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a b s t r a c t

For the analysis of binary data, various deterministic models
have been proposed, which are generally simpler to fit and
easier to understand than probabilistic models. We claim that
corresponding to any deterministic model is an implicit stochastic
model in which the deterministic model fits imperfectly, with
errors occurring at random. In the context of binary data, we
consider a model in which the probability of error depends on the
model prediction.We show how to fit this model using a stochastic
modification of deterministic optimization schemes.
The advantages of fitting the stochastic model explicitly

(rather than implicitly, by simply fitting a deterministic model
and accepting the occurrence of errors) include quantification
of uncertainty in the deterministic model’s parameter estimates,
better estimation of the true model error rate, and the ability to
check the fit of the model nontrivially. We illustrate this with
a simple theoretical example of item response data and with
empirical examples from archeology and the psychology of choice.
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1. Introduction

Data are often fit deterministically; that is, observed outcomes are modeled as being exactly
predictable from a small set of parameters. Deterministic models are often easy to understand.
However, their conceptual status is somewhat unclear, given the inevitable discrepancies between
model and data. Also, overfitting can cause error rates to be understated. Systematic model checking
is tricky due to the lack of any sampling distribution with which to compare the data. In statistics, it is
standard to use probabilistic models; however these are more complicated and require additional
effort to set up. In machine learning, there have been non-probabilistic notions of support and
coverage in association rules [4,1], but these have recognized to have serious problems in the presence
of realistic, complex rules (see [22] for a recent review). Machine learning is now moving toward
models of complex interactions and averaging of predictions.
In this paper, we present a general method of taking any deterministic model for binary data and

using it to construct related probabilistic models that allow the possibility of model error. We discuss
how to set up such a model and perform inference and model checking using Bayesian methods. We
demonstrate with some relatively simple deterministic models that are relevant to our own research
in psychometrics and archeology, but the ideas should apply to any deterministic prediction model.
The claim of this paper is not that the proposed model is ideal. Rather, we hope to use it to

bridge between deterministic and stochastic frameworks. Although deterministic models are not
well analyzed in the statistical literature, they are important data analysis tools in a wide variety
of applications. Given that deterministic models are often useful and are commonly used, we would
like to do things with them (quantify uncertainty, estimate error probabilities more accurately, check
model fit) that are routine with stochastic models. What is new in this paper is the development
of a general approach for constructing implicit stochastic generalizations, along with methods for
computation and checking the fit of the models to data.
We begin in Section 2 with a general approach to constructing stochastic models for binary data,

using any existing deterministic model as a basis for the construction. We first set up a simple
stochastic model with a constant probability of error and then set up a more general and interesting
model that allows different probabilities of false positive and false negative errors. In Section 3, we
show how any existing iterative optimization algorithm can be generalized to a Metropolis–Hastings
algorithm for drawing posterior simulations for the stochastic models. We also discuss how to use
these simulations to construct random replicated datasets that can be used to check model fit.
In the next two sections, we explore and illustrate these ideas in a number of examples. Our goal

in setting up these examples is to work with relatively simple but nontrivial models that have been
fit deterministically in applications. In particular, we consider two models in various substantive
areas: Guttman scaling and Coombs’ parallelogram model. In Section 4, we apply deterministic and
stochasticGuttman scaling to twodifferent simulateddatasets,with the goal of comparing the abilities
of the deterministic and stochastic models to recover true parameter values. In Section 5, we develop
themodel and algorithm for the stochastic parallelogrammodel and fit them to two empirical datasets
from different substantive areas: archeology and the study of choice. These data had previously been
analyzed using the deterministic model. Here, the point is to see what is gained by generalizing to the
stochastic models with one and two error probabilities.
For both real- and fake-data examples, the stochastic model has the ability to distinguish between

false negative and false positive error rates, which has implications both for inferences about model
parameters and for generalizing the model and predicting errors for future data. Most encouragingly,
aspects of the data that were not fit well by the deterministic models were uncovered using posterior
predictive checks applied to their stochastic generalizations. We conclude in Section 6 with a
discussion of these and other issues.

2. Models

2.1. Already-existing deterministic model

Consider a data vector y = (y1, . . . , yn) of 0’s and 1’s, modeled as a specified deterministic
function of a vector z of unknown quantities including parameters and potential observables such



A. Gelman et al. / Statistical Methodology 7 (2010) 187–209 189

as latent class memberships. The deterministic model assumes that y can be exactly predicted given
z (which is typically of lower dimension than y). In practice, when such models are fit to empirical
data, the fit is not perfect, and so it is more appropriate to speak of a vector of predicted data
ŷ(z) = (ŷ1(z), . . . , ŷn(z)).We emphasize thatwe are stillworkingwith a fundamentally deterministic
model, in that ŷ is a vector of 0’s and 1’s that potentially could be equal to an observeddata set. This is in
contrast to stochasticmodels such as logistic regression inwhich the predictions ŷi(z) are continuous-
valued and represent Pr(yi = 1).
A typical goal in fitting a deterministicmodel to actual data is to find a z thatminimizes the number

of errors, that is, the overall number of discrepancies between observed y and predicted ŷ(z), which
we label as D,

D(y, ŷ(z)) =
n∑
i=1

|yi − ŷi(z)|, (1)

and then to summarize the model by the estimate z and the error rate, D/n.

2.2. Derived stochastic model with one error probability

We can formalize an implicit stochastic model by modeling the outcomes yi as independent, with

Pr(yi = ŷi|z, π) = 1− π, (2)

where π is the expected error rate corresponding to this model. The likelihood of the data y under
this model is

p(y|z, π) = πD(y,ŷ(z))(1− π)n−D(y,ŷ(z)). (3)

Estimating z to minimize the error rate, and then using that as an estimate of the expected error
rate, is simply maximum likelihood estimation of (z, π) in (3), or the posterior mode under a uniform
prior distribution on (z, π). In the Bayesian context, we use a uniform prior distribution not because
we believe it to be most scientifically appropriate for these problems, but because it represents a
minimal expansion of the already-existing deterministic model. The expansion from (1) to (2) is
analogous to the extrapolation, in continuous models, of the Gaussian error distribution from least
squares estimation.

2.3. Derived stochastic model with two error probabilities

An immediate generalization of (2) still specifies independent errors but allows different error
probabilities for responses predicted to be 0 or 1:

Pr(yi = ŷi(z)|z, π0, π1) =
{
1− π0 if ŷi(z) = 0
1− π1 if ŷi(z) = 1.

(4)

This is a stochastic version of a deterministic fitting procedure that minimizes some balance of the
frequencies of the two kinds of errors (false negatives and false positives), which we label

D0(y, ŷ(z)) =
∑
i|ŷi(z)=0

|yi − ŷi(z)|

D1(y, ŷ(z)) =
∑
i|ŷi(z)=1

|yi − ŷi(z)|,
(5)

with maximum frequencies of occurrence

n0(ŷ(z)) =
n∑
i=1

(1− ŷi(z))

n1(ŷ(z)) =
n∑
i=1

ŷ(z).
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The likelihood of the data under this model is

p(y|z, π0, π1) = π
D0(y,ŷ(z))
0 (1− π0)n0(ŷ(z))−D0(y,ŷ(z))π

D1(y,ŷ(z))
1 (1− π1)n1(ŷ(z))−D1(y,ŷ(z)). (6)

One can, of course, go on to construct more complicated models with dependent error structure, but
this would go beyond our purpose of setting up a stochastic model that is a minimal generalizations
of a given deterministic model.

2.4. Modeling issues

To complete the Bayesian model, we must address two more issues: identifiability of the error
parameters and parameterization for the prior distribution.
For many models, one must constrain the error probability π to be less than 1/2 so that the

parameters are identified (for example, a prediction of 0 with an 80% error probability is equivalent to
a prediction of 1 with a 20% error probability). For the two-error-probability model, one can constrain
π0+π1 to be less than 1. In practical applications, this should not be a serious concern, since it would
not make sense to use a deterministic model with an error rate even close to 1/2.
As discussed at the end of Section 2.2, deterministic optimization can be identified as maximum

likelihood, and so a uniform prior distribution would seem logical for a minimal Bayesian
generalization. This still does not determine the model, however, until a parameterization is chosen.
As with statistical transformations in general, we cannot give general advice except that it should be
reasonable. The examples in the later sections of this paper give some sense of the choices involved
in setting up this part of the model.

2.5. Advantages of the stochastic models

In addition to the conceptual advantage of explicitly admitting that the model can have errors, we
see three principal benefits of performing statistical inference with model (4) instead of optimization
with the deterministic model. First, the stochastic formulations allow for uncertainty in z (and also π ,
but that typically is of less interest), which is particularly relevant when many different possible z’s
yield predicted data ŷ(z) that closely fit the observed y. Second, a stochastic model takes account
of mispredictions and should give a better estimate of the true model error than is obtained by
the deterministic estimate, which underestimates model error because it optimizes the fit.1 Third,
a stochastic model defines a predictive distribution for future data, yrep. One can use this predictive
distribution as a reference distribution for checking the fit of observed data y to the model (see the
end of Section 3 for details). In contrast, the deterministic model can only be tested trivially: any
mispredictions indicate a model failure.

3. Computation and model checking

As discussed in Section 2, we assume that some sort of deterministic procedure is already available
for estimating the vector of unknowns z from the observed data y, and we wish to generalize to
draw simulations from the posterior distribution of (z, π) or (z, π0, π1), and then from the predictive
distribution of future data yrep. Inference is summarized by the simulations of z, error is summarized
by discrepancies between data y and predictions ŷ(z), and models can be checked by comparing
observed data y to replicated data sets yrep.

3.1. Computing the model with one error probability

We are not particularly interested in the single-error-rate model—we set it up just to show the
simplest possible stochastic extension of a deterministic procedure—but it is helpful to show how to

1 If the true parameter vectors ztrue were unknown, then the true error rate of the observed data, D(y, ŷ(ztrue)), would be an
unbiased estimator of the error probability π . The deterministic estimating procedure chooses the parameters that minimize
the error rate. For a nondegenerate model, E(minz(D(y, ŷ(z)))) < E(D(y, ŷ(ztrue))), and so the error rate of the observed data
with respect to the best-fitting model is a negatively biased estimate of the true error rate.
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estimate it, as a springboard to more serious stochastic models. For the single-error-rate model, we
proceed in the following general steps:

1. Run the fitting procedure for the deterministic model from several different starting points (or
run several different fitting procedures) to get several estimates of z. Use relatively simple fitting
algorithms if possible, since these estimates are intended to be used merely as starting points for
the simulations.

2. For each estimated z, obtain a starting estimate ofπ at the adjusted error rate (D(y, ŷ(z))+1)/(n+
2). (We add 1 in the numerator and 2 in the denominator to avoid the possibility of an initial
estimate of π = 0 or 1, which would interfere with the later updating steps.)

3. Run several parallel sequences of a Metropolis–Hastings algorithm (see, e.g., [14]) using the above
estimates of (z, π) as starting points (z(0), π (0)). At each iteration t = 1, 2, . . ., perform the
following steps.
(a) Draw a candidate value z∗ from a jumping distribution J(z∗|z(t−1)) conditional on the current
value z(t−1). (That is, J(z∗|z(t−1)) is defined as the probability of considering the candidate value
z∗, conditional on the current value of z at this step in the algorithm.)

(b) Compute the importance ratio

r =
p(y|z∗, π (t−1))
p(y|z(t−1), π (t−1))

J(z(t−1)|z∗)
J(z∗|z(t−1))

, (7)

with p(y|z, π) given by (3).
(c) Accept or reject the candidate value. That is, set

z(t) =
{
z∗ with probability min(1, r)
z(t−1) otherwise.

(d) Update π by drawing from a Beta(D(y, ŷ(z(t))) + 1, n − D(y, ŷ(z(t))) + 1) distribution, if
necessary with the constraint that π < 1/2 (which can be achieved by resampling from the
beta distribution until a value less than 1/2 has been drawn).

Repeat these steps independently for the several parallel simulations until the sequences appear
mixed (see, e.g.,[12]).

4. Select L (for example, 1000) random draws of (z, π) from the simulated sequences to represent
posterior simulation draws.

5. From each posterior simulation draw (zl, πl), simulate a replicated data set yrep l: first, compute
ŷ(z l); second, simulate the components of yrep l from ŷ(z l) independently using (2).

3.2. Computing the model with two error probabilities

Computation for the two-error-probability model is identical except for the following changes.
In step 2, initial estimates are required for both π0 and π1, for which one can use (D0(y, ŷ(z)) +
1)/(n0(ŷ(z)) + 2) and (D1(y, ŷ(z)) + 1)/(n1(ŷ(z)) + 2), respectively. In step 3b, Eq. (7), use
p(y|z, π0, π1) from (6) in place of p(y|z, π). Finally, break step 3d into two steps: for k = 0, 1, draw
πk from the Beta(Dk(y, ŷ(z(t)))+ 1, nk(ŷ(z))−Dk(y, ŷ(z(t)))+ 1) distribution (if necessary, repeating
both steps until π0 + π1 < 1).

3.3. Computational details

For either of the models, given that step 1 has already been programmed, the most difficult
remaining task above is step 3a: specifying and drawing from a jumping distribution, J(z∗|z(t−1)).
The specific algorithm here necessarily depends on the model being fit, but we can give two general
comments here. First, the fitting algorithm for the deterministic model may well provide a nucleus
for the Metropolis–Hastings algorithm. For example, if the deterministic algorithm is an iterative
maximization (‘‘greedy’’) algorithm, then one can jump by taking a single maximization step and
adding to it a random component. If it is convenient to update components of z separately, then
steps 3(a,b,c) can be divided into sub-iterations, as in a Metropolis-within-Gibbs algorithm. We
illustrate with the examples in Sections 4 and 5. Our second general comment is that, even if the
Metropolis–Hastings algorithm does not converge (in that the different simulated sequences do not
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mix), the result of the above steps may be considered an improvement upon the deterministic point
estimates, which we use as starting points.

3.4. Model checking

The algorithm above yields a set of simulation draws (z l, π l, yrep l), l = 1, . . . , L. We can use these
draws to check the model fit using posterior predictive checks (see [31,10,11] as follows. First, define
a test summary T (y, z) to summarize some aspect of interest of the data or its discrepancy from the
model. Second, compute the realized values of the test summary, T (y, z l) and the replicated values
T (yrep l, z l) under the implicit stochastic model. Third, compare the realized to the replicated values,
with statistical significance measured by the posterior predictive p-value, Pr(T (yrep l, z l) > T (y, z l)),
which can be estimated by the proportion of the L simulations for which T (yrep l, z l) > T (y, z l).
Different test summaries can be used to check the fit of different aspects of the data. Often, the most
effective test summaries are simple graphical displays of the data and model fit; other times, it is
helpful to check significance using p-values. We illustrate both kinds of checking in the examples.

4. Theoretical example

4.1. Guttman scale model and stochastic extensions

As an illustrative example, we consider the deterministic scalogram or Guttman scale model [18,
33,5]. The data analyzed are a matrix (yij) of binary responses of individuals i = 1, . . . , I on items
j = 1, . . . , J , where yij = 1 or 0 corresponds to individual i giving a correct or wrong answer,
respectively, for item j. According to the Guttman scale model, each individual is assumed to have
a continuous ability parameter ui and each item to have a continuous difficulty level vj, with yij = 1
if and only if ui > vj. (Because the parameters are continuous, we rule out the possibility of any
two elements of z being exactly equal.) This model, being an archetypal deterministic model in
psychometrics and sociometrics, is used here to illustrate our general ideas.
During the past few decades various stochastic extensions of the Guttman scale have been

proposed, most notably the Rasch (logistic regression) model (see, e.g.,[7]). In addition to the fully
probabilistic Rasch model, other stochastic extensions have been advanced that preserve the original
deterministic scalogram model as the core of the stochastic model, similar to the approach taken in
the present paper. Examples include the latent class models proposed by Goodman [17] and Proctor
[30]. In particular, Goodman’s [17]model includes latent classes of ‘‘scalable’’ personswhose response
pattern exactly corresponds to an admissible pattern of a given Guttman scale, in addition to a
single class of ‘‘nonscalable’’ persons within which independence of the items is assumed. Proctor’s
[30] model includes latent classes that each correspond to a true Guttman response pattern, and
further assumes within each class a Bernoulli type of error process (governed by one or two error
probabilities), similar to the one proposed in the present paper. Other authors implicitly advocate
stochastic extensions of the Guttman scale model based on a Bernoulli type of error process when
proposing various goodness-of-fit tests for the model (see, e.g., [16,19]). A major difference between
the extended scalogrammodel proposed in the present paper and the mixed deterministic/stochastic
models just mentioned is that all of the latter assume that a true Guttman order of the items is
known. One of the distinct advantages of our approach therefore is the posterior uncertainty about
the underlying item order it may reveal.

4.2. Hypothetical data

We fit the deterministic and stochastic Guttman models to two hypothetical datasets, one
constructed to fit the stochastic Guttman model fairly well, and the other based on the Rasch
model, which differs quite a bit from Guttman scaling. For the Guttman data, we demonstrate that,
unsurprisingly, the stochastic model performs well. For the Rasch data, we demonstrate that our
stochastic model allows themisfit to be detected using straightforward Bayesianmodel checks which
would be difficult to perform using the deterministic fit alone.
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Fig. 1. Simulated responses of 40 individuals to 20 items in the simulated-data examples of Section 4. The data on the left are
simulated from amodel approximating the Guttmanmodelwith errors; the data on the right are simulated from a Raschmodel.
We fit the Guttman model to both data sets. For each display, errors from the prediction, given the true parameter values, are
in bold.

4.2.1. Hypothetical data simulated under an approximate Guttman model
We consider a hypothetical data set with I = 40 individuals and J = 20 items, with the ui’s and vj’s

ranging from 1 to 60, and with the item difficulties spread evenly through the abilities. Our data set is
created by first computing the predicted responses and then randomly switching 25% of the predicted
0’s to 1’s (to simulate guessing on amultiple-choice test). Next we switch some of the predicted 1’s to
0’s in a slightlymore complicated fashion: For the questions that are easier than average, we randomly
switch 5% of the predicted 1’s to 0’s; for the questions that are harder than average, we randomly
switch 15% of the predicted 1’s to 0’s (so that mistakes are more likely on difficult questions). Most of
the predicted 1’s come from easier questions, and the total error rate for the predicted 1’s is 7.5%. The
error rate is 25% of the predicted 0’s and 16.2% of all the data. The left side of Fig. 1 displays the data,
with the switched responses shown in boldface.
These data were created to simulate the following conditions. First, the deterministic model

describes the data fairly well (a true error rate of less than 1/6), which seems reasonable since one
should probably not even consider a deterministic model if the error rate is much higher. Second, the
error rates differ for predicted 0’s and 1’s, which seems realistic and is also of interest for comparing
our two errormodels. Third, error probabilities vary slightlywith difficulty, and as a result the implicit
assumptions underlying the deterministic model are reasonable but not exactly valid.
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4.2.2. Hypothetical data simulated under a Rasch model
As a comparison, we also fit the Guttman model to data for which that model is not appropriate.

The right side of Fig. 1 shows this data set, which was simulated under a Rasch model, with abilities
ui and difficulties vj as in the Guttman model, but then assigning 1’s to cells (i, j) independently, with
probabilities Pr(yij = 1) = logit−1((ui−vj)/σ ). We set σ = 10, which yielded an aggregate expected
error rate of 17%, close to that of the simulated example in Section 4.2.1. For eithermodel, we define an
‘‘error’’ as occurring when yij = 1 when ui < vj, or yij = 0 when ui > vj. Due to the symmetry in our
setup, the expected error rates for the predicted 0’s and 1’s are the same here. The actual simulated
data have error rates of 17.5% and 16.8% for predicted 0’s and 1’s, respectively.
We created this second simulated data set in order to see howwell the deterministic and stochastic

Guttman models would work in fitting ordered data that come from a model that deviates further
from the stochastic Guttman model. In particular, the mispredictions of the Rasch model are not
uniformly distributed in the data but rather occur more often when estimated probabilities are near
0.5, which occurs around the diagonal of the table, where ability and difficulty parameters are close
to each other. Given a nonnegligible occurrence of probabilities near 0.5 (as in this example), fitted
deterministic and stochastic Guttman models can be predicted to yield underestimates of the true
error rate, as the models will be seduced to come too close to the data (at the expense of the true
underlying ability/difficulty order).

4.3. Deterministic model

We fit the same Guttman model to both simulated data sets. In the notation of Section 2.1, the
predicted data are defined by ŷij(z) = 1ui>vj , and the unknown parameters are z = (u, v) =
(u1, . . . , uI; v1, . . . , vJ).
We fit the deterministic model to data y by iteratively updating u and v, as follows.

1. Start by ordering the components of u based on the number of correct responses in the data: the
individual i with the lowest value for

∑J
j=1 yij is assigned ability ui = 1, the individual with the

next-lowest value is assigned ui = 2, and so forth. A random number generator is used to break
any ties.

2. Set v = (v1, . . . , vJ) so as to minimize the error rate D(y, ŷ(u, v)) (see (1)), conditional on the
current estimate of u. This can be done straightforwardly by updating the difficulty parameters
vj one at a time to minimize the error rate for the responses to each question. Once again, use a
random number generator to break any ties.

3. Similarly, set u to minimize the error rate conditional on the current estimate of v.
4. Repeat steps 2 and 3 until the error rate no longer decreases.

Because of the random elements in this algorithm, it can be repeated several times to get slightly
different answers.

4.4. Stochastic models

In setting up the stochastic models, the only tricky point is assigning a prior distribution to the
continuous parameters (u, v). We choose to assign equal prior probabilities to all the (I+ J)! orderings
of the ability and difficulty parameters. When performing the computations, we identify the model
by the rank ordering of the I + J parameters. (In the Guttman model, no information is conveyed in
the parameters beyond their ranking.) Because one can switch all the predicted 0’s and 1’s by simply
reversing the ranks, we constrain the error probabilities as described in Section 3.3.
We fit the stochastic models using the algorithm in Section 3, performing step 3 (updating z) in

several sub-iterations as follows:
3. For k = 1, . . . , I + J − 1:
(a) Create z∗ by switching the kth and (k + 1)st ordered values of z. We now consider two
possibilities:
(i) If the two parameters being switched are both ability parameters or both difficulty
parameters, then switching them has no effect on the model predictions and thus on
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Table 1
Error rates for responses predicted to be 0, responses predicted to be 1, and all responses, for the two simulated-data examples
of Section 4. The deterministic Guttman model was fit to both data sets shown in Fig. 1. For each, error rates are shown for
the true parameters and for the results of 5 different runs of the optimization algorithm. The deterministic algorithm mildly
underestimates the error rate for the approximate Guttman data and drastically underestimates the error rate for the Rasch
data.

Model Error rates for data simulated from the approx
Guttman model

Error rates for data simulated from the
Rasch model

For pred 0’s For pred 1’s Average For pred 0’s For pred 1’s Average

Deterministic 0.214 0.085 0.145 0.074 0.107 0.091
0.210 0.084 0.142 0.090 0.100 0.095
0.200 0.095 0.142 0.079 0.112 0.096
0.197 0.101 0.144 0.077 0.118 0.099
0.211 0.080 0.141 0.079 0.110 0.095

Truth 0.250 0.075 0.162 0.175 0.168 0.171

the likelihood, so r = 1 in (7) and the switch is automatically accepted. (The factor of
J(z(t−1)|z∗)/J(z∗|z(t−1)) disappears in (7) because both jumping probabilities are equal to
1 in this jumping rule.)

(ii) If one of the parameters being switched is an ability parameter ui and the other is an item
parameter vj, then switching them affects the likelihood only through the data point yij. If
we let h = ŷij(z(t−1)), then the ratio r in (7) for this jump is simply π

(t−1)
1−h /(1 − π

(t−1)
h ) if

yij = h or (1−π
(t−1)
1−h )/π

(t−1)
h otherwise. (For the one-error-probability model, bothπh and

π1−h are simply π .)

4.5. Results

4.5.1. Fitting the deterministic model
We begin our computations by fitting the deterministic model to the data sets in Fig. 1, for each

example running the algorithm five times to obtain five different solutions. (These data sets are
large enough that the random starting points and random tiebreaking in the algorithm force them
to converge to different points upon replication.) For each example, Table 1 shows the error rates
D0(y, ŷ(z))/n0(ŷ(z)) and D1(y, ŷ(z))/n1(ŷ(z)) for the estimated parameters z from each of the 5 runs
of the optimization algorithm; as could be expected, they all underestimate the true total error rate
(although, interestingly, the error rate for predicted 1’s is overestimated for the approximate Guttman
data). As predicted, the error rates are drastically underestimated when the deterministic (all-or-
none) Guttman model is fit to data generated under the (continuous) Rasch model.

4.5.2. Fitting the stochastic models
For each of the two examples, we then use the five deterministic solutions as starting points

for independent runs of the Metropolis–Hastings algorithms for the one-error-probability model
and, separately, for the two-error-probability model. For each of these models, we find that 2000
simulations were sufficient for approximate convergence, in the sense that the potential scale
reduction factor is less than 1.2 for all of the components of (u, v), all of the variance components, and
the log-likelihood (see [12]). We discard the first half of the simulations and save every fifth iteration
(to save computer storage). For each of the two models fit to each of the two data sets, we then have
1000 draws of the vector z l = (u, v)l from the posterior distribution; we use these for all further
computations.
Table 2 shows the estimated error rates and error probabilities for five randomdraws from the pos-

terior distribution for the one- and two-error-probability models as fit to the two simulated data sets.

4.5.3. Inference and model checking for the approximate Guttman data
We begin by examining the estimated error rates for the model with one error probability fit to

the simulated approximate Guttman data. Fig. 2a shows a histogram of the posterior distribution
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Table 2
Error rates and error probabilities for responses predicted to be 0 and responses predicted to be 1, for the two stochastic
Guttman models fit to the two data sets shown in Fig. 1. For each model and each data set, error rates are shown for the true
parameters and for the results of 5 independent draws from the posterior distribution. For the one-error-probability model,
the two error rates can differ substantially even though the two error probabilities are constrained to be equal. The stochastic
models estimate the overall error rates well for the approximate Guttman data, but they substantially underestimate the error
rate for the Rasch model (although not performing as badly as the deterministic model shown in Table 1).

Model Data simulated from the approx Guttman
model

Data simulated from the Rasch
model

Error rates for Error probabilities for Error rates for Error probabilities for
Pred 0’s Pred 1’s Pred 0’s Pred 1’s Pred 0’s Pred 1’s Pred 0’s Pred 1’s

One error probability 0.228 0.098 0.134 0.099 0.123 0.115
0.226 0.098 0.151 0.079 0.140 0.126
0.225 0.102 0.169 0.114 0.114 0.115
0.213 0.111 0.161 0.103 0.119 0.105
0.242 0.094 0.153 0.091 0.138 0.113

Two error probabilities 0.281 0.041 0.298 0.036 0.085 0.143 0.083 0.145
0.254 0.069 0.252 0.056 0.045 0.167 0.042 0.167
0.260 0.052 0.217 0.044 0.079 0.138 0.095 0.099
0.264 0.067 0.259 0.053 0.115 0.110 0.159 0.107
0.265 0.058 0.270 0.063 0.102 0.129 0.111 0.117

Truth 0.250 0.075 0.250 0.075 0.175 0.168 0.171 0.171
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Fig. 2. Posterior distribution of error rates from fitting the one-error-probability Guttman model to simulated approximate
Guttman data: (a) histogram of 1000 posterior simulation draws of the total error rate D(y, ŷz)/n; (b) scatterplot of the
conditional error rates D0(y, ŷ(z))/n0(ŷ(z)) and D1(y, ŷ(z))/n1(ŷ(z)); compared to a true total error rate of 0.162 and true
conditional error rates of 0.250 and 0.075.

of the total error rate D(y, ŷ(z l))/n from 1000 draws l from the posterior distribution. As would be
hoped, the estimated total error rate is close to the true error rate of 0.162, with a wide range of
uncertainty due to the relatively small sample size and large number of parameters in the model. We
also examine separately the conditional error rates D0(y, ŷ(z l))/n0(ŷ(z l)) and D1(y, ŷ(z l))/n1(ŷ(z l)),
as displayed in Fig. 2b. The rate of the more common false negative error (predicted 0’s, observed 1’s)
is underestimated and the rate of the less common false positive error is overestimated.
Using the stochastic formulation,we can uncover thismisfit of themodel using posterior predictive

simulations. A notable feature of Fig. 2b is that the error rates for predicted 0’s and 1’s differ greatly,
even while the error probabilities are constrained by the model to be equal. This would seem to
indicate a model violation. We can check this with a posterior predictive check, using the difference
in error rates as a test summary, T (y, z) = D0(y, ŷ(z))/n0(ŷ(z)) − D1(y, ŷ(z))/n1(ŷ(z)), and then
comparing the realized values T (y, z l) to the replicated values T (yrep l, z l) as described in Section 3.4.
In our simulations, the mean value of the realized test summary T (y, z l) is 0.11, the mean value of the
replicated test summaries T (yrep l, z l) is 0.00 (to two significant figures), and in all the simulations,
T (y, z l) had a larger value than T (yrep l, z l). This clearly indicates a lack of fit of the single-error-
probability model.
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Fig. 3. Posterior distribution of error rates from fitting the two-error-probability Guttman model to simulated approximate
Guttman data: (a) histogram of 1000 posterior simulation draws of the total error rate D(y, ŷ(z))/n; (b) scatterplot of the
conditional error rates D0(y, ŷ(z))/n0(ŷ(z)) and D1(y, ŷ(z))/n1(ŷ(z)); compared to a true total error rate of 0.162 and true
conditional error rates of 0.250 and 0.075.

Weare then lead naturally to themodel that allows the error probabilities to differ for predicted 0’s
and 1’s. Fig. 3 displays the estimated error rates when fitting this model to the approximate Guttman
data. This time, when we check T (y, z) = D0(y, ŷ(z))/n0(ŷ(z)) − D1(y, ŷ(z))/n1(ŷ(z)), we find a
good fit: the average values of T (y, z l) and T (yrep l, z l) are both 0.21, and T (y, z l) exceeds T (yrep l, z l) in
50.4% of the simulations. That is, the observed data fits in well among the replicated datasets. It is no
surprise that this model fits this aspect of the data since this fitting is directly addressed by the two
error probabilities.
Of course, the actual data do not come from the model in this case. (Recall from Section 4.2.1 that

the data were simulated to have more prediction errors for difficult items, which is why we refer to
these as the ‘‘approximate’’ stochastic Guttman data.) So all we have learned is that the differential
error probabilities can be reasonably estimated, not that the model ‘‘fits’’ in some general sense. As
always, the criterion of fit of a model depends on the uses to which it might be put. For example, we
can further check the model by considering, as a test summary, the correlation between errors and
difficulty across the 20 items. From the posterior simulations, the expected value of this test summary
in the realized data is 0.31 and the expected value in the replicated data is 0.14, and in 99.3% of the
simulations, the realized value exceeds the replicated value, thus indicating a poor fit to this aspect of
the data.

4.5.4. Inference and model checking for the Rasch data
We similarly fit the stochastic Guttman models with one and two error probabilities to the

simulated Rasch data pictured on the right side of Fig. 1. For brevity, we skip straight to the two-error-
probability model in our exposition. Fig. 4 displays the posterior distribution of estimated total and
conditional error rates, by analogy to Fig. 3. As predicted, the stochastic Guttman model dramatically
underestimates the error rates, indicating that it is overfitting the data (although not as badly as with
the deterministic version of the model).
This is a serious model misfit, but of course in practice we cannot check a model by comparing

its posterior distribution to the true parameter values. Rather, we check the fit by comparing test
summaries to their distribution under the model. In this case, the most straightforward check is to
use, as a test summary, the correlation between errors |yij − ŷij(z)| and the absolute value of the
difference between ability and itemdifficulty |ui−vj|. Under the stochastic Guttmanmodel, wewould
expect no particular correlation here, except what might arise as an artifact of the two different error
probabilities. In data on tests of continuous abilities, however, onemight reasonably expect prediction
of yij to be less reliable when the difficulty of item j is close to the ability of individual i. This would
induce a negative correlation between |yij − ŷij| and |ui − vj|.
As a matter of fact, the expected value of this test summary is−0.23 for the realized data but only

0.02 for the replicated data, and the realized value is lower than the replicated in all the simulations,
thus revealing this aspect of the data to be inconsistent with the model. In practice, a researcher who
in this way discovers a serious model violation should work to improve the underlying model, in this
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Fig. 4. Posterior distribution of error rates from fitting the two-error-probability Guttman model to simulated Rasch data:
(a) histogram of 1000 posterior simulation draws of the total error rate D(y, ŷ(z))/n; (b) scatterplot of the conditional error
rates D0(y, ŷ(z))/n0(ŷ(z)) and D1(y, ŷ(z))/n1(ŷ(z)); compared to true total and conditional error rates of 0.17.

case bymoving beyond the Guttman framework into a continuously parameterizedmodel such as the
Rasch. In more complicated settings, model misfit might motivate a researcher to move to a multi-
dimensional model (rather than, in a psychometric context, a model in which each person has a scalar
ability parameter).

5. Applied examples using Coombs’ parallelogrammodel

We now consider a Bayesian extension of the so-called parallelogram model initially presented by
Coombs [5] for the analysis of choice data in psychology. The parallelogram model has been widely
used and studied in various other domains, though under different names: In mathematics, Fulkerson
and Gross [8] studied the consecutive ones property for rows in a binary matrix; similar concepts
have been used in archeology for seriation (see [21,15,3]) and in computer science for information
retrieval [13]. Fully probabilistic extensions of the parallelogrammodel have also been developed (see,
e.g.,[2,20]).
In this section, we first formally present the deterministic parallelogram model (Section 5.1) and

its Bayesian extension (Section 5.2). We then illustrate with applications on archaeological data
(Section 5.3) and on choice data (Section 5.4).

5.1. Deterministic model

Assume a matrix (yij) with rows i = 1, . . . , I and columns j = 1, . . . , J . This matrix represents a
parallelogram relation [5] if each column j can be given a position qj on an underlying dimension and
each row i can be characterized by an ideal point ci on the dimension and a latitude of acceptance εi,
such that,

yij =
{
1 if |ci − qj| < εi
0 otherwise.

For convenience, we use a reparametrization of Coombs’ model (see [23]), in which each column j
is still given a position qj, but each row is now characterized by an interval [ai, bi]. The predicted data
are then defined by,

ŷij(z) =
{
1 if ai ≤ qj ≤ bi
0 otherwise, (8)

with unknown parameters z = (q, a, b) = (q1, . . . , qJ , a1, . . . , aI , b1, . . . , bI). As only the ordering
of the elements in z is relevant, we add the restriction that qj, ai, bi ∈ {1, . . . , 2I + J} and that
no two elements of z are equal. The parallelogram model suffers from an indeterminacy due to
possible reversing of the underlying scale: for any given model z, its reversed counterpart z ′ (with
z ′h = 2I + J + 1− zh; h = 1, . . . , 2I + J) fits the data equally well.
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Leenen and Van Mechelen [23] have recently proposed an alternating least squares algorithm for
fitting the deterministic parallelogram model to a given data set, which somewhat resembles the
method proposed in Section 4.3 for fitting the deterministic Guttman scale model:
1. An initial ordering for the column parameters is obtained either randomly or by a built-in heuristic
in the algorithm. (In case of a random initial start, one typically repeats the procedure several
times.)

2. Optimal estimates for a and b are found conditionally upon y and q, optimality implying a
minimal value for the error rate D(y, ŷ(z)). The contribution of row i to the total error rate can be
separated from the contribution of the other rows, and so the intervals for the rows can be updated
successively using fast separate computations. Optimal estimates ai and bi for row i conditionally
upon y and q can be computed using a branch-and-bound algorithm.

3. Analogously, optimal estimates for q are found conditionally upon y, a, b.
4. Steps 2 and 3 are repeated until the error rate no longer decreases.

5.2. Stochastic model

We assign a uniform prior distribution for z = (q, a, b): equal prior probabilities are assigned to all
orderings of the row and column parameters that satisfy ai < bi for each row i. (There are (2I+ J)!/2I
such orderings.) Although for parallelogrammodels, unlike for Guttman scale models, it is usually not
possible for a given z to find a z ′ such as to switch all the predicted 0’s and 1’s, we keep constraining
π to be smaller than 0.5.
We fit the stochastic parallelogram model using the algorithm of Section 3 with the following

specifications for steps 1 and 3 of the algorithm:
1. We run the deterministic fitting procedure using a random initial start for the column parameters
to get several estimates of z. Optionally, each single zmaybe the best solution retained after several
runs with a random initial start.

3. At each iteration t = 1, 2, . . ., we perform the following steps:
A z∗ is created as follows: Initially, if the first ordered value in z(t−1) is a column, it is moved

to the right end of the scale. Furthermore, the kth and (k + 1)st ordered values of z(t−1) (k =
1, . . . , 2I+ J−1) are switched, similarly to step 3(a) in the algorithm for fitting the Guttman scale
model in Section 4.4. The following cases can occur:
• If the two parameters being switched are both row parameters (ai or bi) or both column
parameters, (qj), then the switch does not affect the model predictions or the likelihood, so
r = 1 in Eq. (7), and the switch is automatically accepted. An exception ismade if the parameters
pertain to the same row, that is, if they are the lower limit ai and the upper limit bi of the same
row’s interval. If this occurs, the switch is never accepted, since (8) implies that ai ≤ bi.
• The other possibility is that one of the parameters being switched is a row parameter ai or bi,
and the other a column parameter qj. Then, a switch affects the likelihood only through the
data point yij; if we let h = ŷij

(
z(t−1)

)
, it then holds that r = π

(t−1)
1−h /(1 − π

(t−1)
h ) if yij = h

or r = (1−π (t−1)1−h )/π
(t−1)
h otherwise. For the one-error-probability model, both πh and π1−h are

simply π .
Before evaluating convergence of the simulated sequences, each of the models z(t)(t = 1, 2, . . .)

is transformed in two respects: First, scales are reversed when necessary, such that the directions
of the scales in all sequences are the same. One may decide on a common direction of the scales by
fixing the order of a particular pair of columns, the columnswithin the selected pair preferably having
stable and maximally divergent positions on the scale. To find such a pair, a pre-analysis of the data
may be helpful: for example, one may consider the pair of columns j and j′ in the data y that has
maximal value on min(n10, n01), where nhh′ is the number of rows i for which yij = h and yij′ = h′.
If more than one pair takes a maximal value on min(n10, n01), one pair can be arbitrarily selected.
Second, scales are condensed by maximally reducing the number of positions on the scale (i.e., each
parameter is assigned a new value from {1, . . . , P}, where P is minimal under the restriction that the
values predicted by (8) are identical). The latter is done to eliminate irrelevant differences between
parameter values.
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5.3. Application to seriation in archeology

As a first example, we consider an archaeological study of different ceramic artifacts discovered
at several sites within a small geographic area. If the findings at any given site are localized in time,
and if any given category of artifact is in use for a contiguous time period, then it is reasonable to fit
a parallelogram model to the data, which would yield a time ordering of sites and a time interval for
each category of artifact.
We consider data collected at the ancient site of Sagalassos in south-west Turkey, which has been

investigated since 1986 by an interdisciplinary team of the Katholieke Universiteit Leuven [35]. The
discovery in 1987 of a local potters’ quarter was unexpected [26] and led to further exploration.
Over about six hectares, located to the east of the ancient town, dumps of misfired ceramics are
still noticeable at the surface. Architectural ceramics, figurines and oil lamps, cooking and storage
vessels, as well as a series of tableware were produced locally with five different clay fabrics [29,6].
In economic terms, the newly discovered tableware or Sagalassos red slip ware can be considered the
most important feature of this production center. After a Hellenistic antecedent, mass production of
this new type of eastern sigillata started during the Augustan period and lasted into the first half of the
seventh century A.D. Theware has been traded intensively in Anatolia, and could already be identified
at a series of sites in the eastern Mediterranean and beyond, as far away as Italy and Nubia [27].
During the Imperial period, only five mass production centers, including Sagalassos, have been

identified, supplying the innumerable towns and villages in the Roman east. The different mass
production centers or factories represented therefore an enormous marketing potential. In this way,
the reconstruction of the production organization and trade mechanisms associated with these pre-
industrial artisanal units may provide a valuable key in understanding the potential, flexibility and
shortcomings of the ancient economy. Due to particular circumstances Sagalassos is actually the only
identified production center that is still accessible for archaeological research. A strict methodological
framework was therefore developed to examine the local potters’ quarter and its products. In this
context, only the typo-chronological determination of Sagalassos red slip ware is of importance,
however. A total of 78 types and variants of cups, bowls, dishes, plates, and containers were
distinguished; after combining similar types and variants, these represented 37 distinct categories
of artifacts. The artifacts were found at 36 assemblages, each at a different location or site. We use
data from 18 of these sites in our analysis.
In a parallelogram analysis on these data, an interval is assigned to each of the types and a position

to each of the assemblages on an underlying dimension, which presumably will turn out to be a time
dimension. Thus, from a substantive point of view, a parallelogram analysis can be expected to result
in (1) a relative chronological ordering of the assemblages and (2) for each of the ceramic types and
variants (further also called artifacts) a time period that indicates when it was actually in use.
The 37×18 datamatrix is analyzed bothwith the deterministic alternating least squares procedure

[23] and the Bayesian procedure presented in Section 5.2 above. Fig. 5 shows the data compared to
model with the lowest overall number of discrepancies as found by the deterministic algorithm. This
overall error rate equals 6.2% (the error rates for predicted 0’s and predicted 1’s being 8.2% and 5.2%,
respectively).
With respect to the Bayesian analysis, we discuss, for brevity, only the results of the two-error-

probability model. The Metropolis–Hastings algorithm is executed with four sequences, the starting
point of each sequence being a minimally discrepant model out of 100 models obtained by a random
start of the deterministic algorithm. The Metropolis–Hastings algorithm converges after almost
50,000 iterations in each sequence, the potential scale reduction factor [12], computed on the last half
of the iterations, being below 1.1 for all of the components in (a, q, b) and the error rates π0 and π1.
We discarded the first half of the simulations and, for computational convenience, saved every tenth
draw, resulting in about 10,000 draws z l from the posterior distribution. Fig. 6 shows the posterior
distributions of the overall error rate and the error rates for predicted 0’s and 1’s; the estimated error
rate for predicted 0’s is much higher than in the best deterministic fit.
Fig. 7 displays the data from the perspective of the best-fitting deterministic model. Fig. 8

shows similar displays of the observed data with respect to three random draws from the posterior
distribution of the model parameters, with the dots in each figure indicating model mispredictions.
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Fig. 5. Artifact × site data used in the example of Section 5.3. The artifacts i are ordered according to their leftmost interval
parameters ai under the best-fit deterministic model. Prediction errors are in bold.

The error rate for predicted 0’s is much higher with the stochastic than the deterministic model, as
can be seen clearly by comparing Figs. 7 and 8. Inmodels drawn from the posterior distribution, errors
near the beginning and the end of an artifact’s interval seem to be relatively more likely, whereas in
the model yielded by the deterministic algorithm, those errors do not occur at all, as such errors are
easily rectified by resizing the artifact’s interval in the model. This finding illustrates that error rates
in the deterministic model are likely to be underestimated.
To check the hypothesis that errors at the boundaries of the artifacts’ intervals are more likely to

occur, one may use a posterior predictive check based on a test summary which is sensitive to this
type of model violation (for example, the correlation between errors |yij − ŷij(z)| and the minimum
absolute difference between qj and either of ai and bi, min(|qj − ai|, |qj − bi|), similar to the test
summary developed in Section 4.5.4).
The chronological evolution of the tableware was independently determined by seriating these

ceramic assemblages from specific stratigraphical units and employing internal and external criteria
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Fig. 6. Posterior distribution of error rates from fitting the two-error-probability parallelogram model to the artifact × site
data: (a) histogram of 10,000 posterior simulation draws of the total error rate D(y, ŷ(z))/n; (b) scatterplot of the conditional
error rates D0(y, ŷ(z))/n0(ŷ(z)) and D1(y, ŷ(z))/n1(ŷ(z)).

to actually date the relative sequence [28]. Inspection of the models shows that in most cases the
parallelogram respects the main lines of the expected chronological sequence of the assemblages and
the constituent role the types and variants play. The selection of assemblages contains, for instance,
two series of stratigraphically superimposed units (EoN 4-8 and EoN 11-18; L 10N-16N, L 8N-9N, L 5N-
7N and L 3N-4N)with, as a consequence, logically fixed chronological relationshipswithin each series,
which are found inmost of themodels. Parallelogrammodels may therefore be regarded as a valuable
first approach for detecting a specific chronological sequence. The interpretative role of archeology
should still be brought into play, however: The presented model does not take into account the
intrinsic differences between functionally different contexts, such as floor levels or destruction layers,
with possibly different time ranges of similar types and variants. Another area of error may be the
ever-present and very site-specific problemof residuality and intrusiveness of archaeological artifacts,
whereby types and variants are found in contexts that predate or postdate the artifact. As a result,
the types and variants that are more sensitive to residuality and intrusiveness (in particular, 1A100,
1B150, 1B160-3, 1B170, 1B190, 1C170-1, 1F150) are found to have very wide (if not full) intervals in
most models. However, that some types and variants are more likely to suffer from residuality and
intrusiveness than others is a violation of the Bayesian parallelogrammodel in that it is assumed that
the error rates are identical across variants and types.
To statistically check the validity of the latter assumption, we define test summaries T0(y, z) and

T1(y, z) as the standard deviations across the artifacts’ error rates p0i and p1i:

p0i = D0(yi, ŷi(z))/n0(ŷi(z)), &p1i = D1(yi, ŷi(z))/n1(ŷi(z))
T0(y, z) = sdip0i, &T1(y, z) = sdip1i,

where the arrays yi and ŷi(z) are, respectively, the data vector and predicted data vector of artifact
i. As the model considers artifacts to be homogeneous with respect to their error rate, the expected
values for p0i and p1i are equal across artifacts (and equal to π0 and π1, respectively).
The test summaries for the realized values Tb(y, z l) and the replicated values Tb(yrep l, z l)(b = 0, 1)

were computed and subsequently compared as discussed in Section 3.4. The mean value across
simulations of T1(y, z l) is 0.20 and of T1(yrep l, z l) is 0.07; in all of the simulations the realized value of
T1 is higher than the replicated value, which indicates that for some artifacts the probability of a false
positive is larger than for others, indeed.
Similarly,with respect to the false negative error rates, themean value of T0(y, z l) is 0.23, compared

to a mean value of 0.17 in the replications, T0(yrep l, z l); in 92% of the simulations the realized value of
T0 was larger than the replicated value. Hence, there is some indication that variants and types differ
more than expected under the model with respect to their negative error rates as well.
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Fig. 9. Student× room data used in the example of Section 5.4. The students i are ordered according to their leftmost interval
parameters ai under the best-fit deterministic model. Prediction errors are in bold.
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Fig. 10. Posterior distribution of error rates from fitting the two-error-probability parallelogram model to student × room
data: (a) histogram of 4500 posterior simulation draws of the total error rate D(y, ŷ(z))/n; (b) scatterplot of the conditional
error rates D0(y, ŷ(z))/n0(ŷ(z)) and D1(y, ŷ(z))/n1(ŷ(z)).

5.4. Application to data on individual choices

As another example, we reanalyze a subject by object choice data set previously described by Van
Mechelen and Van Damme [34]. In this study, 26 second-year psychology students were asked to
select, from a set of 25 index cards with uniformed room descriptions from the Housing Service of the
University of Leuven, the set of rooms that theywould decide to visit when looking for a student room.
The resulting 25 × 26 binary matrix (yij) (with yij = 1 if student i selects room j and yij = 0

otherwise) is given in Fig. 9. Both the deterministic algorithm [23] and the Bayesian procedure
described in Section 5.2 were used to analyze these data. The best-fitting deterministic model had an
overall error rate of 11%with the error rate for predicted 0’s being 13% and the error rate for predicted
1’s being 8% (see Fig. 11).
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Fig. 11. Graphical representation of the best-fitting deterministic model for the student × room data. The lines indicate the
boundaries of the students’ intervals. Rooms are ordered according by their position and students are ordered according to
their left interval boundary. The dots represent mispredictions.

15 20 25 30 40 45
T(yobs) T(yrep)

Fig. 12. Posterior predictive check histogram of T (yrep) in the room example.

Fig. 13. Graphical representation of three randomly selected draws from the posterior distribution for the student × room
data. The lines indicate the boundaries of the students’ intervals. Rooms are ordered according by their position and students
are ordered according to their left interval boundary.

Again, we jump straight to results for the two-error-probability model. The model was computed
using three sequences in the Metropolis–Hastings algorithm, each with a starting point that was
the best resulting from 100 random runs of the deterministic algorithm. The Metropolis–Hastings
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Fig. 14. Graphical representation of three draws from the posterior predictive distribution corresponding to the three draws
in Fig. 13, respectively.

algorithm converged after 300,000 iterations in each sequence, in that the potential scale reduction
factor [12], computed on the last half of the iterations, was below 1.2 for all 79 parameters. We saved
everyhundredthdrawof the last half of the simulations,which yields 4,500draws z l from theposterior
distribution. Fig. 10 shows the posterior distributions of the overall error rate and the error rates
for predicted 0’s and 1’s and Fig. 13 shows the data in relation to three draws from the posterior
distribution of the orderings.
The next step is to check the fit of the stochastic model by comparing the observed dataset to

replicated datasets from the posterior predictive distribution. A visual comparison is shown in Fig. 14.
The model assumes that a single underlying dimension is sufficient to explain the choices made by
the subjects. Hence, it is a model violation if subjects base their choices on a combination of two or
more underlying characteristics. Previous analyses with other models [34,24] of this data set have
shown that most subjects consider both the price and the available comfort in choosing a room and
that both aspects are combined conjunctively (i.e., a subject selects a room if and only if it meets the
subject’s requirements with respect to both aspects). For the present data set, we will formally check
the assumption of unidimensionality using posterior predictive checks.
Therefore, we first introduce the notation z2 = (q(1), a(1), b(1), q(2), a(2), b(2)) for a two-

dimensional conjunctive parallelogram model [23]. The parameter vector z2 contains two intervals
[a(1)i , b

(1)
i ] and [a

(2)
i , b

(2)
i ] for each subject i and twopositions q

(1)
j and q

(2)
j for each room j. The predicted

data under this model are then defined by,

ŷij(z2) =
{
1 if a(1)i ≤ q

(1)
j ≤ b

(1)
i and a

(2)
i ≤ q

(2)
j ≤ b

(2)
i

0 otherwise.

Let us now define the test statistic T (y) as follows:

T (y) = D(y, ŷ(z1(y)))− D(y, ŷ(z2(y))),

where zh(y) (h = 1, 2) is the best-fitting h-dimensional conjunctive parallelogram model found by
applying Leenen and Van Mechelen’s [23] algorithm to y. As two- and one-dimensional models are
nested, the proposed test statistic is formally similar to a likelihood ratio test (see also [32]). If a data
set y arises from a two-dimensional model, T (y) is expected to be larger compared to a data set for
which a one-dimensional model holds.
We computed the realized value T (y) and compared it to the replicated values T (yrep l) for the

simulation draws l = 1, . . . , 4500. Fig. 12 shows the distribution of the replicated values and locates
the realized value within that distribution: 22% of the replicated values exceed the realized value,
showing no statistical evidence for the need for a two-dimensional model to underlie the current
room data.
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6. Discussion

Deterministic models are commonly used in many areas and so it is important to understand
them from a statistical perspective. We do so here for models for binary data by considering a
stochastic extension of existing deterministic models, allowing different rates of false positives
and false negatives. Our method requires three steps: (1) setting up a probability model based on
deterministic predictions and random errors, (2) creating a family of stochastic simulation algorithms
that generalize existing error-minimization algorithms, and (3) setting up a framework for checking
the fit of the new model by comparing observed data to replications under the model. Regarding (1),
we set up aminimal stochastic extension inwhich the error probability depends only on the predicted
value of the observation. For (2), a Metropolis–Hastings algorithm can be constructed that elaborates
on the steps of any existing deterministic optimization algorithm. Finally, the model checking steps
(3) can be performed using posterior predictive checks.
We illustrate our general approach in two examples: a Guttman scaling model fit to two sets of

simulated item response data, and a parallelogram model fit to real datasets from an archaeological
study and from a study of individual choices.
From our simulated-data example, we learned that the stochastic model can recover information

in the data that is not captured well by the best-fitting deterministic solution. In particular, the
deterministic solution tends to understate the error rate and is poor at distinguishing the error rates
from predicted 0’s and 1’s, even when these rates differ quite a bit in the data. By comparison, the
stochastic model can recover these rates well, provided the data originate from a model that is close
enough to the fitted models. We were further particularly encouraged by the ability of the stochastic
models to reveal systematicmodel violations through posterior predictive checks, whichworkedwell
both when the fitted model was approximately correct and when it was not.
From our real-data examples, we learned once again that, comparedwith the deterministic model,

the stochastic model allows for a larger error rate, and a larger difference between errors in predicted
0’s and 1’s. This implies a more realistic understanding of how well the model really works (which
would be relevant for predictive use of themodel) aswell as inwhat contexts it works better orworse.
We also found that posterior predictive checks could find a model violations that would be hard to
discover using only the deterministic fit.
We hope that our approach will be useful in other statistical problems. Leenen, Van Mechelen,

and Gelman [25] have applied this method for Boolean classification rules for binary data. Also, the
problem of setting up a stochastic version of a deterministic model comes up in continuous-data
problems (for example, Section 3.1 of Gelman and Bois, [9], or, in a similar setting, the idea of Gaussian
errors and linear regression as a generalization of deterministic least squares algorithms).
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