and
vote in the 1993 New York City mayoral election

Ethnicity of Voting decision Total
voting-age person

Giuliani Not Giuliani No vote
Black ? ? ? 1314520
Latino ? ? ? 1237121
White ? ? ? 2667127
Other ? ? ? 404574

Total 929981 896909 3796452 5623342
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Table 2. Parameter estimates and estimated population summaries for various models for vote
choice and turn-out in the 1993 New York City mayoral election

Model Parameter Estimates for the following groups:
Black Latino White Other
Ecological et (raw) 0.38 0.16 0.45 —0.09
regression B (constrained) 0.38 0.15 0.44 0.00
modelf Goliant (1) —0.01 0.03 0.35 —0.03
ﬂg‘“]"““‘ (constrained) 0.00 0.02 0.35 0.00
Vote for Giuliani 0.00 0.02 0.34 0.01
Vote not for Giuliani 0.37 0.12 0.09 0.00
No vote 0.63 0.83 0.57 0.99
Expanded yham=out (rawy) 0.37 0.21 0.50 0.18
ecological Amum=out (constrained) 0.37 0.21 0.50 0.16
regression Shum=out (praw) 0.55 0.07 0.17 —0.05
model} 5" (constrained) 0.56 0.07 0.16 0.00
yguliani (pavy) 0.00 0.07 0.40 0.09
yyuliani (constrained) 0.01 0.07 0.40 0.16
6$f“"”"f (raw) 0.03 0.04 —0.01 0.18
pSmliani (constrained) 0.00 0.07 0.05 0.00
Vote for Giuliani 0.01 0.07 0.30 0.03
Vote not for Giuliani 0.42 0.05 0.10 0.00
No vote 0.57 0.88 0.60 0.97
Neighbourhood  Vote for Giuliani 0.04 0.10 0.25 0.16
model§ Vote not for Giuliani 0.27 0.16 0.10 0.09
No vote 0.69 0.75 0.64 0.75
Exit poll§§ Vote for Giuliani 0.02 0.07 0.28 0.07
Vote not for Giuliani 0.35 0.11 0.08 0.07
No vote 0.63 0.83 0.64 0.86

fFor the ecological regression model, the parameters represent expected rates of voting for Giuliani
and turning out to vote, as proportions of the adult population of each ethnic group. The parameters
are then constrained to fall between 0 and 1. The proportions of adults in each ethnic group who voted
for Giuliani, voted for other candidates or did not vote are estimated from the constrained models, also
applying to the constraints to individual district parameters 3;,, then summing over all districts
as in equation (8). The estimated population proportions, especially for ‘other’, are not plausible and
indicate a problem with the model.

iFor the expanded ecological regression model, the parameters are as described in equation (11). The
estimated population proportions, especially for ‘other’, are not plausible and indicate a problem with
the model.

§The neighbourhood model assumes that 3;; = ... = 34 within each district j. This model tends to
understate the differences between ethnic groups, and the model is implausible at the district level;
nevertheless, many of the resulting aggregate estimates are reasonable.

§§From an exit poll, we display the proportion of adults in each ethnic group who voted for Giuliani,
voted for other candidates or did not vote. These exit poll data are themselves imperfect as they are far
from an equal probability sample.

4.3. Model fitting

113

To estimate the cells of Table 1 by using ecological regression, we follow the standard
approach and separately estimate the voter turn-out and the proportion of voters for Giuliani
by ethnic group. In our discussion of model checking, we shall focus on the models for
turn-out, but for filling in Table 1 (as is done in different ways in Table 2) we apply models to
both turn-out and Giuliani vote.

We first discuss the basic ecological regression model and then a non-linear generalization
that fits the data better (but, as we shall see, still has serious problems).



114 A. Gelman, D. K. Park, S. Ansolabehere, P. N. Price and L. C. Minnite

Q | 2 ]
0 «©
= o
5 =1
£s E2
2 2
g 8T |
g2 £°
o o~
(=] S 7
o K (=]
R : . r r . o1 T T r T v
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
proportion black proportion latino
(a) (b}
o Q]
@ ©
o S ]
5 3
g31 €3
2 2
g% g%
g g°
' N
o (=]
< ] -
o© T T T T T T o T T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
proportion white proportion other
{c) (d)

Fig. 6. Voter turn-out versus proportion (a) black, (b) latino, (c) white and (d) other, for districts in the 1993 New
York City mayoral election

4.3.1. The basic ecological regression model
We begin by fitting model (7) with M = 4, where y; = 1 if adult 7 in district j turns out to
vote, and x;,, = 1 if adult i in district j belongs to ethnic group m. Fig. 6 displays scatterplots
of y; versus x,;,, foreach m =1, . . ., 4. The estimates of the ecological regression parameters
G, representing the expected turn-out rates among the four ethnic groups according to the
linear model, are displayed in the first row of Table 2. The fourth coefficient, representing the
average proportion of ‘others’ who turn out to vote, is outside the range [0, 1], which
indicates a model violation. We continue, however, by rerunning the model with the
parameters constrained to fall in [0, 1]; the constrained parameter estimates are displayed in
the second row of Table 2.
The next two rows of Table 2 display the analogous estimates for the proportion of adults
who vote for Giuliani, fitted as before but with the additional constraint that g <
un-out for each m, to reflect that voters for Giuliani are a subset of voters. (We iterate the
turn-out and vote choice regressions to obtain the best fit under these constraints.) We use
the turn-out and Giuliani vote models to derive estimates of the proportions of adults within
each district j who make each vote choice. King (1997) reviews a formal Bayesian method
for combining the inference from the regression model with the bounds on the individual
Bjm; however, this method has been developed only for M = 2, and so here, with M = 4, we
perform a simpler procedure based on imputing (3;, . . ., 34), for each j, to be as close as
possible to the fitted linear model parameters (G, . . ., 5,), subject to the equality constraint
(6) and the bounds of 0 and 1. We wrote an iterative computer program to perform this
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Fig. 7. Residuals of voter turn-out from the ecological regression model (7) plotted against proportion (a) black,
(b) latino, (c) white and (d) other, for districts in the 1993 New York City mayoral election: the systematic
discrepancies of E(y|x) from the line in each plot indicate a model misfit: the proportions (3, defined in equation
(6), cannot be uncorrelated with the x;,

four-dimensional constrained optimization within each district. Finally, we repeat the pro-
cedure to estimate the proportions of voters for Giuliani as the best fit to the regression
model under the constraint of being no greater than the voter turn-out in each district and
ethnic group.

Once we have estimates of the Giuliani vote and voter turn-out for each ethnic group in
each district, we average over districts as in equation (8) to estimate population proportions,
which are displayed in the fifth to seventh rows of Table 2. These numbers look dubious,
especially the estimate of 0% Giuliani vote among blacks and 1% turn-out among others,
both of which are clearly influenced by the parameter estimates on the boundary.

4.3.2. Ecological regression model with interactions

In addition, we can check the ecological regression model by comparing the observed district
turn-outs y; with model (7). Since there are more than two groups, we no longer expect the
regression line of y; on any ¥;,, to be a straight line, but we still would expect the residuals to
be patternless if the model were indeed true. Fig. 7 displays the residuals, which display clear
patterns, implying that voter turn-out within groups is correlated with the ethnic composition
of districts.

It is then natural to fit a random-coeflicient model for the 3;, in model (7) of the form
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E(/B/'m|xj) = ’Ym)_c/'m + 5m(1 - )_C/'m)a for m = 19 PR 4. (11)

The parameters ~,, and §,, represent the expected turn-out for group m, in districts composed
of 100% and 0% respectively, of group m residents. Ansolabehere and Rivers (1991a) have
discussed the rationale behind and some difficulties with this model.

A key difference compared with the usual ecological regression models is that the new
model (11) is inherently a group model, not just an individual model, in that it explicitly
models the ethnic composition of a district as a predictor or influence on individual voting
behaviour. This sort of model may be more appropriate when studying social behaviour
(such as voting) than when studying non-contagious diseases (such as cancer).

Continuing with our example, the second section of Table 2 displays the estimated
parameters for model (11), fit to turn-out, in raw and constrained form, followed by the
estimated parameters for the model, fit to the Giuliani vote with the parameters constrained
to be no greater than the corresponding parameters for the turn-out model. Incidentally, the
big differences between the unconstrained and constrained parameters can be viewed as
yet another model check, showing that the fitted model is inappropriate to the data in this
respect (since, if the model were true, the fitted parameters would automatically be consistent
with each other, with any exceptions being minor and caused by small sample estimation
variation).

We then combine the models for turn-out and Giuliani vote to obtain estimated
proportions of adults of each ethnic group in each district who voted for Giuliani, voted for
others or did not vote. As described at the end of Section 4.3.1, we constrain these
proportions as appropriate and then perform the weighted averages over districts to obtain
population proportions within each ethnic group, which are displayed in the last three rows
of the second section of Table 2. By comparison, the estimated population proportions under
the neighbourhood model are displayed in the third section of Table 2. These estimates tend
to understate the differences between ethnic groups, as is typical with this model (see
Ansolabehere and Rivers (1991b)) and, as discussed at the end of Section 2.2, this model does
not make logical sense; however, many of its population proportions are reasonable in this
example.

Also, as before we examine the model fit by plotting binned residuals; these plots (not
shown here) do not look too bad, although we have already seen (from the parameter
estimates that violate the constraints) that the model still has problems.

4.4. Comparison with exit polls and directions for further work
We can compare our results with those obtained from exit polls taken from respondents at 40
polling places in New York City. Unfortunately, we have not been given the election districts
of these polling places and so we can only use the totals from these polls. The estimated vote
decisions from these polls are displayed in the final three rows of Table 2. These proportions
can be compared with the estimated proportions from the models, as displayed in the earlier
segments of Table 2. There are some discrepancies that indicate probable errors in the
models, even in the better fitting non-linear model, most notably in the vote assignments for
the ‘other’ category. We must be careful in interpreting these comparisons, however, because
the exit poll is far from a random, equal probability sample and is subject to many biases.
Natural next steps for this problem are to include demographic information as predictors
of the v;, and é;,, parameters in the expanded ecological regression model, and to combine
in the information from the exit poll, following the ideas of Ansolabehere and Rivers
(1991b).
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5. Discussion

What have we learned? Ecological regression requires many assumptions, and we have
considered various kinds of model error:

(a) theoretical inconsistencies (as in the discussion of the neighbourhood model in Section
2.2 of this paper, or the theoretical examination of Lubin (1998) of the implicit model
of Cohen’s (1995a) ecological regression for radon);

(b) parameter estimates that are outside the bounds, thus invalidating the zero-correlation
model (as in Fig. 3) or more complicated models (as in the negative unconstrained
estimate for ;"™ °" in Table 2);

(c) patterns in binned residuals from the regression (as in Fig. 4), which can suggest
interactions or other extensions of the model.

The rejection of an ecological regression model can have interesting substantive interpreta-
tions, as in the voting example in Section 4.3.2 where an interaction can be interpreted as a
community effect. But, even if a model could be correct and we cannot reject it given the
observed aggregate data, it still relies on individual level assumptions.

What, then, can be done? One approach is to combine ecological regression with individual
data—as discussed by Ansolabehere and Rivers (1991b), even a small amount of individual
level survey data can be used to check or modify the zero-correlation model of ecological
regression in a voting study. Even where individual data are not directly put in the ecological
analysis, this sort of comparison is done informally; for example, in the radon study, Lubin
(1998) and Goldsmith (1999) evaluated ecological studies of radon risk with reference to
individual level studies of radon and lung cancer.

What if individual level data are not available; then why should we study ecological
regression? The short answer is that, as Cho (1998, 1999) has pointed out, researchers are
interested in estimating individual level coefficients such as 3; and averages such as B, and 3,,
and often only aggregate data are available. People will be doing ecological regressions
whether we like it or not, so we should try to understand this method. A longer answer is that
ecological regression sometimes makes sense; for example, in the radon study, if smoking
were not such a dominant confounder, and if accurate smoking rates were available on the
county level, then the ecological regression could be informative. In the election example, it
has been a struggle to set up an ecological regression model that gives reasonable parameter
estimates and fits to data, but this struggle is itself informative in that it reveals that certain
seemingly natural models are not, in fact, appropriate. Potential confounders arise with
observational studies in general, and it would be a mistake to think of this somehow as a
special problem of ecological regression.
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