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ABSTRACT
If we have an unbiased estimate of some parameter of interest, then its absolute value is positively biased
for the absolute value of the parameter. This bias is large when the signal-to-noise ratio (SNR) is small, and it
becomes even larger when we condition on statistical signi!cance; the winner’s curse. This is a frequentist
motivation for regularization or “shrinkage.” To determine a suitable amount of shrinkage, we propose to
estimate the distribution of the SNR from a large collection or “corpus” of similar studies and use this as
a prior distribution. The wider the scope of the corpus, the less informative the prior, but a wider scope
does not necessarily result in a more di"use prior. We show that the estimation of the prior simpli!es if we
require that posterior inference is equivariant under linear transformations of the data. We demonstrate
our approach with corpora of 86 replication studies from psychology and 178 phase 3 clinical trials. Our
suggestion is not intended to be a replacement for a prior based on full information about a particular
problem; rather, it represents a familywise choice that should yield better long-term properties than the
current default uniform prior, which has led to systematic overestimates of e"ect sizes and a replication
crisis when these in#ated estimates have not shown up in later studies.
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1. Introduction

Regression modeling plays a central role in the biomedical and
social sciences. Linear and generalized linear models, general-
ized estimating equations, and quantile regression o!er great
"exibility and are easy to use. When the sample size is not too
small, statistical inference can be based on the fact that M-
estimates of regression coe#cients are approximately normal
and unbiased Stefanski and Boos (2002). This yields the familiar
frequentist inference in terms of normality-based con$dence
intervals and p-values, and it also leads to informative Bayesian
approaches in which the unbiased estimates form a likelihood
which can be augmented with hierarchical models and other
forms of prior information.

If we have an unbiased estimate of some parameter of inter-
est, such as a regression coe#cient, then by Jensen’s inequality
its absolute value is positively biased for the absolute value of
the parameter. This bias is large when the signal-to-noise ratio
(SNR) is small, and it becomes even larger when we condition
on statistical signi$cance. This is called the winner’s curse or
type M error (Gelman and Tuerlinckx 2000; Ioannidis 2005;
Gelman and Carlin 2014). We conclude that noisy estimates
must be regularized or partially pooled toward zero. However,
the degree of this shrinkage should be carefully considered.
Too little shrinkage means that we will systematically overes-
timate e!ect sizes, which then later do not replicate. On the
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other hand, too much shrinkage could lead to missing real
discoveries.

From the Bayesian perspective, the right amount of shrinkage
depends on the prior. Here, we propose to obtain the relevant
prior information from a large collection or “corpus” of similar
studies. Such a prior can then be used for default or routine
Bayesian inference. The wider the scope of the corpus, the
less informative the prior and the more generally applicable.
Moreover, a wide scope allows us to include many studies in
the corpus so that we can estimate the prior information accu-
rately. Perhaps the most important point we want to make is
that a wide scope does not necessarily result in a more di!use
prior.

In the next section, we will motivate the present article
by discussing in more detail why noisy estimates must be
regularized. Then, we argue that we can determine the suit-
able amount of shrinkage by estimating the distribution of
the SNR in a particular area of research. We show that a
particular independence assumption will make the estimation
easier, and ensures that the posterior inference is una!ected
by changes of measurement unit. We also show that depend-
ing on the shape of the distribution of the SNR, the amount
of shrinkage will be adaptive to the SNR. We demonstrate
our approach with two examples. We end the article with a
discussion.
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2. Exaggeration and the Need to Shrink

We will ignore small sample issues by assuming that we have
a normally distributed, unbiased estimate b of a regression
coe#cient β with known standard error s. In other words,
conditionally on β and s, b has the normal distribution with
mean β and standard deviation s and therefore we have the
con$dence statement

Pr(b ∈ [β ± 1.96 s]|β , s) = 0.95. (1)
Our setup may appear to be overly simplistic, but this type of
inference is common practice especially concerning regression
parameters. And, as noted above, this is also the building block
for the standard Bayesian approach; even if one does not care
about unbiased estimation per se, independent normally dis-
tributed unbiased estimates can be used to construct a likeli-
hood function.

We assume that standard errors are known (i.e., observed
without noise), when in reality that is almost never the case.
However, it is a very common assumption as the most statis-
tical so%ware packages report Wald con$dence intervals and
associated p-values for log odds ratios (logistic regression),
log intensity ratios (Poisson regression), or log hazard ratios
(Cox regression). Of course, exact intervals based on the t-
distribution are reported for linear models, but the di!erence is
already very small in the most real-world examples. Our article
is closely related to the $eld of meta-analysis where standard
errors are also usually assumed to be known. For example, the
textbook presentation of Bayesian meta-analysis in Chapter 5
of the book Bayesian Data Analysis treats the standard errors
as known, even though this is an approximation (Gelman et al.
2013).

Since b is unbiased for β , it follows from Jensen’s inequality
that |b| is positively biased for |β|. This bias is large when b is
noisy, that is, when the SNR |β|/s is small. The bias becomes
even larger when we condition on statistical signi$cance, which
is called the winner’s curse. The relation between overestimation
of the e!ect size and the SNR has been demonstrated through
simulation (Gelman and Carlin 2014; Ioannidis 2008), and more
recently, the following theorem has been established (van Zwet
and Cator 2021).

Theorem 1. Suppose b is normally distributed with mean β and
standard deviation s. For every c > 0, the exaggeration ratio,

E (|b/β||s, β , |b| > c)

depends on β and s only through the absolute value of the SNR.
The exaggeration ratio is always greater than 1. It is decreasing
in the absolute value of the SNR and increasing in c.

The exaggeration ratio is also known as the type M
error (Gelman and Carlin 2014). In Figure 1, we show
the extent of the problem by plotting the conditional
bias E (b − β|s, β , |b/s| > 1.96) and exaggeration ratio
E (|b/β||s, β , |b/s| > 1.96) as a function of the SNR. For
the plot of the bias, we made the additional assumption that the
standard error of the estimate is one.

A partial solution to this overestimation of e!ect size is to
use “weakly informative” priors Gelman et al. (2008); Greenland
and Mansournia (2015), but then the question arises: how infor-
mative should the priors be? The literature on weakly informa-
tive priors tends to focus on superior performance compared to
noninformative priors. Here, we propose to obtain realistic but
general prior information from large collections or “corpora” of
similar studies. Such priors can be used for default or routine
Bayesian inference. The priors we propose can be narrow and
result in a considerable degree of shrinkage.

3. Constructing a Default Informative Prior

3.1. Using a Corpus of the Previous Studies

Researchers in the life sciences o%en believe that they have little
or no prior information because their study is unique; nobody
has ever studied that particular intervention or exposure in that
particular population with that particular outcome under those
particular circumstances. We believe that it is a mistake to think
like that. At the highest level of aggregation, just knowing that
you are doing another study in the domain of the life sciences
represents a lot of information.

It is o%en possible to be more speci$c, but that does involve
making choices that depend on the details of the study in
question. The more we zoom in, the smaller the set of relevant
examples becomes. This will make it harder to determine the
prior distribution accurately. So, we propose to obtain prior
information from large, broad collections of studies.

For our purposes here, we de$ne a corpus as a collection of
pairs (bj, sj) from studies j that are similar in the sense that they
meet certain inclusion criteria. An example would be placebo-
controlled Phase 3 randomized clinical trials (RCTs). If we know

Figure 1. The bias and exaggeration ratio as a function of the SNR, conditional on statistical signi!cance at the 5% level (two-sided).
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only that a particular study meets a set of inclusion criteria—or
we are willing to ignore all other features of that study—then
we can model that study exchangeably with all others that meet
those criteria. The inclusion criteria of the corpus represent
exactly the information that we are including in the prior. This
implies that if we make the scope wider by removing certain
criteria, while keeping the size of the corpus the same, then we
will have less information in the prior. For example, a corpus of
RCTs is less informative than an equally sized corpus of phase
III RCTs because the latter carries the extra information that all
the trials are in Phase III.

In other words, there is a tradeo! between informativeness
and generality. However, there is no reason to expect that fewer
inclusion criteria would yield a more widely dispersed prior
distribution. Indeed, the prior can become less dispersed if by
widening the scope, we add mostly studies with small e!ects.
From this point of view, one cannot tell by looking at the prior
distribution how much substantive information it represents.
This is a di!erent point of view from the usual conviction that
high-variance priors carry little information Kass and Wasser-
man (1996). The current default procedure of a "at prior is
appropriate in an unrealistic setting in which all sizes of e!ects
are equally likely.

Obtaining prior information from a corpus with a wide scope
has two important practical advantages. First, the wide scope
ensures that many studies are eligible so that the prior can be
estimated accurately. Second, the resulting prior can be used as
a default in a wide range of applications.

3.2. Estimating the Prior

Consider three random variables: β , b, and s with joint density
p. We assume that b has the normal distribution with mean β

and standard deviation s. We observe b and s, and we want to
do Bayesian inference about β . Throughout, we will condition
on s, so we do not need to consider its marginal distribution. To
be able to do Bayesian inference about β , our goal is to estimate
the probability kernel p(β|s) on the basis of a sample of observed
pairs (bj, sj). Since we are assuming that p(b|β , s) is normal(β , s),
it is actually possible to estimate the full joint distribution of
(β , b, s) from just the pairs (bj, sj).

Estimating the conditional distribution of β given s is equiv-
alent to estimating the conditional distribution of the SNR β/s
given s. The z value b/s is the sum of β/s and an independent
standard normal random variable. So, we can $rst do some
regression modeling to estimate the conditional distribution of
b/s conditional on s and then do a deconvolution to obtain the
conditional distribution of β/s given s. Finally, we obtain the
prior distribution of β given s by scaling.

Suppose we succeed in accurately estimating p(β|s) from a
large corpus of exchangeable pairs (bj, sj). If we use that estimate
as a prior, then the posterior will be approximately calibrated
with respect to that corpus. That is, posterior probabilities will
represent frequencies across the corpus.

3.3. Independence Assumption

Our goal is to develop priors that are widely applicable for
routine Bayesian inference. In that context, it is desirable that

inference about β does not depend on inconsequential data
transformations, such as switching events and nonevents in
logistic regression, relabeling dummies, changing the unit of
measurement of covariates or a numerical outcome. For exam-
ple, it should not matter for our substantive conclusions if the
data are presented in grams or kilograms. Mathematically, such
a requirement means that,

p(β|b, s) = |c| p(cβ|cb, |c|s), for all c #= 0. (2)

Requirement (2) means that posterior inference about β is
equivariant under linear transformations of the data. It has the
following interpretation in terms of the SNR β/s.

Theorem 2. Requirement (2) holds if and only if

1. s and β/s are independent, and
2. the distribution of β/s is symmetric around zero.

Requirement (2) drastically simpli$es the estimation of the
probability kernel p(β|s), because we need only estimate the
marginal density of β/s. Moreover, we may assume this den-
sity is symmetric. We only have to estimate the symmetric
marginal density of b/s and then do a deconvolution to obtain
the marginal density of β/s. We can then get the distribution of
β given s by simple scaling.

We motivated (2) from a pragmatic point of view by insisting
that posterior inference about β should be equivariant under
linear transformations to avoid cheating. However, Equation
(2) can also be interpreted as an assumption about the joint
distribution of the observables b and s. Since b/s is the sum of
β/s and an independent standard normal random variable, a
trivial consequence of Theorem 2 is

Corollary 1. Requirement (2) hold if and only if

• s and b/s are independent, and
• the distribution of b/s is symmetric.

We can check if these properties hold, at least to reasonable
approximation, in any particular corpus. An important neces-
sary condition for the above to hold, is that s and |b| are posi-
tively correlated. We argue from an anthropic principle (Gelman
2018) that it is reasonable to expect such a correlation, as follows.
Studies are commonly designed to have just enough power
so that e!ects can just about be estimated from data. Indeed,
the goal of sample size calculations (formal or informal) is to
balance |b| and s so that the probability that |b|/s exceeds 1.96 is
not too large or too small. Hence, e!ects tend to be of the same
order of magnitude as standard errors. This does not preclude
that the distribution of the SNR can di!er between corpora. For
example, some research areas might have larger e!ects, better
measurement devices or more funding opportunities for large
studies.

If Equation (2) holds then the prior information about the
SNR is all, then we need for estimating β . Moreover, we have
the following equality for the posterior mean:

E(β|b, s) = s E(SNR|z). (3)

If Equation (2) does not hold, then this equality does not hold
either, but we claim that it is still to sensible use the shrinkage
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estimate s E(SNR|z). By conditioning on z, we are using the
prior information about the SNR. So, as far as shrinkage is
concerned, we are using all the relevant information.

3.4. Adaptivity and Consistency With a t Prior

The estimate b and its standard error s depend on the sample
size, but until now we have suppressed this dependence from
our notation. In this section, we will discuss what happens when
the sample size increases. Therefore, we will now make the
dependence on the sample size explicit.

Suppose we have a normally distributed, unbiased estimator
bn of β with known standard error sn = σ/

√
n, where n is

the sample size. If we choose a $xed prior for β , which does
not depend on n, then its in"uence disappears as the sample
size increases in the sense that the posterior distribution of β

converges to the likelihood of bn. In particular, the posterior
mean of β converges to bn and hence is a consistent estimate
of β . This is a special case of the well-known Bernstein–von
Mises theorem. Here, we are proposing to use a $xed prior for
the SNR β/sn. Thus, the implied (scaled) prior for β depends
on the sample size, and therefore Bernstein–von Mises does not
apply.

For example, if we put a normal prior with mean zero and
standard deviation τ on β/sn, then the posterior mean for β is

τ 2

τ 2+1 bn. Evidently, this is an inconsistent estimate of β , unless β

happens to be zero.
Fortunately, by choosing a prior with "atter tails than the

normal, it is possible to have a $xed prior on β/sn and still have
the posterior distribution of β converging to the likelihood of bn.
The following theorem is a special case of a result due to Dawid
in the context of Bayesian outlier detection Dawid (1973).

Theorem 3. Suppose we have a normally distributed, unbiased
estimate bn of β with known standard error sn = σ/

√
n, where

n is the sample size, and suppose β is assigned a sample-size-
dependent tν(0, sn) prior distribution. Then, as long as the true
β is not equal to zero, the limiting posterior distribution of (β −
bn)/sn is standard normal.

The point is that the t distribution has a much "atter tail than
the normal distribution. As n becomes large, the likelihood of
bn will concentrate around the true and nonzero β . Meanwhile,
the prior, by construction, becomes increasingly narrow and is
centered around 0. Thus, the overlap with the normal likelihood
will be in a region where the prior is almost completely "at and
hence the posterior will converge to the likelihood. In other
words, as n grows and the z-value bn/sn becomes large, the
shrinkage disappears. In that sense, the amount of shrinkage
adapts to the SNR.

Dawid’s theorem is actually more general and provides suf-
$cient conditions for the tail behavior of the prior. There is an
extensive literature about heavy-tailed priors which is reviewed
by O’Hagan and Pericchi (2012).

3.5. Mixture of Normals Prior

Above we established that using a t prior distribution for β/s
yields a consistent estimator. In practice, we prefer to use a $nite

mixture of zero-mean normal distributions, with a density of the
form

f (x) =
k∑

i=1
pi ϕ(x/τi) / τi, (4)

where ϕ denotes the standard normal density, τi are the standard
deviations of the k mixture components and the nonnegative
mixture proportions pi add up to one. This model has two
advantages. First, all calculations can be done explicitly, which
is fast and can give us insight. The mathematical details are not
di#cult, and we describe them in the online supplement. More
importantly, a mixture of zero-mean normal distributions is a
very "exible model. Already with just two components, we can
separately $t the central part and the tails of the distribution
of β/s. As it turns out, a mixture of two components provides
a reasonably good $t in our examples, so this is what we used
there.

We estimate the mixture proportions and the variances of the
mixture components by maximum likelihood. For the analyses
of the next section, we have used the R package “"exmix”
Leisch (2004), which implements the EM algorithm. Under our
assumptions, a z-value is the sum of the SNR and standard nor-
mal noise. Therefore the variances of the mixture components
of the distribution of the z-values must be at least one. So, to
estimate the mixture distribution by maximum likelihood we
must actually solve a constrained optimization problem. When
we estimate the distribution of the z-values in the examples of
the next section, it turns out that the constraint is not active
because the likelihood is maximized with all variances greater
than one.

The tails of a mixture of Gaussians are not heavy enough
to meet the requirements of Dawid’s theorem, and therefore
we do not get formal consistency. However, this is not a major
practical concern. Sample sizes never actually go to in$nity, and
if one of the components has a large standard deviation, then
the tails of the mixture will be "at enough in the sense that there
will be little shrinkage when the observed z-value is large. As
with many statistical models (e.g., logistic vs. probit regression),
what is most important is not the exact functional form but
rather that the model has enough "exibility that we can learn
from data.

4. Example Using Corpora in Psychology and
Medicine

We will illustrate the ideas of this article with two example
corpora, one from psychology and one from medicine.

To obtain reliable prior information, the reported e!ects in
our corpus must be a fair sample of the population of e!ects
within the scope. It is well-known that for various reasons (pub-
lication bias, $le drawer e!ect, researcher degrees of freedom,
$shing, forking paths, etc.) reported e!ects tend to be in"ated
(Ioannidis 2005; Rothstein, Sutton, and Borenstein 2006; Ioan-
nidis 2008; Button et al. 2013; Gelman and Loken 2014; Collabo-
ration 2015). Here, we consider two special cases where the risk
of publication bias is low so that we expect to $nd a reasonably
honest sample of e!ects.



THE AMERICAN STATISTICIAN 5

Figure 2. The observed z-values of the replication studies in psychology from the Open Science Collaboration (OSC), and the Phase III randomized controlled clinical trials
(RCTs) in medicine from the Cochrane collaboration. For the OSC study we show the symmetrized histogram (see Section 4.1). For both datasets we also show the !tted
mixtures of two zero-centered normals.

4.1. Open Science Collaboration Study on Reproducibility
in Psychology

To assess the reproducibility of psychological science, the Open
Science Collaboration (OSC) selected 100 studies from three
leading journals of the American Psychological Association, and
replicated them Collaboration (2015). They chose the journals
Psychological Science, Journal of Personality and Social Psychol-
ogy, and Journal of Experimental Psychology: Learning, Memory,
and Cognition. According to the authors of the replication study,
the $rst journal is a premier outlet for all psychology research;
the second and third are leading disciplinary-speci$c journals
for social psychology and cognitive psychology, respectively.
The studies were selected in a quasirandom way to balance two
competing goals: “minimizing selection bias by having only a
small set of articles available at a time and matching studies with
replication teams’ interests, resources, and expertise.” The data
are publicly available at https://osf.io/fgjvw/.

For our corpus, we use only the replication studies from the
OSC project. Since the regression parameters and their standard
errors are not available in the dataset, we transformed the two-
sided p-values of the replication studies to absolute z-values by

|z| = −&−1(p-value/2).

Under requirement (2) the absolute z-values are su#cient to
estimate the prior. Excluding the F-tests, we have 86 absolute
z-values. We show their distribution in Figure 2. Since we have
only the absolute values, we symmetrized the histogram, that is,
we used the R command hist(c(-z,z)).

We used maximum likelihood (via the EM algorithm) to
estimate the distribution of the z-values as a two-component
mixture of zero-mean normals. The R code is available in the
online supplement. We $nd a mixture with standard deviations
1.2 and 4.1 and mixture proportions 0.57 and 0.43, respectively.
We show this distribution in Figure 2.

Now recall that the SNR is the sum of the z-value and inde-
pendent standard normal noise. Therefore, we can obtain the
distribution of the SNR by deconvolution. This is quite compli-
cated in general, but it is trivial when using normal distributions.
The distribution of the SNR has the same mixing proportions as
the distribution of the z-values, and the standard deviations are
simply τ1 =

√
1.22 − 1 = 0.7 and τ2 =

√
4.12 − 1 = 4.0. We

show this distribution in the le% panel of Figure 3.

Recalling (3), we can use the distribution of the SNR to obtain
a shrinkage estimator of the parameter β from the observed z-
value as β̂ = s E(SNR|z). Computing β̂ is not di#cult, and we
provide a few lines of R code in the appendix. We refer to the
online supplement for the mathematical details. We can now
de$ne the shrinkage factor as

b
β̂

= z
E(SNR|z) . (5)

We show the shrinkage factor in the right panel of Figure 3 as a
function of the z-value.

4.2. Cochrane Phase 3 Placebo Controlled Clinical Trials

The Cochrane Database of Systematic Reviews (CDSR) is the
leading journal and database for systematic reviews in health
care. All z-values from primary studies up to 2018 have been
derived, and made public Schwab (2020). We decided to
focus on phase III randomized, placebo controlled clinical trials
(RCTs). Such trials involve large groups of patients and are
aimed at being the de$nitive assessment of the e!ectiveness of
a particular treatment. They represent large investments and
are typically the culmination of many years of research and
development. It is therefore quite unlikely that their results
go unpublished. Moreover, the Cochrane Collaboration makes
every e!ort to include all relevant studies for their systematic
reviews—even unpublished studies.

We selected studies from the CDSR where either the title or
Cochrane’s methods description contained the terms “phase 3”
or “Phase III.” Next, we selected all comparisons for e#cacy
against a placebo. For each study, we selected only a single z-
value where we tried to obtain the e!ect of primary interest.
We were le% with 178 z-values. We show their distribution in
Figure 2.

We estimated the distribution of the z-values as a two-
component mixture of zero-mean normals with standard devia-
tions 1.8 and 3.7 and mixture proportions 0.42 and 0.58, respec-
tively. We show this distribution in Figure 2. Again, we can
obtain the distribution of the SNR by deconvolution. This dis-
tribution has the same mixing proportions as the distribution of
the z-values, and the standard deviations are τ1 =

√
1.82 − 1 =

1.5 and τ2 =
√

3.72 − 1 = 3.5. We show this distribution in the

https://osf.io/fgjvw/
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Figure 3. Left panel: the estimated distribution of the SNR for the replication studies in psychology from the Open Science Collaboration (OSC), and the Phase III RCTs in
medicine from the Cochrane collaboration. Right panel: The shrinkage factor—the amount by which the raw estimate is divided to yield the Bayes estimate—as a function
of the z-score of a new study, for each of our two classes of problems. A shrinkage factor of 1 corresponds to no shrinkage.

le% panel of Figure 3. We show the shrinkage factor in the right
panel of Figure 3.

4.3. A Typical Application

To illustrate the implications of our proposal, we will now work
through a small numerical example. All computations in this
section are in the online supplemental document. Consider a
study in the $eld of psychology where we compare two groups
on some binary outcome. Suppose the estimated log odds ratio
is b = 0.3 with a standard error of s = 0.2. The Wald 95%
con$dence interval is from −0.1 to 0.7.

posterior <- function(b,s,p,tau){
z <- b/s
tau2 <- tau^2
q <- p*dnorm(z,0,sqrt(tau2 +1))
q <- q/sum(q)

# conditional mixing probs
pm <- b*tau2/(tau2 +1)

# conditional means
pv <- s^2*tau2/(tau2 +1)

# conditional variances
ps <- sqrt(pv)

# conditional std devs
data.frame(q,pm ,ps)

}

Listing 1. R code to compute the posterior of β given (b, s) when the prior dis-
tribution of the SNR is a mixture of zero-mean Gaussians with mixing probabilities
p = (p1, p2, . . . , pk) and standard deviations τ = (τ1, τ2, . . . , τk).

Suppose we are willing to view the study of interest as
exchangeable with the studies in the OSC corpus. We pro-
vide an R function in the boxed listing to compute the poste-
rior distribution of the “true” log odds ratio β . The function
call is: posterior(b=0.3,s=0.2,p=c(0.57,0.43),
tau=c(0.7,4.0)). The posterior distribution is again a
mixture of two normal components with mixing probabilities
0.7 and 0.3, means 0.1 and 0.28, and standard deviations 0.11
and 0.19. Hence, the posterior mean of β is β̂ = 0.7 × 0.1 +
0.3 × 0.28 = 0.15. The shrinkage factor is b/β̂ = 0.3/0.15 = 2.

The 95% credible interval is −0.12 to 0.55, and the posterior
probability that β is positive is 0.84.

4.4. Remarks

The two datasets we have studied yielded very di!erent results
as can be seen in Figures 2 and 3. Unsurprisingly, the SNR in
psychology research tends to be much smaller than in Phase
3 clinical studies. The latter usually involve very considerable
investments and hence may be expected to have high statistical
power. Consequently, it seems that one should apply much
stronger shrinkage to results from psychological research than
from Phase 3 clinical studies, especially when the observed
(absolute) z-value is small.

An important conclusion of the OSC reproducibility study
was that on average the e!ect size of the replication e!ects
was half the magnitude of the e!ect size of the original e!ects
Collaboration (2015). This roughly agrees with our analysis.
Using only the results of the replication studies, we found that
shrinkage by a factor of about 1.5–2 is typically in order.

A more extensive analysis of the entire Cochrane database is
reported elsewhere (van Zwet, Schwab, and Senn 2020).

5. Discussion

5.1. The Value of Default Informative Priors

Nearly 40 years ago, Rubin (1984) wrote:

Another reason for the applied statistician to
care about Bayesian inference is that consumers
of statistical answers, at least interval estimates,
commonly interpret them as probability statements
about the possible values of parameters. Conse-
quently, the answers statisticians provide to con-
sumers should be capable of being interpreted as
approximate Bayesian statements.

The present article is an attempt to do just that. The con$dence
interval (1) describes the long-run coverage performance of the
random interval [b − 1.96 s, b + 1.96 s]. The statement does
not hold conditionally on the data, but it is o%en mistakenly
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interpreted “Bayesianly” as

Pr(β ∈ [b ± 1.96 s]|b, s) = 0.95. (6)

where β is viewed as a random variable, and we condition on
the data pair (b, s). We refer to Greenland et al. (2016) for a
discussion of this misinterpretation. Statement (6) is arguably
more relevant than (1) because it refers to the data at hand,
rather than the procedure being used. This may explain, at least
in part, the pervasiveness of the misinterpretation; it is what
researchers want to know.

The Bayesian statement (6) is only valid if β has the
(improper) uniform or “"at” prior distribution. The matching
property of Equations (1) and (6) has led many to consider the
uniform prior to be an objective or noninformative prior Ghosh
et al. (2011). Many other criteria have been proposed which a
priori might be considered to be objective Kass and Wasserman
(1996), but in the normal location model with known standard
deviation they all yield the (improper) uniform distribution as
the unique objective prior. So, we $nd that the "at prior is
used for Bayesian inference about regression coe#cients in two
distinct situations: explicitly with the goal of objective Bayesian
inference and implicitly whenever the con$dence interval for a
regression coe#cient is interpreted as a credibility interval.

The goal of using a noninformative prior is to be impar-
tial or objective by minimizing the in"uence of the prior on
the posterior, see Berger (2006) but also Gelman and Hennig
(2017). However, this in"uence depends on which aspect of
the posterior we are considering. The "at prior is actually very
informative for both the magnitude and the sign of β . This is
just a consequence of the fact that a di!use prior favors large
absolute values. In fact, use of the "at prior results in overesti-
mation of the magnitude of β and exaggerated evidence about
its sign van Zwet (2019): type M (magnitude) and type S (sign)
errors (Gelman and Carlin 2014). We thus echo the classical
Bayesian literature in concluding that “noninformative prior
information” is a contradiction in terms. The "at prior carries
information just like any other; it represents the assumption that
the e!ect is likely to be large. This is o%en not true. Indeed, the
SNR β/s is o%en very low and then it is necessary to shrink the
unbiased estimate. Failure to do so by inappropriately using the
"at prior causes overestimation of e!ects and subsequent failure
to replicate them.

Some degree of shrinkage is achieved by using weakly infor-
mative priors. This can provide good results in many situations
(Gelman et al. 2008; Greenland and Mansournia 2015), but
can still lead to undershrinkage and positively biased e!ect size
estimates. Here, we propose to use prior information estimated
from a large corpus of similar studies, under the constraint that
we are modeling e!ect size in standard error units. By using
a wide scope, we can ensure that little information is required
that is speci$c to the study at hand. A wide scope also means
that we can include many studies so that the prior can be
estimated accurately. Finally, a wide scope means that the prior
information is applicable to many studies. A wide scope does
not imply that the prior will be wide in the sense of having high
variance.

If we succeed in accurately estimating the prior information
from a large corpus, then the resulting posterior inferences will
be approximately calibrated with respect to that corpus. That

is, posterior probabilities will represent frequencies across the
corpus. It is important to distinguish this frequentist Bayesian
between-studies perspective from a more typically Bayesian
within-study framework view where posterior probabilities rep-
resent a study-speci$c model.

If our corpus-based prior distributions are to be used for
default or routine Bayesian inference, then those inferences
should not depend on linear data transformations such as a
change of the unit of measurement. Requiring our inference to
be equivariant under linear transformations of the data greatly
simpli$es estimation of the prior (Theorem 2). Under this
requirement, we only need to estimate the symmetric, marginal
distribution of the observed z-values.

To use a corpus-based prior, one only needs to combine it
with the (approximately) unbiased, normally distributed esti-
mate of the parameter of interest and its standard error. This is
a great advantage, because it allows anyone to perform a quick
Bayesian re-analysis of a standard frequentist result. No need to
wait for the author to do that!

5.2. Limitations of Our Recommended Approach

We have assumed throughout that the standard errors of esti-
mates are known, while that is typically not realistic. We argued
in Section 2 that this is a very common assumption in meta-
analysis which is quite harmless when sample sizes are relatively
large. Here, we want to stress that the assumption is really only
necessary for constructing the prior. The subsequent Bayesian
inference can proceed without it.

The main di#culty of the method described in the present
article is the need to compile an honest corpus that is not
a!ected by publication bias, $le drawer e!ect, researcher degrees
of freedom, $shing, forking paths, etc. Promising sources are
replication studies, registered reports or careful meta-analyses
that make an e!ort to include also unpublished studies. In
Section 4.2, we used only a small part of the Cochrane data
Schwab (2020). The data are much more extensive and can be
broken down by medical specialty, purpose (e#cacy or safety),
type of outcome and more, to yield relatively speci$c priors.
Work along these lines is underway, see also van Zwet et al.
2020.

A second caveat is our pragmatic requirement (2) that our
inference should be equivariant under linear transformations of
the data. This requirement is important to ensure that it is not
possible to manipulate the conclusions of a study by a change of
measurement unit or by comparing group B to A instead of A to
B. This requirement implies that b/s and s are independent and
that the distribution of b/s is symmetric. Those properties may
or may not be reasonable in a particular corpus.

Our recommended approach makes use of the Bayesian for-
malism but is not fully Bayesian in that it does not correspond
to any joint distribution of parameters and data. Our choice of
prior is improper, not in the sense of having no $nite integral but
in that it depends on the data (through the sample size n), which
is not allowed in Bayesian inference. For any particular dataset,
the prior is proper, but the resulting inference violates the Bayes’
rule as new data come in. For example, suppose an experiment
with n = 100 is analyzed using the methods described in the
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Figure 4. Inference given a default standard Cauchy or t1(0, 1) prior on b/s. Line and shaded bands show posterior median, 50%, and 95% intervals. Red line and dotted
lines show classical (or "at-prior) estimate and the 95% interval. When the estimate is noisy (less than 2 standard errors away from zero, estimates are shrunk about halfway
toward zero; as the precision of the estimate becomes higher, the inferences approach the classical limit.

present article, and then the researcher goes and performs the
study on 300 more people drawn from the same population. We
can treat this as new data and do Bayesian updating using the
posterior from the experiment just performed as our prior for
the analysis of the 300 new people, or we can consider the data
as one experiment and go back to the default prior, this time
scaled to n = 400. Because of the scaling of the prior, these two
inferences will di!er.

Arguably, however, some incoherence is appropriate for any
default prior for a continuous parameter. An informative prior
for any regression coe#cient will require some scaling Gelman
et al. (2008), and if this is not based on the data it would require
an equivalent restriction to some class of appropriately scaled
problems. The prior we have proposed here is unusual in that
it is scaled to sample size, but this can be seen as a sort of
rationalized version of current statistical practice which is to
judge the plausibility of claims based on their t ratio, the number
of standard errors the estimate is from zero.

The availability of a corpus-based prior does not preclude
using more speci$c prior information where available. This can
be considered as an implicit restriction of the corpus to a more
relevant set of problems.

5.3. A Default Default Prior?

In this article, we have proposed a method for constructing
a default prior for a class of problems by $tting a wide-tailed
distribution (t or mixture of normals) to data from a relevant
corpus of careful studies. But what about a truly default prior,
to be applied in new problems, or settings where no reliable
corpus is available, or for use in general-purpose so%ware? In
this case we could see the virtue of a choice such as the standard
Cauchy distribution, which does a lot of shrinkage for noisy
estimates but approaches the classical limit as the precision of
the estimate increases, as illustrated in Figure 4. We note that
the standard Cauchy distribution is the same as the standard
t distribution with one degree of freedom, which we denote
t1(0, 1). Other members of the t family could also be considered
as priors. There is no magic about this choice, and it will be
appropriate only to the extent that this prior re"ects the distri-
bution of underlying e!ects. That said, we believe that this sort
of standard-error-scaled prior can be a useful starting point in
many settings.

Supplementary Materials

The online supplement contains additional detail about the calculations,
including R code for the $gures.
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