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1 A first-hitting-time model of leafout

We use a model based on the general understanding of how warm temperatures (forcing) trigger

leafout in temperate deciduous trees (Chuine, 2000): that leafout occurs after a certain thermal

sum is met (see also Lindsey and Newman, 1956; Zohner et al., 2020). Though this model is very

simple, we formalize it here to show its inherent non-linearity and some of its relevant statistical

properties.

We use a first-hitting-time model, which describes the first time a random process hits a thresh-

old, because of its broad applicability and conceptual simplicity. We define leafout day, n� , as

the day, n, that cumulative daily temperature, Sn, hits the threshold, �.

We derive the relationship between daily temperature and leafout in two common scenarios. In

the first, we take the average daily temperature up until the leafout date. In the second, we

take the average daily temperature over a fixed window, such as March 1st to April 30th. In

both cases, we discretize time since, although many biological processes depend continuously on

time, research typically measures time in discretized units, such as days, weeks, or months.

1.1 Scenario 1: Using average daily temperature until the leafout date

We use the following notation:

n = day since temperatures start to accumulate, n = 0, 1, ..., N

Xn = observed temperature on day n

Sn
0 =

nX

i=1

Xi, the cumulative daily temperature from day 1 to day n

Mn
0 =

Sn
0

n
, the average daily temperature from day 1 to day n

� = the threshold of interest, � > 0, (thermal sum required for leafout)

n� = argmin
n

Sn > �, the first day the cumulative daily temperature passes the threshold

(for example, day of year (doy) of leafout).
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We model Xn as a Gaussian random walk, Xn
i.i.d⇠ normal (↵0 + ↵1n,�), where ↵0 > 0 is the

average temperature on day n = 0, ↵1 > 0 is the day-over-day increase in average temperatures,

and � is the standard deviation. This model di↵ers from the traditional Gaussian random walk

because of the factor n.

This model has two important consequences:

(1) Leafout time is inversely related to average temperature at leafout time.

Under this model, M
n�

0 and n� are inversely proportional. To see why, assume for the moment

that the cumulative daily temperature hits the threshold exactly on leafout day. That is, S
n�

0 =

�. Then

M
n�

0 =
S
n�

0

n�
=

�

n�

rearranging yields

n� =
�

M
n�

0

Many global change biology studies use linear regression to quantify the relationship between

n� and M
n�

0 (or similar metrics, see Wolkovich et al., 2012; Piao et al., 2017; Keenan et al.,

2020, for examples). Regressing n� on M
n�

0 finds a best fit line to the inverse curve, n� = �

M
n�
0

.

The relationship is linearized with the logarithm transformation: log(n�) = log(�)� log(M
n�

0 ).

That is, log(n�) is linear in log-average daily temperature with slope -1 and intercept log(�).

(2) The variance of the average temperature may decrease as temperatures rise.

Under the model, the mean and variance of Mn
0 are E[Mn

0 |↵0,↵1] = 1
n

Pn
i=0(↵0 + ↵1i) =

↵0 + ↵1
(n+1)

2 and Var(Mn
0 |↵0,↵1) =

�2

n .

By the law of total variance,

Var(Mn
0 ) = E[Var(Mn

0 |↵0,↵1)] + Var(E[Mn
0 |↵0,↵1])

=
�2

n
+Var(↵0 + ↵1

n+ 1

2
)

=
�2

n
+Var(↵0) +

(n+ 1)2

4
Var(↵1) + (n+ 1)Cov(↵0,↵1)

As temperatures rise and leafout date becomes earlier, the variance of the average temperature

will decline—provided the variation in temperatures, �2, is su�ciently small.
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1.2 Scenario 2: Using average daily temperature over a fixed window

We slightly modify the notation:

n = day since temperatures start to accumulate, n = 0, . . . , a, . . . , b

Xn = observed temperature on day n

Sn
a =

nX

i=a+1

Xi, the cumulative daily temperature from day a+ 1 to day n

Mn
a =

Sn
a

n� a
, the average daily temperature from day a+ 1 to day n

� = the threshold of interest, � > 0, (thermal sum required for leafout)

n� = argmin
n

Sn
0 > �, the first day the cumulative daily temperature passes the threshold

(for example, day of year (doy) of leafout).

As before, we model Xn as a Gaussian random walk, Xn
i.i.d⇠ normal (↵0 + ↵1n,�), where ↵0 > 0

is the average temperature on day n = 0, ↵1 > 0 is the day-over-day increase in average temper-

atures, and � is the standard deviation. We make the additional assumption that Xn � 0 for all

n and a < n� < b. That is, the cumulative temperature acquired by the plant always increases.

Note that

Sb
a ⇠ normal

�
↵0(b� a) + ↵1

2 (b� a)(b+ a+ 1),�
p
b� a

�

M b
a ⇠ normal

⇣
↵0 +

↵1
2 (b+ a+ 1), �p

b�a

⌘

Sb
n � Sa

0 ⇠ normal
�
↵0(b� a� n) + ↵1

2 ((b� n)(b+ n+ 1)� a(a+ 1)),�
p
b+ a� n

�

so that

Pr
⇣
n�  n

�� M b
a = m

⌘
= Pr

⇣
n�  n

�� Sb
a = (b� a)m

⌘

= Pr
⇣
Sn
0 � �

�� Sb
a = (b� a)m

⌘

= Pr
⇣
Sb
n  (b� a)m+ Sa

0 � �
⌘

= Pr
⇣
Sb
n � Sa

0  (b� a)m� �
⌘

= �

✓
(b� a)m� � � [↵0(b� a� n) + ↵1

2 ((b� n)(b+ n+ 1)� a(a+ 1))]

�
p
b+ a� n

◆

The distribution of M b
a shows that consequence (2) above still holds with this model. Conse-

quence (1) no longer holds directly, but will in many situations where average daily temperature

until an event correlates strongly with average daily temperature because the window is chosen

based, in part, on the expected hitting time (Figs. S3-S4). We note two additional consequences:
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(3) The conditional median is quadratic in n:

1

2
set
= Pr

⇣
n�  n

�� M b
a = m

⌘

) 0 = (b� a)m� � � [↵0(b� a� n) +
↵1

2
((b� n)(b+ n+ 1)� a(a+ 1))]

) m =
1

(a� b)
[�� � ↵0(b� a� n)� ↵1

2
((b� n)(b+ n+ 1)� a(a+ 1))]

=
1

(a� b)
[�� � ↵0(b� a)� ↵1

2
(b� a)(b+ a+ 1)] +

↵0 +
↵1
2

(a� b)
n+

↵1
2

(a� b)
n2

:= �0 + �1n+ �2n
2

(4) The conditional mean and variance are sums of negative sigmoids, according to the following

identities

E
⇥
n�

�� M b
a = m

⇤
=

P1
n=0 Pr

�
n� � n

�� M b
a = m

�

E
h
n2
�

�� M b
a = m

i
=

P1
n=0 n Pr

�
n� � n

�� M b
a = m

�

2 Simulations of common hypotheses for declining sensitivity

2.1 E↵ect of increasing thermal sum on sensitivity

Many biological hypotheses explain the observed decline in plant sensitivity as a consequence

of declines in over-winter chilling or short photoperiods (Fu et al., 2015; Zohner et al., 2016;

Fu et al., 2019). These forces generally increase the thermal sum required for leafout each year

(Polgar et al., 2014; Zohner et al., 2017; Flynn and Wolkovich, 2018), hypothesized to weaken

the linear relationship between biological responses and temperature.

An increase in the thermal sum required for leafout (� in our first hitting-time model in section

1.1 above) yields a larger in magnitude regression coe�cient (when regressing leafout date on

spring-time temperature). Thus, if climate change drives higher thermal thresholds, we should

see increasing—not declining—sensitivity (Fig. S5). This happens due to a decreasing (in

magnitude) variance in temperature alongside an increasing in magnitude covariance between

temperature and leafout day. Similar results are seen given the model in section 1.2, though

due mainly to increasing covariance between temperature and leafout day. Previous work has

highlighted how shifting temperature variance (over space and/or time) could lead to shifting

estimates of temperature sensitivities (Keenan et al., 2020), but these results stress that shift-

ing variance in temperature is likely only part of a larger story driven by the non-linearity of

temperature response.
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2.2 E↵ects of chilling and daylength

We extended simulations from our first hitting-time model to examine two common biological

hypotheses for declining sensitivities in spring plant phenology to understand how discernible

biological shifts would be from the shifts present when using linear models to estimate sensitiv-

ities for non-linear temperature responses.

First, we simulated the most often cited hypothesis (e.g., Fu et al., 2015; Piao et al., 2017):

an increasing thermal sum threshold given declines in over-winter chilling with warming. In a

model where increased thermal sums are driven by declines in overwinter chilling with warm-

ing, sensitivities from log-transformed data first increase and then decrease (as winter warming

delays leafout day and spring warming advances leafout day) in step with biological shifts in

cues (Fig. S6a, c). In contrast, estimates from the linear model show changes in sensitivity

throughout warming, despite no major change in cues before 4 �C (Fig. S6a, c). The ultimate

e↵ect with warming depends on exact parameter values (e.g., how much thermal cues shift with

declines in warming) and on the covariation of X and �, highlighting how di�cult teasing apart

relationships in observational spring phenology may be given correlations across multiple pre-

dictors (correlations that are likely exacerbated by climate change).

Second, we simulated an alternative hypothesis where warming causes the thermal sum to be

reached before a required daylength threshold and plants then leaf out on the first day the

daylength threshold is met (Zohner et al., 2016; Fu et al., 2019). At its extreme this model

produces the same leafout day (the day when the required daylength is met) across di↵erent

temperatures and thus produces smaller in magnitude estimated sensitivities in both linear and

logged models. Estimated sensitivities, however, from a linear model do not necessarily decline

depending on exact parameter values (see Fig. S6b, d). Again this shift appears more visible

when using sensitivities that include the non-linear nature of plants’ temperature response com-

pared to linear estimates (see Fig. S6b, d).

Annotated code for these simulations are available via github (https://github.com/temporalecologylab/

labgit/tree/master/projects/decsenspost) to allow testing of alternative parameter values

or versions of these hypotheses.

3 Additional methods & results from long-term empirical data

We draw on three empirical data sources: (1) data from a controlled experiment across a wide

temperature range (Charrier et al., 2011) (selected as it is the only study with multiple obser-

vations across a wide range of forcing temperatures in fully controlled settings from a recent

meta-analysis of all published spring phenology controlled environment studies, OSPREE) and

long-term phenology data from two major sources—(2) PEP 725 phenological data and (3) wine-

grape harvest records from two main regions in France. We selected these datasets because they

are relatively long-term, complete, public, have been widely used in the past and have paired

climate data (see Data & Code Availability). Code for these analyses are available via github.
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To examine how estimated sensitivities of leafout shift over time, we selected sites of two com-

mon European tree species (silver birch, Betula pendula, and European beech, Fagus sylvatica)

that have long-term observational data of leafout, through the Pan European Phenology Project

(PEP725, Templ et al., 2018). We selected these two species because they had consistent data

at the same sites over our study years and represented an early-leafout (Betula pendula) and a

late-leafout (Fagus sylvatica) species (e.g., Betula pendula had 17 sites with leafout data from

1950-1960 and 2000-2010, while the next best option for an early-leafout species, Alnus gluti-

nosa, had data for only five sites). We used sites with complete leafout data across both our

10-year (and 20-year) windows to avoid possible confounding e↵ects of shifting sites over time

(see Tables S1-S2 for numbers of sites per species-window combination). We calculated tem-

perature sensitivities as a simple linear regression of leafout day of year versus the mean daily

temperature, using a European-wide gridded climate dataset (E-OBS, Cornes et al., 2018) to

calculate average temperature from 1 March to 30 April (60 d).

Estimated sensitivities for the empirical data (PEP725) using logged variables are far lower

than the value obtained in our simulations (-1). This likely results from a contrast between our

simulations—where we can accurately define the temperature plants experience and the tempo-

ral window that drives leafout—and our empirical data, where we do not know how measured

temperatures translate into the temperatures that plants accumulate and where we have no clear

method to define the relevant temporal window.

To examine how estimated sensitivities of harvest shift over time, we used data from Cook and

Wolkovich (2016), which combines data from Daux et al. (2012) and various paleoclimate and

instrumental climate metrics. We used the instrumental temperature seasonal record from the

paper and split the data after 1950 at 1979/1980 to provide a nearly even complete set of data

for each period (29 and 28 years).

Our results highlight how the acceleration of biological time with warming requires caution in

linking observed patterns to mechanisms. We have shown that patterns of lower sensitivities

with higher temperatures should be expected, and not used alone as strong evidence of shifting

biology. Indeed, when our model holds, declining sensitivity with rising temperatures should

be the null hypothesis of any analysis of temperature sensitivity based on linear regression or

similar methods. In addition to improving null expectations across both biological and calen-

dar time, researchers need to develop and test logical predictions for how their results may scale

across space, time and temperature (e.g., while Keenan et al. (2020) suggest results in Wolkovich

et al. (2012) are due to using annual temperatures for observational studies, Wolkovich et al.

(2012) showed results were robust to using annual temperatures versus three-month temperature

windows, and found no relationship between temperature sensitivity and degree of warming),

consider the complexity of both correlated climate variables (which may be di�cult to uncou-

ple even in some experiments, Ettinger et al., 2019) and correlated biotic variables, which may

themselves lead to altered estimates of temperature sensitivity (Yuste et al., 2004).
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4 Tables

Table S1: Climate and phenology statistics for two species (Betula pendula, Fagus sylvatica,

across 45 and 47 sites respectively) from the PEP725 data across all sites with continuous data

from 1950-1960 and 2000-2010. ST is spring temperature (�C) from 1 March to 30 April, ST.lo

is temperature 31 days before leafout, and GDD is growing degree 31 days before leafout (with a

base temperature of 0�C). Slope represents the estimated sensitivity using untransformed leafout

and ST, while log-slope represents the estimated sensitivity using log(leafout) and log(ST). We

calculated all metrics for each species x site x 10 year period before taking mean or variance

estimates.

years species mean

(ST)

mean

(ST.lo)

var

(ST)

var

(lo)

GDD slope log-

slope

1950-1960 Betula pendula 5.6 7.0 3.4 110.51 71.71 -4.28 -0.17

2000-2010 Betula pendula 6.6 6.8 1.2 46.96 64.63 -3.61 -0.22

1950-1960 Fagus sylvatica 5.6 7.5 3.3 71.89 83.81 -2.85 -0.11

2000-2010 Fagus sylvatica 6.7 7.7 1.2 38.29 86.69 -3.43 -0.20

Table S2: Climate and phenology statistics for two species (Betula pendula, Fagus sylvatica,

across 17 and 24 sites respectively) from the PEP725 data across all sites with continuous data

from 1950-2010. ST is spring temperature (�C) from 1 March to 30 April, ST.lo is temperature 31

days before leafout, and GDD is growing degree 31 days before leafout (with a base temperature

of 0�C). Slope represents the estimated sensitivity using untransformed leafout and ST, while

log-slope represents the estimated sensitivity using log(leafout) and log(ST). We calculated all

metrics for each species x site x 10 year period before taking mean or variance estimates.

years species mean

(ST)

mean

(ST.lo)

var

(ST)

var

(lo)

GDD slope log-

slope

1950-1970 Betula pendula 5.8 7.1 2.6 79.89 72.48 -4.34 -0.19

1970-1990 Betula pendula 5.9 7.2 1.3 104.83 72.15 -6.11 -0.33

1990-2010 Betula pendula 6.8 6.7 0.9 36.22 60.03 -3.35 -0.21

1950-1970 Fagus sylvatica 5.6 7.6 2.7 63.35 86.02 -3.08 -0.12

1970-1990 Fagus sylvatica 5.6 7.5 1.3 56.19 81.31 -2.51 -0.16

1990-2010 Fagus sylvatica 6.7 7.5 1.0 32.82 79.92 -2.76 -0.15
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5 Figures
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Figure S1: Controlled experiments across a wide temperature range show a non-

linear response to temperature. Here we use data from Charrier et al. (2011), one of the

few studies covering a wide range of temperatures in a fully controlled experiment. Data are

from a growth chamber experiment of tree branch cuttings of walnut trees (Juglans regia), taken

from the field on 29 January 2009 and exposed to five di↵erent temperatures with a 16 hour

photoperiod.
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Figure S2: Estimates of temperature sensitivities (response per �C) using linear (left)

and non-linear (right) models of long-term harvest data from two major French

winegrowing regions. Temperature sensitivity of data from Burgundy declines with warm-

ing when estimated with linear regression (left). This decline disappears when performing the

regression on logged predictor and response variables, and increases the relative magnitude of

an increase in sensitivity estimated from data from Bordeaux (right). Harvest and temperature

data from Cook and Wolkovich (2016).
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Figure S3: Simulated leafout as a function of temperature across di↵erent temper-

atures highlights non-linearity of process. Here we simulated sets of data where leafout

constantly occurs at 200 growing degree days (thermal sum of mean daily temperatures with

0�C as base temperature) across mean temperatures of 10, 15, 20 and 30�C (constant SD of 4),

we calculated estimated mean temperature until leafout date (top row) or across a fixed window

(bottom row, similar to estimates of ‘spring temperature’). While within any small temperature

range the relationship may appear linear, its non-linear relationship becomes clear across the

greater range shown here (left). Taking the log of both leafout and temperature (right) linearizes

the relationship.
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Figure S4: A simple model generates declining sensitivities with warming. We show de-

clines in estimated sensitivities with warming from simulations (top: using average temperature

until leafout, bottom: using a fixed window; dots and lines represent means ± standard devia-

tion) with no underlying change in the biological process when sensitivities were estimated with

simple linear regression (”Linear (untransformed)”). This decline disappears using regression on

logged predictor and response variables (“Non-linear (logged)”).
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Figure S5: Simulated leafout as a function of required thermal sum for leafout. Here

we simulated sets of data where leafout occurs at varying thermal sums (sum of mean daily tem-

peratures with 0�C as the base temperature) and estimated sensitivities using mean temperature

until leafout date (top) or across a fixed window (bottom) with simple linear regression (”Linear

(untransformed)”), and using regression on logged predictor and response variables (”Non-linear

(logged)”). Dots and lines represent means ± standard deviation.
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Figure S6: Simulated leafout as a function of temperature across di↵erent levels of

warming with shifts in underlying biology through lower chilling (a, c) and pho-

toperiod thresholds (b, d). We show estimated sensitivities in the top panels (a-b), and the

shifting cues in the bottom panels (c-d). Here we simulated sets of data where leafout occurs

at a thermal sum of 200 (sum of mean daily temperatures with 0�C as base temperature) when

chilling and photoperiod requirements are met, and requires a higher thermal sum when chilling

is not met (a, c, required 110 chilling units, defined as the sum of temperatures between 0-5�C

over a 120 d winter period, increasing the required thermal sum by 3 units per unmet chilling

unit) or where leafout occurs at a thermal sum of 200 as long as the daylength of that day is � 12

hours (at 45�N, estimated from R’s geosphere package); otherwise leafout occurs on the first day

when daylength is 12 hours (b, d). In all simulations the daily increase in spring temperatures

was 0.1�C, the variance in daily temperatures was 4�C, in the chilling simulations winter tem-

peratures were centered at 1�C and spring temperatures at 2�C; in the photoperiod simulations

spring temperatures were centered at 4�C. Dots and lines represent means ± standard deviation.

14


