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In early April 2020, a team of researchers based at Stanford University conducted an opt-in 
survey in the surrounding county, testing for coronavirus antibodies.  The result was that 50 out 
of 3330 people in the survey—1.5%—tested positive.  Extrapolating this to the population of 
the county as a whole yields an estimate of 29,000 exposed, which was much larger than the 
number of confirmed positive cases in the county (under 1000 at the time).  Coronavirus tests 
were hard to come by at that time, and everyone knew that the number of confirmed cases 
was much less than the total number of people exposed, but it was not clear how much lower. 
 
The Stanford study was posted on the preprint server medRxiv on April 11, and its authors were 
writing op-eds and explaining the implications of their findings on national television.  The key 
result from their preprint:  "a range between 48,000 and 81,000 people infected in Santa Clara 
County by early April, 50-85-fold more than the number of confirmed cases." 
 
Three statistical questions arose: 
1.  Can we trust the results, given that the survey was not a random sample? 
2.  How did the raw rate of 1.5% in the data become an estimate of 2.5% to 4.2% in the 
preprint? 
3.  Where did the range of uncertainty come from, and is it appropriate given sampling 
variability in the data? 
 
Questions 1 and 2 go together:  the increase from 1.5% to 2.5% or more comes from a 
statistical adjustment done by the authors to correct for the sample not matching the 
population (as summarized by census totals for the county) by sex, ethnicity, and zip 
code.  Unfortunately there are a few reasons we do not feel comfortable with these 
adjustments:  first, they don't adjust for age; second, the adjustment for zip code is potentially 
very noisy (there are 58 zip codes in the county, which makes adjustment difficult, given that 
the sample contains only 50 positive tests); third, there is concern that, even after demographic 
and geographic adjustment, people who were more at risk were more likely to get tested; and, 
fourth, there are many "researcher degrees of freedom" in the adjustment process, leading us 
to be skeptical of any particular published result. 
 
Question 3 is more challenging than it might seem at first, given that any estimate of 
prevalence must account for the specificity and sensitivity of the test—specificity is the 
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probability of getting a positive test, conditional on the true underlying state being positive, and 
the sensitivity is the probability of getting a negative test, conditional on the true underlying 
state being negative.  But the specificity and sensitivity are not precisely known; they are 
estimated based on results from testing known positive and negative blood samples.  Beyond 
this, the specificity and sensitivity can vary according to testing conditions. 
 
During the week after the Stanford study appeared, there was increasing concern on social 
media regarding its data collection and statistical analysis, and it became clear that the 
calculations of confidence intervals in the preprint were wrong, even setting aside concerns 
about the demographic and geographic adjustments.  In retrospect, it was not so easy to use 
classical statistical methods to account for all these uncertainties and adjustments at once. 
 
But this is exactly the sort of problem where Bayesian analysis excels:  combining information 
and propagating uncertainty from multiple data sources.  Indeed, we were quickly able to 
program up a model in Stan to analyze the testing data more appropriately.  Actually, we 
programmed up a series of models, starting with a simple analysis with uncertain specificity and 
sensitivity, then allowing the properties of the test to vary between experiments, then adding 
multilevel regression and poststratification (MRP) to adjust for measured differences between 
sample and population. 
 
Based on our analysis, we do not think the data support the claim that the number of infections 
in Santa Clara County was between 50 and 85 times the count of cases reported at the 
time.  These numbers are consistent with the data, but the data are also consistent with a near-
zero infection rate in the county.  The data in the study do not provide strong evidence about 
the number of people infected or the infection fatality ratio; the number of positive tests in the 
data is just too small, given uncertainty in the specificity of the test. 
 
Unfortunately the Stanford team was not able to share their raw data with us, so we were not 
able to perform the MRP adjustment.  However, our code is freely available, so they can 
perform this analysis with their data on their own computers. 
 
Going forward, the analyses in this article suggest that future studies should be conducted with 
full awareness of the challenges of measuring specificity and sensitivity, that relevant variables 
be collected on study participants to facilitate inference for the general population, and that 
(de-identified) data be made accessible to external researchers. 
 
Our paper describing our models and analyses is on medRxiv 
(https://www.medrxiv.org/content/10.1101/2020.05.22.20108944v2), and R and Stan code for 
the computations in the paper are on Github (https://bob-carpenter.github.io/diagnostic-
testing/).  In addition to explaining our models and fitting them to data, we also discuss 
informative hyperprior distributions for the hierarchical model (these are necessary because of 
the small number of experiments measuring specificity and sensitivity) and the challenge of 
summarizing posterior inferences near a boundary (in this case, the boundary of zero 
prevalence, which we know is not possible but is consistent with the data in this experiment). 



 
We do not claim that Bayesian analysis was necessary to solve this problem.  As with any 
statistical analysis, alternative approaches are possible that would use the same information 
and give similar results.  But we will say that Bayesian inference for this example was 
transparent, direct, and relatively easy compared to the messy classical approximations used in 
the Stanford preprint.  We hope that our paper and code can be a useful resource for future 
disease prevalence studies, as well as a jumping-off point for more elaborate models for more 
complex data including multiple tests, symptom reports, and additional patient-level 
information. 
 


