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Abstract We consider three examples from our own teaching in which much was learned by
critically examining examples from books. Even influential and well-regarded
books can have examples where more can be learned with a small amount of
additional effort.
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Introduction

We can improve our teaching of statistical exam-
ples from books by collecting further data,
reading cited articles and performing further
data analysis. This should not come as a sur-
prise, but what might be new is the realization of
how close to the surface these research oppor-
tunities are: even influential and celebrated
books can have examples where more can be
learned with a small amount of additional effort.

We discuss three examples that have arisen in
our own teaching: an introductory textbook that
motivated us to think more carefully about cat-
egorical and continuous variables; a book for the
lay reader that misreported a study of menstrua-
tion and accidents; and a monograph on the
foundations of probability that over interpreted
statistically insignificant fluctuations in sex
ratios.

Categorical or continuous?

The book Mind on Statistics, by Jessica Utts and
Robert Heckard (2001) , is an excellent text that
is full of examples for statistics classes at all
levels. A fun thing about working from a good
textbook is that more can be learned by consid-
ering its examples in further depth. For example,
early on in the book, the concepts of continuous
and categorical variables are introduced, and the
following variables are listed as “categorical”:
Dominant hand (left-handed or right-handed),
regular church attendance (yes or no), opinion
about marijuana legislation (yes, no, or not

sure), and eye colour (brown, blue, green, or
hazel). From another perspective, though, three
of these four variables could also be considered
as continuous.

The issue is clearest with handedness, which
Utts and Heckard categorize as left- or right-
handed, but can be also described by a continu-
ous variable, as we illustrate with the left
histogram in figure 1, which is based on data we
collected from students in a class. (More system-
atic surveys obtain similar results; see, e.g. Old-
field 1971.) As this histogram shows, many
people fall between the two extremes of pure
left- and pure right-handedness. But as the right
histogram in figure 1 illustrates, students tend
to guess the distribution of handedness to be
bimodal and thus essentially discrete. This
common misconception would make handedness
a particularly effective example of a continuous
variable that is often summarized discretely.

Similar issues arise for two of the other vari-
ables given by Utts and Heckard. Church
attendance can be measured by a numerical
frequency (e.g. number of times per year),
which would be more informative than simply
yes/no, or it can be binned in ordered catego-
ries. For example, the American National Elec-
tions Study (http://www.electionstudies.org/)
asks, “How often to you attend religious serv-
ices, not counting weddings or funerals?” and
records five sorts of response: More than once
per week, once per week, more than once per
month, several times per year, and never.
Finally, the three options for opinion about
marijuana legislation could be coded as 1, 0
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and 0.5, and further intermediate preferences
could be identified with detailed survey ques-
tions asking about medical marijuana, criminal
penalties and so forth.

The point of bringing all this up in class is not
to lay down the law and say that church attend-
ance, for example, is inherently discrete or con-
tinuous. Rather, we want to lead students
to think about the ways in which reality is
abstracted by numerical measurements. We also
find it empowering that we can learn more about
the structure of these variables either by collect-
ing our own data (as illustrated in figure 1) or
with library research (as by looking at the
National Elections Study questions).

The graph that wasn’t there

About fifteen years ago, when preparing to teach
an introductory statistics class, I recalled an
enthusiastic review I had read (Sills 1986) of the
sixth edition of Hans Zeisel’s (1985) book, Say It
With Figures. I bought the book and, flipping
through it to find examples for use in class, came
across the two sketches reproduced in figure 2.
The curves represent data from hospital admis-
sions of premenopausal women who had been
involved in traffic accidents, with the left hump

representing accidents that had occurred just
before the menstrual period and the right hump
showing accidents occurring just after the
period.

This seemed like a great example for class. I
figured that a graph of the actual data would be
even better than a sketch, so I went to the
library and found the cited research by Katharina
Dalton (1960). The graphs are reproduced in
figure 3, and they look nothing like Zeisel’s
sketches in figure 2! For one thing, the sketched
densities show almost all the probability mass
just before and after menstruation, but the data
show only about half the accidents occurring in
these periods. Perhaps more seriously, the
sketch shows two modes with a gap in the
middle, whereas the data show no evidence
for such a gap. Similarly, the two bell-shaped
pictures in the right sketch of figure 2 do not
match the actual data as shown in the histo-
grams on the right side of figure 3.

Dalton’s findings were conveniently summa-
rized by an article in Time magazine on
November 28, 1960: “In four London general
hospitals Dr Dalton questioned 84 female acci-
dent victims (age range 15–55), all of whom
had normal, 28-day menstrual cycles. Her find-
ings: 52% of the accidents occurred to women
who were within four days, either way, of the
beginning of menstruation. On a purely random
basis, the rate would have been only 28.5% for
the same eight days. Childless women, noted
Dr Dalton, appear to be abnormally accident-
prone just before menstruation, while women
who have borne children are vulnerable over
the whole premenstrual and menstrual period.”
What is relevant to our discussion here is that
these findings were not accurately described in
Zeisel’s book. On an unrelated but amusing
(from a current perspective) note, the Time
article quoted Dalton as saying that these

Fig. 1. Handedness can be measured by a 10-item questionnaire to yield an essentially continuous score ranging from -1 (pure
left-hander) to +1 (pure right-hander). We had the students in an introductory statistics class fill out the questionnaire and also asked
them to sketch what they thought the histogram of other students’ handedness scores would look like. (a) Data from the class; (b) a
guess from a group of students of what they thought the histogram would look like (before seeing the actual data). Bimodality was
anticipated but did not actually occur

Fig. 2. Sketch from an example in Zeisel (1985), who writes,
“When the frequency of [driving] accidents is plotted against the
time of menstruation a surprisingly shaped curve arises [left
graph]. Upon investigation, the curve turned out to be the com-
posite of two easily identified separate curves [right graph]; one
for parous women (those who had given birth) and one for
nonparous women. The one group had the accident peak imme-
diately after their period, the other immediately before it.”
Compare with the actual data shown in figure 3
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findings “cause one to consider the wisdom of
administering tranquilizers for premenstrual
tension.”

I suspect that Zeisel heard about the research
(perhaps even by reading Time magazine), rec-
ognized that it would be a good teaching
example, and went to the library to read Dalton’s
original article. He then could have too hastily
summarized the data in a sketch, inadvertently
knocking out most of the accidents that did not
occur just before or after menstruation and mis-
takenly inserting a gap in his histogram between
the two modes. Or perhaps he was looking for an
example of a mixture model and didn’t look too
closely at the data. In any case, this is a benefit
to our students, who get a lesson in how easy it
is to misread a research report. Had Zeisel’s
book not been so appealing and well written, we
would not have been drawn to the example in
the first place.

For teachers, the most important lesson is that
going to the source of the data turned up a
better example to use in class. For students, the
lesson is to be sceptical when seeing second-
hand reports of data, even when coming from a
credible-seeming source.

Finding patterns in noise

The book Probability, Statistics, and Truth by
Richard Von Mises (1957) is an important text in
the foundations of probability, laying out a deri-

vation of the axioms of probability theory from
the concept of infinite random sequences. This
work has long been influential in statistics (see,
e.g. Wald (1939) and Good (1958) for classical
frequentist and Bayesian reactions) and in phi-
losophy (e.g. Gillies (2000) connects von Mises’s
ideas to those of Karl Popper and others).

I bought the book several years ago, and, in
skimming it, alighted on the chapter on “Appli-
cations in Statistics,” within which von Mises
uses the sex ratio of births to illustrate the bino-
mial distribution. He reports the proportion of
boys born in each of the 24 months of 1907–
1908 in Vienna and found less variation
than expected. In his words: “The average of
these 24 values is 0.51433; the dispersion
[n-weighted variance] . . . is 0.0000533.” He
computes the expected dispersion as (23/
24)(p(1 - p)/n) = 0.0000613 (here, n is about
3900 per month, and p is taken to be 0.514) and
then writes, “The actual dispersion is smaller
than the theoretical one. In other investigations
of the proportion of male births, a value of
Lexis’s ratio closer to 1 is obtained. We must
therefore look for an explanation of the slightly
subnormal dispersion found in this special case.”
He goes on to attribute this lower variance to
different sex ratios in different racial or socio-
economic groups.

However, while the variance is less than
expected by chance under the assumption of a
constant sex ratio, is not at all statistically

Fig. 3. Graphs from Dalton (1960) with
the raw data on menstruation and acci-
dents. These histograms look almost
nothing like the sketches in figure 2 taken
from Zeisel’s book. Many of the accidents
fall outside of the days indicated by the
modes in figure 2, and, unlike those
sketches, there is no gap between the
peaks. The above images, from the British
Medical Journal (1960) 2, 1425, are repro-
duced with permission from the BMJ Pub-
lishing Group
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significantly less. We can see this by using the
chi-squared test for overdispersion – a topic that
is not typically covered in a secondary-school
statistics course, but is conceptually similar to
other statistical tests. The null hypothesis is
derived from the assumption that the number of
births each month is binomially distributed with
a constant probability, and the mathematical
form of the test is similar to that of a normal
population having a specified variance based on
a sample from it using the statistic (n – 1)s2/s2.

With 24 months, the sample variance s2 =
(24/23)(0.0000533) is estimated based on 23
degrees of freedom, and we can use the chi-
squared test to compare it with the theoretical
variance s2 = (24/23)(0.0000613) from the
model that assumes a constant sex ratio. As
23s2/s2 follows a chi-squared distribution with 23
degrees of freedom, the observed ratio of 0.869
has a p-value of 0.36; i.e. one would observe a
ratio this extreme or smaller more than a third of
the time, just by chance.

Thus, it is unnecessary to search for an expla-
nation for the discrepancy, especially given that,
as von Mises notes, birth numbers of boys or
girls are among the rare data that actually do
generally follow the binomial distribution. In
addition, irrelevantly for the technical point but
of interest when teaching, von Mises makes a
presentational lapse by summarizing dispersion
with variances rather than standard deviations,
which are more interpretable on the original
scale of the data.

Von Mises is hardly alone in over-interpreting
birth data: there is a long tradition of looking for
patterns in birth data, despite that there is no
convincing evidence that boys or girls run in
families or that sex ratios vary much at all except
under extraordinary conditions. (See Freese and
Powell (2001), Das Gupta (2005) and Gelman
(2007) for more on the over-interpretation of
statistical fluctuations in sex ratios.) Thus, in
addition to illustrating the important technical
point of assessing statistical significance of a
variance ratio, this example opens the door to a
more general discussion of how and why statistics
can be misread. (Note: For the analysis above,
the calculations of von Mises are taken at face
value. He, in fact, computes the dispersion incor-
rectly from the 24 observations he lists. We invite
the reader to go to the original source to compute
a dispersion of 0.0000394, which still gives a
fairly healthy p-value of 0.10 compared with the
value of 0.36 stated above.)

That this occurred in an influential book
merely underscores that even a standard chi-

squared test for overdispersion cannot be taken
for granted. In a similar vein, finding that the
great Francis Galton performed inaccurate cal-
culations with the normal distribution (mistak-
enly predicting that there were nine-foot-tall
men in Britain; see Gelman (2006) and Wainer
(2007)) gives us a new respect for the pioneers
who worked out the mathematical property of
that model.

Discussion

Individually, these examples are of little impor-
tance. After all, one does not go to a statistics
textbook to learn about handedness, menstrua-
tion, and sex ratios. It is striking, however, that
the very first examples I looked at in the Zeisel
and von Mises books – the examples with inter-
esting data patterns – collapsed upon further
inspection. In the Zeisel example, we went to
the secondary source and found that his sketch
was not actually a graph of any data, and that he
in fact misinterpreted the results of the study. In
the von Mises example, we reanalysed the data
and found his result to be not statistically sig-
nificant, thus casting doubt on his already doubt-
ful story about ethnic differences in sex ratios. In
the Utts and Heckard example, we were inspired
to collect data on handedness and look at survey
questions on religious attendance to find under-
lying continuous structures.

Teaching activities already exist in which stu-
dents apply critical reading skills to news reports
and scientific articles with statistical content
(Gelman and Nolan 2002); here, the recommen-
dation is to have an inquiring eye when reading
books that we teach from as well. Much can be
learned by redoing analyses and going to the
primary and secondary sources to look at data
more carefully, and this can help us improve our
teaching, even from our favourite books.
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Technology tip

Randomisation Tests in R.
Kabacoff R (2011) “Data Analysis and Graphics
with R” is one recent example of a textbook
suitable for use at university level which features
a solid section on Bootstrapping and Randomi-
sation tests. However, a basic two sample ran-
domisation test is very simple to implement in R.

First we type in Student’s sleep data (see
?sleep for full attribution)

x1 ← c(0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8,
0, 2)
x2 ← c(1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6,
4.6, 3.4)

Then we measure the observed test statistic,
in this case the absolute difference between
sample means:

observed.test.statistic ← abs(mean(x1)-
mean(x2))

Next we need to generate the null hypothesis
distribution for this test statistic. We create a
storage vector, pool all the data and then use a
simple loop to shuffle and cut (generate two
data vectors by sampling with replacement),

each time calculating the absolute difference in
means:

null.hypothesis.dist ← vector(″numeric″, 1000)
pooled ← c(x1, x2) for (i in 1:1000){ pooled.
shuffle ← sample(pooled) x1.shuffle ← pooled.
shuffle[c(1:10)] x2.shuffle ← pooled.shuffle
[c(11:20)] null.hypothesis.dist[i] ← abs(mean
(x1.shuffle)-mean(x2.shuffle))
}

Having simulated an approximation to the null
hypothesis distribution we just need to find out
how unusual the observed test statistic was,
given this null.

hist(null.hypothesis.dist, freq = FALSE, xlab =
″Test statistic″, main = ″Null hypothesis distribu-
tion″) abline(v=observed.test.statistic, col =
″red″)

length(null.hypothesis.dist[null.hypothesis.dist >
observed.test.statistic]) / 1000

Simple extensions to this are to develop a one
sided test, and to alter the test statistic that is
used.
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