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How do we choose our default methods?

Andrew Gelman

Department of Statistics, Columbia University, New York

The field of statistics continues to be divided into competing schools of
thought. In theory one might imagine choosing the uniquely best method
for each problem as it arises, but in practice we choose for ourselves (and
recommend to others) default principles, models, and methods to be used in a
wide variety of settings. This article briefly considers the informal criteria we
use to decide what methods to use and what principles to apply in statistics
problems.

26.1 Statistics: The science of defaults

Applied statistics is sometimes concerned with one-of-a-kind problems, but
statistical methods are typically intended to be used in routine practice. This
is recognized in classical theory (where statistical properties are evaluated
based on their long-run frequency distributions) and in Bayesian statistics
(averaging over the prior distribution). In computer science, machine learn-
ing algorithms are compared using cross-validation on benchmark corpuses,
which is another sort of reference distribution. With good data, a classical
procedure should be robust and have good statistical properties under a wide
range of frequency distributions, Bayesian inferences should be reasonable
even if averaging over alternative choices of prior distribution, and the rela-
tive performance of machine learning algorithms should not depend strongly
on the choice of corpus.

How do we, as statisticians, decide what default methods to use? Here I am
using the term “method” broadly, to include general approaches to statistics
(e.g., Bayesian, likelihood-based, or nonparametric) as well as more specific
choices of models (e.g., linear regression, splines, or Gaussian processes) and
options within a model or method (e.g., model averaging, L1 regularization,
or hierarchical partial pooling). There are so many choices that it is hard to
imagine any statistician carefully weighing the costs and benefits of each before
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deciding how to solve any given problem. In addition, given the existence of
multiple competing approaches to statistical inference and decision making,
we can deduce that no single method dominates the others.

Sometimes the choice of statistical philosophy is decided by convention
or convenience. For example, I recently worked as a consultant on a legal
case involving audits of several random samples of financial records. I used
the classical estimate p̂ = y/n with standard error

p

p̂(1� p̂)/n, switching
to p̂ = (y + 2)/(n + 4) for cases where y = 0 or y = n. This procedure is
simple, gives reasonable estimates with good confidence coverage, and can be
backed up by a solid reference, namely Agresti and Coull (1998), which has
been cited over 1000 times according to Google Scholar. If we had been a
situation with strong prior knowledge on the probabilities p, or interest in
distinguishing between p = 0.99, 0.999, and 0.9999, it would have made sense
to consider something closer to a full Bayesian approach, but in this setting
it was enough to know that the probabilities were high, and so the simple
(y+2)/(n+4) estimate (and associated standard error) was fine for our data,
which included values such as y = n = 75.

In many settings, however, we have freedom in deciding how to attack a
problem statistically. How then do we decide how to proceed?

Schools of statistical thoughts are sometimes jokingly likened to religions.
This analogy is not perfect—unlike religions, statistical methods have no su-
pernatural content and make essentially no demands on our personal lives.
Looking at the comparison from the other direction, it is possible to be agnos-
tic, atheistic, or simply live one’s life without religion, but it is not really pos-
sible to do statistics without some philosophy. Even if you take a Tukeyesque
stance and admit only data and data manipulations without reference to prob-
ability models, you still need some criteria to evaluate the methods that you
choose.

One way in which schools of statistics are like religions is in how we end
up a�liating with them. Based on informal observation, I would say that
statisticians typically absorb the ambient philosophy of the institution where
they are trained—or else, more rarely, they rebel against their training or
pick up a philosophy later in their career or from some other source such as
a persuasive book. Similarly, people in modern societies are free to choose
their religious a�liation but it typically is the same as the religion of parents
and extended family. Philosophy, like religion but not (in general) ethnicity, is
something we are free to choose on our own, even if we do not usually take the
opportunity to take that choice. Rather, it is common to exercise our free will
in this setting by forming our own personal accommodation with the religion
or philosophy bequeathed to us by our background.

For example, I a�liated as a Bayesian after studying with Don Rubin and,
over the decades, have evolved my own philosophy using his as a starting point.
I did not go completely willingly into the Bayesian fold—the first statistics
course I took (before I came to Harvard) had a classical perspective, and in
the first course I took with Don, I continued to try to frame all the inferential
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problems into a Neyman–Pearson framework. But it didn’t take me or my
fellow students long to slip into comfortable conformity.

My views of Bayesian statistics have changed over the years—in particular,
I have become much more fond of informative priors than I was during the
writing of the first two editions of Bayesian Data Analysis (published 1995
and 2004)—and I went through a period of disillusionment in 1991, when
I learned to my dismay that most of the Bayesians at the fabled Valencia
meeting had no interest in checking the fit of their models. In fact, it was
a common view among Bayesians at the time that it was either impossible,
inadvisable, or inappropriate to check the fit of a model to data. The idea
was that the prior distribution and the data model were subjective and thus
uncheckable. To me, this attitude seemed silly—if a model is generated subjec-
tively, that would seem to be more of a reason to check it—and since then my
colleagues and I have expressed this argument in a series of papers; see, e.g.,
Gelman et al (1996), and Gelman and Shalizi (2012). I am happy to say that
the prevailing attitude among Bayesians has changed, with some embracing
posterior predictive checks and others criticizing such tests for their low power
(see, e.g., Bayarri and Castellanos, 2007). I do not agree with that latter view:
I think it confuses di↵erent aspects of model checking; see Gelman (2007). On
the plus side, however, it represents an acceptance of the idea that Bayesian
models can be checked.

But this is all a digression. The point I wanted to make here is that the
division of statistics into parallel schools of thought, while unfortunate, has
its self-perpetuating aspects. In particular, I can communicate with fellow
Bayesians in a way that I sometimes have di�culty with others. For example,
some Bayesians dislike posterior predictive checks, but non-Bayesians mostly
seem to ignore the idea—even though Xiao-Li Meng, Hal Stern, and I wrote
our paper in general terms and originally thought our methods might appeal
more strongly to non-Bayesians. After all, those statisticians were already
using p-values to check model fit, so it seemed like a small step to average over
a distribution. But this was a step that, by and large, only Bayesians wanted
to take. The reception of this article was what convinced me to focus on
reforming Bayesianism from the inside rather than trying to develop methods
one at a time that would make non-Bayesians happy.

26.2 Ways of knowing

How do we decide to believe in the e↵ectiveness of a statistical method? Here
are a few potential sources of evidence (I leave the list unnumbered so as not
to imply any order of priority):

• Mathematical theory (e.g., coherence of inference or convergence)
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• Computer simulations (e.g., demonstrating approximate coverage of inter-
val estimates under some range of deviations from an assumed model)

• Solutions to toy problems (e.g., comparing the partial pooling estimate for
the eight schools to the no pooling or complete pooling estimates)

• Improved performance on benchmark problems (e.g., getting better pre-
dictions for the Boston Housing Data)

• Cross-validation and external validation of predictions

• Success as recognized in a field of application (e.g., our estimates of the
incumbency advantage in congressional elections)

• Success in the marketplace (under the theory that if people are willing to
pay for something, it is likely to have something to o↵er)

None of these is enough on its own. Theory and simulations are only as good
as their assumptions; results from toy problems and benchmarks don’t nec-
essarily generalize to applications of interest; cross-validation and external
validation can work for some sorts of predictions but not others; and subject-
matter experts and paying customers can be fooled.

The very imperfections of each of these sorts of evidence gives a clue as
to why it makes sense to care about all of them. We can’t know for sure so it
makes sense to have many ways of knowing.

I do not delude myself that the methods I personally prefer have some ab-
solute status. The leading statisticians of the twentieth century were Neyman,
Pearson, and Fisher. None of them used partial pooling or hierarchical models
(well, maybe occasionally, but not much), and they did just fine. Meanwhile,
other statisticians such as myself use hierarchical models to partially pool as
a compromise between complete pooling and no pooling. It is a big world,
big enough for Fisher to have success with his methods, Rubin to have suc-
cess with his, Efron to have success with his, and so forth. A few years ago
(Gelman, 2010) I wrote of the methodological attribution problem:

“The many useful contributions of a good statistical consultant, or
collaborator, will often be attributed to the statistician’s methods or
philosophy rather than to the artful e↵orts of the statistician himself
or herself. Don Rubin has told me that scientists are fundamentally
Bayesian (even if they do not realize it), in that they interpret uncer-
tainty intervals Bayesianly. Brad Efron has talked vividly about how
his scientific collaborators find permutation tests and p-values to be the
most convincing form of evidence. Judea Pearl assures me that graph-
ical models describe how people really think about causality. And so
on. I am sure that all these accomplished researchers, and many more,
are describing their experiences accurately. Rubin wielding a posterior
distribution is a powerful thing, as is Efron with a permutation test or
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Pearl with a graphical model, and I believe that (a) all three can be
helping people solve real scientific problems, and (b) it is natural for
their collaborators to attribute some of these researchers’ creativity to
their methods.

The result is that each of us tends to come away from a collabora-
tion or consulting experience with the warm feeling that our methods
really work, and that they represent how scientists really think. In stat-
ing this, I am not trying to espouse some sort of empty pluralism—the
claim that, for example, we would be doing just as well if we were
all using fuzzy sets, or correspondence analysis, or some other obscure
statistical method. There is certainly a reason that methodological ad-
vances are made, and this reason is typically that existing methods
have their failings. Nonetheless, I think we all have to be careful about
attributing too much from our collaborators’ and clients’ satisfaction
with our methods.”

26.3 The pluralist’s dilemma

Consider the arguments made fifty years ago or so in favor of Bayesian in-
ference. At that time, there were some applied successes (e.g., I.J. Good re-
peatedly referred to his successes using Bayesian methods to break codes in
the Second World War) but most of the arguments in favor of Bayes were
theoretical. To start with, it was (and remains) trivially (but not unimpor-
tantly) true that, conditional on the model, Bayesian inference gives the right
answer. The whole discussion then shifts to whether the model is true, or, bet-
ter, how the methods perform under the (essentially certain) condition that
the model’s assumptions are violated, which leads into the tangle of various
theorems about robustness or lack thereof.

Forty or fifty years ago one of Bayesianism’s major assets was its math-
ematical coherence, with various theorems demonstrating that, under the
right assumptions, Bayesian inference is optimal. Bayesians also spent a lot of
time writing about toy problems, e.g., Basu’s example of the weights of ele-
phants (Basu 1971). From the other direction, classical statisticians felt that
Bayesians were idealistic and detached from reality.

How things have changed! To me, the key turning points occurred around
1970–1980, when statisticians such as Lindley, Novick, Smith, Dempster, and
Rubin applied hierarchical Bayesian modeling to solve problems in education
research that could not be easily attacked otherwise. Meanwhile Box did sim-
ilar work in industrial experimentation and Efron and Morris connected these
approaches to non-Bayesian theoretical ideas. The key in any case was to use
partial pooling to learn about groups for which there was only a small amount
of local data.
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Lindley, Novick, and the others came at this problem in several ways.
First, there was Bayesian theory. They realized that, rather than seeing certain
aspects of Bayes (for example, the need to choose priors) as limitations, they
could see them as opportunities (priors can be estimated from data!) with
the next step folding this approach back into the Bayesian formalism via
hierarchical modeling. We (the Bayesian community) are still doing research
on these ideas; see, for example, the recent paper by Polson and Scott (2012)
on prior distributions for hierarchical scale parameters.

The second way that the Bayesians of the 1970s succeeded was by applying
their methods on realistic problems. This is a pattern that has happened with
just about every successful statistical method I can think of: an interplay
between theory and practice. Theory suggests an approach which is modified
in application, or practical decisions suggest a new method which is then
studied mathematically, and this process goes back and forth.

To continue with the timeline: the modern success of Bayesian methods
is often attributed to our ability using methods such as the Gibbs sampler
and Metropolis algorithm to fit an essentially unlimited variety of models:
practitioners can use programs such as Stan to fit their own models, and
researchers can implement new models at the expense of some programming
but without the need of continually developing new approximations and new
theory for each model. I think that’s right—Markov chain simulation methods
indeed allow us to get out of the pick-your-model-from-the-cookbook trap—
but I think the hierarchical models of the 1970s (which were fit using various
approximations, not MCMC) showed the way.

Back 50 years ago, theoretical justifications were almost all that Bayesian
statisticians had to o↵er. But now that we have decades of applied successes,
that is naturally what we point to. From the perspective of Bayesians such as
myself, theory is valuable (our Bayesian Data Analysis book is full of mathe-
matical derivations, each of which can be viewed if you’d like as a theoretical
guarantee that various procedures give correct inferences conditional on as-
sumed models) but applications are particularly convincing. And applications
can ultimately become good toy problems, once they have been smoothed
down from years of teaching.

Over the years I have become pluralistic in my attitudes toward statistical
methods. Partly this comes from my understanding of the history described
above. Bayesian inference seemed like a theoretical toy and was considered
by many leading statisticians as somewhere between a joke and a menace;
see Gelman and Robert (2013); but the hardcore Bayesians such as Lindley,
Good, and Box persisted and got some useful methods out of it. To take a
more recent example, the bootstrap idea of Efron (1979) is an idea that in
some way is obviously wrong (as it assigns zero probability to data that did
not occur, which would seem to violate the most basic ideas of statistical
sampling) yet has become useful to many and has since been supported in
many cases by theory.
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In this discussion, I have the familiar problem that might be called the
pluralist’s dilemma: how to recognize that my philosophy is just one among
many, that my own embrace of this philosophy is contingent on many things
beyond my control, while still expressing the reasons why I believe this phi-
losophy to be preferable to the alternatives (at least for the problems I work
on).

One way of the dilemma is to recognize that di↵erent methods are ap-
propriate for di↵erent problems. It has been said that R.A. Fisher’s methods
and the associated 0.05 threshold for p-values worked particularly well for
experimental studies of large e↵ects with relatively small samples—the sorts
of problems that appear over and over again in books of Fisher, Snedecor,
Cochran, and their contemporaries. That approach might not work so well in
settings with observational data and sample sizes that vary over several orders
of magnitude. I will again quote myself (Gelman, 2010):

“For another example of how di↵erent areas of application merit
di↵erent sorts of statistical thinking, consider Rob Kass’s remark:
“I tell my students in neurobiology that in claiming statistical sig-
nificance I get nervous unless the p-value is much smaller than 0.01.”
In political science, we are typically not aiming for that level of un-
certainty. (Just to get a sense of the scale of things, there have been
barely 100 national elections in all of U.S. history, and political scien-
tists studying the modern era typically start in 1946.)”

Another answer is path dependence. Once you develop facility with a sta-
tistical method, you become better at it. At least in the short term, I will be a
better statistician using methods with which I am already familiar. Occasion-
ally I will learn a new trick but only if forced to by circumstances. The same
pattern can hold true with research: we are more equipped to make progress
in a field along directions in which we are experienced and knowledgeable.
Thus, Bayesian methods can be the most e↵ective for me and my students,
for the simple reason that we have already learned them.

26.4 Conclusions

Statistics is a young science in which progress is being made in many areas.
Some methods in common use are many decades or even centuries old, but
recent and current developments in nonparametric modeling, regularization,
and multivariate analysis are central to state-of-the-art practice in many ar-
eas of applied statistics, ranging from psychometrics to genetics to predictive
modeling in business and social science. Practitioners have a wide variety of
statistical approaches to choose from, and researchers have many potential
directions to study. A casual and introspective review suggests that there are
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many di↵erent criteria we use to decide that a statistical method is worthy
of routine use. Those of us who lean on particular ways of knowing (which
might include: performance on benchmark problems, success in new applica-
tions, insight into toy problems, optimality as shown by simulation studies or
mathematical proofs, or success in the marketplace) should remain aware of
the relevance of all these dimensions in the spread of default procedures.
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