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Summary

Cluster sampling is common in survey practice, and the corresponding inference
has been predominantly design-based. We develop a Bayesian framework for cluster
sampling and account for the design effect in the outcome modeling. We consider a
two-stage cluster sampling design where the clusters are first selected with probabil-
ity proportional to cluster size, and then units are randomly sampled inside selected
clusters. Challenges arise when the sizes of nonsampled cluster are unknown.
We propose nonparametric and parametric Bayesian approaches for predicting the
unknown cluster sizes, with this inference performed simultaneously with the model
for survey outcome, with computation performed in the open-source Bayesian infer-
ence engine Stan. Simulation studies show that the integrated Bayesian approach
outperforms classical methods with efficiency gains, especially under informative
cluster sampling design with small number of selected clusters. We apply the method
to the Fragile Families and Child Wellbeing study as an illustration of inference for
complex health surveys.
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1 INTRODUCTION

Cluster sampling has been widely implemented in epidemiology and public health surveys1, but challenges arise when applying

classical survey estimates for summaries other than population averages and totals. Bayesian modeling has potential advantages

for small area estimation2 and adjusting for many poststratification factors3. However, most of the work in this area has been

done for one-stage sampling or ignoring clustering in the data collection. In the present paper, we demonstrate hierarchical
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Bayesian inference for two-stage probability proportional to size (PPS) sampling, with the understanding that other designs

could be modeled in similar ways.

Cluster sampling increases cost efficiency when partial clusters are included in the probability sampling framework. Bayesian

cluster sampling inference is essentially outcome prediction for nonsampled units in the sampled clusters and all units in the

nonsampled clusters. The design information should be accounted for in the modeling, but design information for nonsam-

pled clusters is often unknown or inaccessible. We introduce estimation strategies for such information and connect multilevel

regression models to sampling design as a unified framework for survey inference.

We consider the design that involves first sampling primary sampling units (PSUs) and then sampling secondary sampling

units (SSUs) within selected PSUs. The two-stage cluster sampling design has played an important role in the sequential data

collection process of many big health surveys, such as the National Health Interview Survey and the Medical Expenditure Panel

Survey. This design requires a complete listing of PSUs and a complete listing of SSUs only within selected PSUs, and thus

is widely used when generating a sampling frame of every unit in the population is infeasible or impractical. For example, in

designing a nationally representative household survey, generating a complete listing of every household in the country requires

essentially as much effort as a complete census of all households. Instead, the sampling proceeds in stages, first sampling PSUs

such as counties, cities, or census tracts. The PSUs are sampled with probability proportional to size, which is commonly the

number of SSUs in the PSU but can be a more general measure of size, such as annual revenue or agricultural yield. SSUs are

then randomly selected within selected PSUs, often with a fixed number or proportion. This design assumes independence and

invariance of the second-stage sampling design4. Invariance means that the sampling of SSUs is independent of which PSUs are

sampled, and independence means sampling of SSUs in one PSU is independent of sampling in other PSUs. For clarification, a

two-phase design is one in which one or both assumptions do not hold.

Our technical challenge is in performing inference for the entire population without knowing the sizes of the unsampled

clusters. In many cases, these measures of size may not be available from the data producer for reasons of confidentiality, the

proprietary nature of the data, lack of historical records for surveys done far enough in the past, or a simple unwillingness to

share data. The usual classical survey estimates for cluster sampling do not use the population distribution of measures of size,

and this may be one reason why such information is often not available. When the population distribution of measure of size is

available, it indeed makes sense to use this information, and then Bayesian inference is straightforward via multilevel modeling

and poststratification. Here we consider the more challenging case of an unknown distribution of cluster sizes in the population.

Our motivating application survey, the Fragile Families and Child Wellbeing study5, was collected via a multistage design,

where two-stage cluster sampling served as a key step. The study aims to examine the conditions and capabilities of new unwed

parents, the wellbeing of their children and the policy and environmental effect. To obtain a nationally representative sample of

non-marital births in large U.S. cities, the study sequentially sampled cities, hospitals, and births. The sampling of cities used a
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stratified random sample of all U.S. cities with 200,000 ormore people, where the stratificationwas based on policy environments

and labor market conditions in the different cities. Inside each stratum, cities were selected with probability proportional to the

city population size. In the selected cities, all hospitals in the small cities were included, while a random sample of hospitals

or the hospital with the largest number of non-marital births was selected in large cities. Lastly, a predetermined number of

births were selected inside each hospital. Classical weighting adjustment for the complex study design results in highly variable

weights6, ranging from 0.06 to 8600, thus yielding unstable inferences7. Multilevel models are fitted on poststratification cells

constructed by the discretization of weights7 and demonstrate efficiency gains of Bayesian approaches comparing with design-

based weighting estimate, especially for small cell estimation. We would like to develop a Bayesian framework to account for

the complex designs under two-stage cluster sampling.

Our goal is to develop hierarchical models and account for design effects to yield valid and robust survey inference. Bayesian

hierarchical models are well equipped to handle the multistage design and stabilize estimation via smoothing. As an intermediate

step, two-stage cluster sampling is crucial in the Fragile Families study to select cities and hospitals. However, cluster sam-

pling presents unique methodology challenges as little information is available on the unselected clusters. This article uses the

Fragile Families study as an illustration and focuses on Bayesian cluster sampling inference to build a unified survey inference

framework. The unified framework can be extended under a complex sampling design, as discussed in Section 5.

We illustrate finite population inference with the estimation of the population mean in a two-stage cluster sample. Specifically,

we consider a population of J clusters, with each cluster j containing Nj units and a total population size of N =
∑J
j=1Nj .

Let Ij denote the inclusion indicator for cluster j and Ii∣j denote the inclusion indicator for unit i in cluster j, i = 1,… , Nj[i],

where j[i] denotes the cluster to which unit i belongs. Clusters are sampled with probability proportional to the measure of size

Mj , which is known to the analyst only for the sampled clusters. Our goal is to estimate the finite population mean of the survey

variable y, which, for a continuous variable is defined as

y =
J
∑

j=1

Nj

N
yj , (1)

where yj represents the mean of y in cluster j. For a binary outcome, we seek to estimate the population proportion, which is

given by

y =
J
∑

j=1

y(j)
N
, (2)

where y(j) is the population total in cluster j.

Classically, inference in survey sampling has been design-based. The design-based approach treats the survey outcome y as

fixed, with randomness arising solely from the random distribution of the inclusion indicator I . Design-based estimators have

the advantage of being design-consistent, where design-consistency means that the estimator will converge to the true value as
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the population and sample sizes increase under the given sampling design. However, they are often unstable with large standard

errors. For estimating the finite population mean of an outcome yi, the classical design-based estimator for a single-stage sample

s of size n is the Hájek estimator4: �̂H =
∑n
i=1 yi∕�i

∑n
i=1 1∕�i

, where �i is the inclusion (selection and response) probability of unit i. In the

two-stage sample s, when Js out of J clusters are selected with nj’s sampled SSUs, for convenience labeled as j = 1,… , Js,

the estimator becomes

�̂H =

∑Js
j=1

(

∑nj
i=1 yi∕�i∣j

)

∕�j
∑Js
j=1Nj∕�j

, (3)

where �j is the selection probability of cluster j, and �i∣j is the selection probability of unit i in cluster j given that cluster j was

sampled.

The design-based approach does not require a statistical model for the survey outcomes but implicitly assumes the specific

outcomemodel structure and linearity8. The performance relies on the validity of themodel assumptions, and then the estimators

can yield biased inference under invalid assumptions. Another major challenge with design-based estimators comes in estimating

their variance. The variance of a design-based estimator generally requires knowledge of not only the inclusion probability �i

for a given unit i, but also the joint inclusion probability �ii′ for any two units i and i′ in the population. This information is often

unavailable in practice, such as the unknown measure of size for nonsampled clusters under the PPS setting. Joint inclusion

probabilities can be challenging to compute even for straightforward sampling designs, and variance estimators for design-based

estimators are often based on simplifications and approximations. Furthermore, weighting by inverse probability of inclusion

can leads to highly noisy estimators.

Bayesian inference, in contrast, directly models both the inclusion indicators Ii and the survey outcomes yi. The Bayesian

approach to survey inference has many advantages over the design-based approach, including the ability to handle complex

design features such as multistage clustering and stratification, stabilized inference for small-sample problems, incorporation of

prior information, and large-sample efficiency9. When the design variables are included in the model, the selection mechanism

becomes ignorable10,11, and we can model the outcomes y alone, instead of jointly modeling y and the inclusion indicator I .

The importance of including design variables in the model has also been emphasized for missing data imputation12,13.

Unfortunately, in many (arguably most) practical situations, the set of design variables is not available for the entire population

and is instead known only for sampled clusters or units. In the case of PPS sampling, where the design variables consist of the

cluster measures of size (Mj)Jj=1, we as the survey analysts may only have access toMj (or, equivalently, the inclusion probability

�j) for the sampled subset of Js clusters. This missing information on measures of size causes methodology challenge in the

Bayesian setting because we cannot predict the values of y for the nonsampled clusters without it. We need to model the values

ofMj for nonsampled clusters before we are able to make inferences about y conditional on the design information.
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Existing Bayesian approaches to this problem14,15 consider the case of single-stage PPS sampling, separating inference for

the missing measure sizes and the finite population quantities into two steps. In contrast, we propose an approach that integrates

these steps into one model for a two-stage cluster sample. Our model allows for both cluster- and unit-level information to be

used when both are available in certain cases. For much of this paper, we assume the measure of size is equal to the cluster size

Nj and useNj in place ofMj for simple illustration.

The rest of this paper proceeds as follows. Section 2 first gives an overview of current approaches to finite population inference

under PPS and then describes our approach and its advantages. In Section 3, we describe a simulation study to investigate the

performance of our method and compare with other literature methods. We apply our proposal to the Fragile Families study in

Section 4 and discuss the conclusions and extensions in Section 5.

2 METHODS

In the two-stage cluster sampling, a fixed number Js of clusters are sampled with PPS, so that the probability of cluster j being

included in the sample is proportional toNj :

Pr(Ij = 1 ∣ Nj) ∝ Nj .

We only observeNj’s for the clusters in the sample, that is, the empirical distribution of (Nj|Ij = 1). Our proposed procedure

simultaneously models the population cluster sizes and the outcome and propagates the estimation uncertainty.

Let xi denote the auxiliary variables that are predictive for the outcome. The observed data are (yobs, xobs, Nobs, x1∶J , N, J , Js),

where x1∶J is the cluster-level mean of the covariate x for all clusters j = 1,… , J , andN , J , and Js are the total population size,

total number of clusters, and number of sampled clusters, respectively. The subscript obs denotes the observed portions of the

variables: yobs = (yi ∶ i = 1,… , nj[i], j = 1,… , Js), xobs = (xi ∶ i = 1,… , nj[i], j = 1,… , Js), Nobs = (Nj ∶ j = 1,… , Js),

where for convenience we number the sampled clusters j = 1,… , Js and the nonsampled clusters as j = Js + 1,… , J . We

assume that xi is known for all sampled units, and that xj is known for all clusters. If x is a demographic covariate, in practice

it’s often the case that we know demographic characteristics of clusters even if the cluster size is unknown.

The goal is to estimate the finite population mean y, defined for a continuous outcome,

y =
J
∑

j=1

Nj

N
yj =

1
N

( Js
∑

j=1
(njyobs,j + (Nj − nj)yexc,j) +

J
∑

j=Js+1
Nexc,jyexc,j

)

,

where yobs,j is the mean of the sampled units in sampled cluster j, yexc,j is the mean of the nonsampled units in cluster j, and

Nexc,j is the size of nonsampled cluster j that is unknown. For a binary outcome, the population proportion is

y =
J
∑

j=1

y(j)
N

= 1
N

( Js
∑

j=1

(

yobs,(j) + yexc,(j)
)

+
J
∑

j=Js+1
yexc,(j)

)

,
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where y(j) is the total of all units in cluster j, yobs,(j) is the total of sampled units in sampled cluster j and yexc,(j) is the total of

the binary outcome in nonsampled units in cluster j.

We assume the continuous survey outcome y is related to the covariate x and cluster sizesNj in the following way:

yi ∼ N(�0j[i] + �1j[i]xi, �2y ) (4)

�0j ∼ N(�0 + 0 log
c(Nj), �2�0) (5)

�1j ∼ N(�1 + 1 log
c(Nj), �2�1) (6)

Nj ∼ p(Nj ∣ �), (7)

where � are the parameters governing the distribution of the cluster sizes Nj . We are using cluster size in the model, not so

much because we expect it will necessarily be a good predictor, but because not including cluster size can induce bias if cluster

size is correlated with the outcome of interest.

The model allows the regression coefficients to vary by cluster and depend on the cluster sizes. We use a multilevel model

to borrow information across clusters. Classical regression with cluster membership indicators could also be used to quantify

the cluster effect, but at the cost of increasing the variance, as has been shown in the context of missing data imputation13,16. In

addition, if the goal is to make predictions for unobserved clusters, some model for these cluster parameters is needed.

Our model for a binary outcome is as above, except that we modify (4) to be

Pr(yi = 1) = logit−1(�0j[i]), (8)

and omit (6). We exclude unit-level covariates in the binary case because the nonlinearity of the logistic function makes it

challenging to make use of data at the unit level. Specifically, predicting yexc,j requires knowing xi for all nonsampled units in

cluster j, and if we knew this, clearly we would have also knownNj for nonsampled clusters j.

We use the centered logarithms of the cluster sizes logc(Nj) as predictors; we work on the logarithm scale to better accom-

modate large cluster sizes and center for interpretation convenience. The sampling is assumed to be ignorable after including

the design variables in the outcome model.

We assign an estimation model p(Nj ∣ �) to the cluster sizes, which we observe only for the sampled clusters. We develop

both nonparametric and parametric modeling strategies to predict the cluster sizes of nonsampled clusters.

We use  to denote the regression parameters  = (�0, 0, �0, �1, 1, �1, �y) associated with the outcome modeling and � for

all parameters of interest: � = ( , �). The likelihood for the observed data is

p(yobs, Nobs ∣ xobs, �) ∝ p(yobs ∣ xobs, Nobs,  )p(Nobs ∣ �),
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and the posterior distribution is

p(� ∣ yobs, xobs, Nobs) ∝ p(yobs ∣ xobs, Nobs,  )p(Nobs ∣ �)p( )p(�),

where we assume that  and � are independent, allowing us to write p(�) = p( )p(�).

Because of the independence, invariance and ignorability assumptions in the two-stage cluster sampling, the distribution of

the outcome y, given the design variables, is the same in the sample and the population; that is, the observed data likelihood is

the same as the complete data likelihood,

p(yobs ∣ xobs, Nobs,  ) = p(y ∣ x,N, I = 1,  ) = p(y ∣ x,N,  ).

Here p(y ∣ x,N,  ) is specified by (4)–(6) for continuous y and by (8) and (5) for binary y.

The challenge lies in estimating the distribution of the Nj’s when the sampling is informative. Under PPS sampling, the

probability of observing a cluster of sizeNj is

p(Nj ∣ Ij = 1) ∝ Pr(Ij = 1 ∣ Nj)p(Nj)

∝ Njp(Nj), (9)

where the population sizeN is fixed. Next we release the assumption of fixedN and consider both nonparametric and parametric

modeling strategies for the prior distribution p(Nj) (also called the population distribution, to distinguish from the distributions

of sampled and nonsampled cluster sizes) in (7). First, we introduce the Bayesian bootstrap algorithm in Section 2.1 as a non-

parametric approach to predicting the unobserved Nj’s. Second, we investigate two parametric distributional assumptions in

Section 2.2 for p(Nj), the negative binomial and lognormal distributions. Here our goal is to directly model the distribution of

the cluster sizes accounting for the fact that the observed distribution is biased from the complete population distribution. We

refer to these parametric choices as size-biased distributions17.

We apply Monte Carlo approximation by screening out the posterior samples of nonsampled units (Nj|Ij = 0) and keeping

only the cases with
∑

j∶Ij=0
Nj = N−

∑

j∶Ij=1
Nj . For implementation, we screen the predicted values to get 20% of the posterior

samples in which the total of the nonsampled cluster sizes is closest to the what it should be14.

2.1 Bayesian bootstrap

For a nonparametric model of the sampled cluster sizes, we modify the Bayesian bootstrap algorithm for one-stage PPS sam-

pling18,14 to be adapted for the two-stage PPS sampling. Without a parametric assumption for p(Nj), we connect p(Nj ∣ Ij = 0)

with p(Nj ∣ Ij = 1) through the empirical distributions under PPS sampling. Assume theNj’s observed for the sampled clusters

have B unique values N∗
1 ,… , N∗

B , and let k1,… , kB be the corresponding counts of these unique sizes, such that
∑

b kb = Js.
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Let  b denote the probability of observing a cluster of sizeN∗
b in the sample:  b = Pr(Nj = N∗

b ∣ Ij = 1). We can then model

the counts k = (k1,… , kB) as multinomially distributed with total Js and parameters = ( 1,… ,  B). The observed likelihood

Lobs( ) is,

Pr

(

k1 =
Js
∑

j=1
I(Nj = N∗

1 ),… , kB =
Js
∑

j=1
I(Nj = N∗

B)
|

|

|

|

|

|

Ij = 1, j = 1,… , Js

)

∝
B
∏

b=1
 kb
b ,

where I(⋅) is an indicator function, I(⋅) = 1 if the inside expression is true and 0 otherwise. The  ’s are given a noninformative

Haldane prior: p( 1,… ,  B) = Dirichlet(0,… , 0), a conjugate Dirichlet prior distribution. The posterior distribution of  is

then

p( 1,… ,  B|k1,… , kB) = Dirichlet(k1,… , kB).

Suppose the unique values ofNj’s cover all possible values in the population. Assume k⋆b is the number of nonsampled clusters

with sizeN∗
b , for b = 1,… , B, and let  ⋆

b denote the probability of an unobserved cluster having sizeN∗
b :  

⋆
b = Pr(Nj = N∗

b ∣

Ij = 0). Then the counts of the B unique sizes among the nonsampled clusters, (k⋆1 ,… , k⋆B), follow a multinomial distribution

with total J − Js =
∑

b k
⋆
b and probabilities ( ⋆

1 ,… ,  ⋆
B ):

p(k⋆1 ,… , k⋆B ∣ J − Js,  
⋆
1 ,… ,  ⋆

B ) ∝
B
∏

b=1
 ⋆k⋆b
b

Using Bayes’ rule, we can write  ⋆
b as

 ⋆
b = Pr(Nj = N∗

b ∣ Ij = 0)

∝ Pr(Nj = N∗
b ∣ Ij = 1)

Pr(Ij = 0|Nj = N∗
b )

Pr(Ij = 1|Nj = N∗
b )

=  b
1 − �b
�b

,

where �b = Pr(Ij = 1|Nj = N∗
b ) = JsN∗

b ∕N is the conditional cluster selection probability known in the PPS sample, Js is

the number of sampled clusters, andN is the population size. This approach essentially adjusts the probability of resampling an

observed sizeN∗
b by the odds of a cluster of that size not being sampled, so that smaller sizes are upweighted relative to larger

ones.

Given the posterior draws of ⋆
b ’s and k

⋆
b ’s, we create k

∗
b replicates of the sizeN

∗
b , yielding a sample of the nonsampled cluster

sizes from their posterior predictive distribution. The Bayesian bootstrap for cluster sampling is similar to the “two-stage Pólya

posterior" approach19, which simulates draws that form a population of clusters and then an entire population of elements within

each cluster. Survey weights are incorporated in Bayesian bootstrap for multiple imputation in two-stage cluster samples20. A

similar approach is used7 to estimating the poststrafication cell sizes constructed by the survey weights.

The Bayesian bootstrap avoids parametric assumption on the population distribution p(Nj) and use the empirical distribution

in the observed clusters. This implicitly introduces a noninformative prior distribution onNj’s. However, this approach restricts
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the draws for the nonsampled cluster sizes to come from the set of observed cluster sizes, where small clusters may be omitted

under PPS sampling. While the Bayesian bootstrap is a robust algorithm for predicting the unknown Nj’s, we can achieve

efficiency gains with a parametric distribution on p(Nj), especially when prior distribution information is available.

2.2 Size-biased distributions

Inducing parametric sized-biased distributions follows the superpopulation concept in the model-based survey inference litera-

ture and incorporates informative prior information. In practice, we may have some knowledge about the cluster sizes, such as

the distribution in a similar population or from previous years. We can incorporate this additional information through the prior

distribution specification to calibrate and improve the inference21,22. Sized-biased distributions were proposed for population

size estimation17. We consider a discrete and a continuous distribution as candidates for modeling the size distributions. The

observed likelihood is connected with the proposed population distribution via (9). Using the PPS sample, we can estimate the

parameters in the population distribution and then predict the nonsampled cluster sizes.

For the discrete case, we assume the population cluster sizesNj follow a negative binomial distribution:Nj ∼ NegBin(k, p),

with k > 0 and p ∈ (0, 1). By normalizing the distribution in (9) and completing the algebra shown as below, we see that the

sizes in the PPS sample can be written asNj = 1 +Wj , whereWj ∼ NegBin(k + 1, p).

For m = 0, 1, 2,…, the probability of observingNj = m in the PPS sample is

Pr(Nj = m ∣ Ij = 1) =
Pr(Ij = 1 ∣ Nj = m)Pr(Nj = m)

Pr(Ij = 1)

=
m
(m+k−1

m

)

pk(1 − p)m
∑∞
m=0 m

(m+k−1
m

)

pk(1 − p)m

=
(

(m − 1) + (k + 1) − 1
m − 1

)

pk+1(1 − p)m−1

= Pr(W = m − 1),

whereW ∼ NegBin(k + 1, p).

For the continuous case, we use the lognormal distribution. If the population distribution is Nj ∼ lognormal(�, �2), then

(Nj ∣ Ij = 1) ∼ lognormal(� + �2, �2). To see this, recall that p(Nj) denotes the pdf of size variables Nj in the population.
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Then the pdf ofNj in the PPS sample is

p(Nj ∣ Ij = 1) =
Pr(Ij = 1 ∣ Nj)p(Nj)

Pr(Ij = 1)

=
(
√

2��)−1 exp
(

− (logNj−�)2

2�2

)

∫ ∞
0 (

√

2��)−1 exp
(

− (logNj−�)2

2�2

)

dNj

=
exp

(

− (logNj−�)2

2�2

)

∫ ∞
0 exp

(

− (logNj−�)2

2�2

)

dNj

. (10)

We can now simplify the denominator:
∞

∫
0

exp

(

−
(logNj − �)2

2�2

)

dNj =
√

2�� exp
(

� + �2

2

)

. (11)

Now, substitute (11) for the denominator in (10):

p(Nj ∣ Ij = 1) =
1

√

2��
exp

(

−
(logNj − �)2

2�2
− (� + �2

2
)

)

= 1

Nj

√

2��
exp

(

−
(logNj − (� + �2))2

2�2

)

.

Thus, the distribution of sampled cluster sizes in the PPS sample is (Nj|Ij = 1) ∼ lognormal(� + �2, �2).

Regardless of the parametric model we choose, in order to generate predictions of the nonsampled cluster sizes, we need

to draw from p(Nj ∣ Ij = 0). We apply rejection sampling and use samples from p(Nj) to approximate the sampling from

p(Nj ∣ Ij = 0).

p(Nj ∣ Ij = 0) =
Pr(Ij = 0 ∣ Nj)p(Nj)

Pr(Ij = 0)
≜ Gp(Nj),

where G ≜ Pr(Ij = 0 ∣ Nj)∕Pr(Ij = 0) has a constant upper bound shown as below. The marginal probability selection for

cluster j is Pr(Ij = 1) = Js∕J , and the joint distribution of (Nj , Ij) in the PPS sample is p(Nj , Ij = 1) = cNjp(Nj), where c is

a constant. And

Pr(Ij = 1) = ∫
Nj

p(Nj , Ij = 1)dp(Nj) = ∫
Nj

cNjp(Nj)dp(Nj) = c E(Nj).

Hence, c = Js∕(JE(Nj)). Then

G =
1 − Pr(Ij = 1 ∣ Nj)
1 − Pr(Ij = 1)

=
1 − JsNj

JE(Nj )

1 − Js∕J
.
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Assume E(Nj) = N∕J , approximated by the finite sample average cluster size14, such that

G =
1 − JsNj

N

1 − Js∕J
≤ J
J − Js

.

Given the posterior distribution of p(Nj ∣ −), we use rejection sampling to obtain posterior predictive samples from p(Nj ∣ Ij =

0,−).

2.3 Prior specification and computation

We use the following weakly informative prior distributions23,

�0, 0, �1, 1
ind∼ N(0, 10)

��0 , ��1 , �y
ind∼ Cauchy+(0, 2.5).

Here Cauchy+(0, 2.5) denotes a Cauchy distribution with location 0 and scale 2.5 restricted to positive values. The weakly

informative prior specification will allow the group-level variance parameters to be close to 0 and have large tail values.

For the parameters governing the distribution of Nj , such as (k, p) in the negative binomial distribution or (�, �) in the

lognormal distribution, we can use noninformative priors when the number of clusters sampled is large. However, when only a

few clusters are sampled, we need informative prior information to counteract the sparsity of the data and stabilize the inference.

This is particularly true when using a model for the cluster sizes that includes implicit assumptions about the data. For example,

as an overdispersed extension of the Poisson distribution, the negative binomial distribution assumes that the data come from a

distribution whose mean is smaller than the variance. However, in a sample of only five clusters, it may well be that the sample

mean is larger than the sample variance, making it difficult to fit the negative binomial distribution to the data without strong

prior information. In this case, we reparameterize the negative binomial as a Gamma mixture of Poisson distributions and place

a prior on the coefficient of variation (CV), the standard deviation divided by the mean. In this case, the CV works out to the

reciprocal of the square root of the scale parameter of the Gamma distribution. With a small number of clusters, we expect the

CV to be close to one and therefore use an exponential prior distribution with rate 1. For the lognormal distribution, we place a

Cauchy+(0, 2.5) prior on the scale parameter �. To aid estimation for the case with only a few sampled clusters, we standardize

the log of the sampled cluster sizes by subtracting their mean and dividing by the standard deviation.

For the continuous outcome, in nonsampled clusters j, the posterior predictive distribution for yexc,j is

yexc,j ∣ ⋅ ∼ N
(

�0j + �1jxj , �2y∕Nj

)

,
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where we assume xj is known. Specifically, we draw new values of �0j , �1j , �y, and Nj from their posterior distributions and

then draw yexc,j from the above distribution. In sampled clusters, the posterior predictive distribution for the nonsampled units is

yexc,j ∣ ⋅ ∼ N
(

�0j + �1jxj , �2y∕(Nj − nj)
)

.

WhenNj is large compared to nj , as is the case in many large-scale surveys and specifically in the Fragile Families study, yexc,j

is close to the cluster mean yj and is well approximated by �0j + �1jxj , which we calculate using the posterior means of �0j and

�1j .

The posterior computation is implemented in Stan24, which conducts full Bayesian inference and generates the posterior

samples. The estimation for the outcome model and the cluster size model can be integrated into the posterior computation,

which allows for uncertainty propagation throughout the parameter estimates, in contrast to previous approaches18,15.

Stan is unique in providing detailed warnings and diagnostics to inform the user when posterior inferences may be unreliable

due to difficulties in sampling. Divergent transitions indicate that the sampler is unable to explore a portion of the parameter

space, which can lead to significant bias in the resulting posterior distribution and ultimately unreliable inferences25. Stan reports

the number of divergent transitions for each run, and even one divergent transition indicates that the results may be suspect. If

divergent transitions occur, we follow the recommendation of Stan developers and iteratively increase the target acceptance rate

adapt_delta26. If divergent transitions occur even with adapt_delta = 0.99999, we switch to the noncentral parameteriza-

tion and follow the same procedure for increasing adapt delta as necessary. The noncentral parameterization is a mathematically

equivalent formulation for the model that can avoid posterior geometries that are difficult for HMC to explore25,27.

To understand the importance of explicitly controlling for all design variables in this context, we also fit a model similar to

(4)–(7) but with 0 and 1 set to 0. Such a model accounts for the hierarchical cluster nature of the data by allowing �0 and �1 to

vary by cluster, but does not account for the PPS sampling design since the cluster sizesNj are excluded from the model:

yi ∼ N(�0j[i] + �1j[i]xi, �2y ) (if continuous)

Pr(yi = 1) = logit−1(�0j[i]) (if binary)

�0j ∼ N(�0, �2�0) (12)

�1j ∼ N(�1, �2�1)

3 SIMULATION STUDY

We perform a simulation study to compare the performance of our integrated approaches with classical design-based estimators

on the statistical validity of the finite population inference. We generate a population from which we take repeated two-stage

cluster samples under PPS and use each of the methods to estimate y. The population consists of J = 100 clusters, with cluster
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sizes Nj drawn from one of two distributions. The first is a Poisson distribution with rate 500. The second is a multinomial

distribution over scaled Gamma-distributed sizes. Specifically, we draw J = 100 candidate cluster sizes Nj as Nj = 100Gj ,

where Gj ∼ Gamma(10, 1). We then take a multinomial draw from these 100 unique sizes, with the J -vector of probabilities

drawn from a Dirichlet distribution with concentration parameter 10, which disperses probability mass equally across the J =

100 components. In both cases, to avoid clusters that would be selected with probability 1, we resample the J cluster sizes until

none are so large to be selected with certainty.

For continuous outcome, we simulate the population unit value yi from the following:

yi ∼ N(�0j[i] + �1j[i]xi, �2y )

�0j ∼ N(�0 + 0 log
c(Nj), �2�0)

�1j ∼ N(�1 + 1 log
c(Nj), �2�1) (13)

�0, �1, 0, 1 ∼ N(0, 1)

��0 , ��1 ∼ N+(0, 0.52)

�y ∼ N+(0, 0.752),

where N+(�, �2) denotes the positive part of the normal distribution with mean � and standard deviation �. The model for binary

y is identical, except that the first line of (13) is replaced with yi ∼ Bernoulli(logit−1(�0j[i])) (and we omit �1j).

We use the same outcome model for data generation and estimation to focus on the performance evaluation of different

approaches accounting for the design effect and avoid potential model misspecification. In practice the outcome model can be

adapted with flexible choices, as discussed in Section 5. We recommend that model diagnostics and evaluation are necessary. In

Stan we have implemented model comparisons such as leave-one-out prediction error28, which can be straightforwardly applied

in practice. We generate xi by sampling from the discrete uniform distribution between 20 and 45 and center it by subtracting

the mean. We assume that xi is known for all sampled units, and that xj is known for all clusters. The cluster sizesNj’s are only

known in the sampled clusters.

We sample Js < J clusters using random systematic PPS sampling with probability proportional to the cluster size Nj and

nj units via SRS in each selected cluster j. We consider values of Js ∈ {10, 50} and nj ∈ {0.1Nj , 0.5Nj , 10, 50}. When

nj ∈ {10, 50}, the sample is self-weighting, meaning each unit has an equal probability of selection. To see this, recall that the

probability of sampling cluster j is �j ∝ Nj . Since within-cluster sampling is done with SRS, the probability of sampling unit

i given cluster j is selected is �i∣j = nj∕Nj = n∕Nj when nj is the same for all clusters. The marginal probability of sampling

unit i is therefore �i = �j�i∣j ∝ Nj ⋅ (n∕Nj) = n, which is constant across units and clusters. Even though the final weights are

constant, our studies show that the design features should be accounted in the outcome model.
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For each combination of Js and nj , we draw 100 two-stage samples from the population. For each sample, we estimate the

finite population mean using the methods described below.

• negbin: The negative binomial size-biased distribution as described in Section 2;

• lognormal: The lognormal size-biased distribution as described in Section 2;

• bb: The Bayesian bootstrap as described in Section 2;

• Hájek: The Hájek estimator in (3);

• greg: The generalized regression estimator29, which leverages a unit-level covariate to improve prediction. We only use

this estimator for continuous y. We use the derived formulas4 to estimate the variances of the Hájek and generalized

regression estimators;1

• cluster_inds: The model in (12), which accounts for the hierarchical nature of the data via random cluster effects but

does not use the cluster sizes as a cluster-level predictor in modeling �0j and �1j ;

• knowsizes: The model in (4)–(6), where we additionally assume the cluster sizes are known for the entire population.

This is the best scenario and will serve as a benchmark for the other Bayesian methods.

There are three main comparisons that we make in evaluating the results of the simulation study. First, we measure the

performance of our proposed integrated Bayesian approach against that of the classical design-based estimators; we do this by

comparing the performance of negbin, lognormal, and bb to that of Hájek and greg. Second, among the Bayesian methods,

we want to understand when the parametric models negbin and lognormal outperform the nonparametric Bayesian bootstrap

bb. Third, we compare the performances of cluster_inds and knowsizes in order to understand the importance of explicitly

including cluster sizes as cluster-level predictors in (5) and (6). In this case, we assume that cluster sizes are known for all clusters

in the population and focus on the effects of incorrectly excluding or including the cluster sizes as cluster-level predictors in the

model.

We carefully monitor the diagnostics of computation performance for each drawn sample. If divergent transitions remain, we

discard the sample. We monitor the estimated potential scale reduction factor R̂ for each parameter. This diagnostic assesses the

mixing of the chains; at convergence, R̂ = 1. If R̂ ≥ 1.1 for any parameter, we increase the number of iterations by 1000 until

all values of R̂ are less than 1.1, up to 4000 iterations. If values of R̂ ≥ 1.1 remain with 4000 iterations, we discard the drawn

sample. The results presented here are based on a minimum of 85 simulation draws for each combination of number of clusters

1In some cases, the sample size is so large as to make calculating the design-based variance under a non-self-weighting design difficult. This is due to the Δ̌kl term
in the related equations 4 (Equation 6.3 and 9.27), which requires generating an n × n matrix, where n =

∑Js
j=1 nj . When Js = 50 and nj = 0.5Nj , n can easily be 20000

or larger, making the matrix prohibitively large to compute. In these cases, we estimate the variance by randomly selecting 100 units via SRS in each sampled cluster and
using those units to compute the required matrix.
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sampled and number of units sampled. That is, we repeatedly draw 100 samples from the population and keep the L cases with

good computation performance, 85 ≤ L ≤ 100.

The results of the simulation study are in Figures 1 to 4 , with each figure displaying a different combination of outcome type

(continuous or binary) and population cluster size model (Poisson or multinomial). In each figure, there are six panels displaying

the six metrics with which we evaluate the methods: relative bias, relative root mean squared error (RRMSE), coverage of 50%

and 95% uncertainty intervals, and the average relative widths of the 50% and 95% uncertainty intervals. The relative bias is

calculated as 1
L

∑L
l=1

y−ŷl
y
, where y is the true population mean, ŷl is the estimated value from the l-th simulation, and L is

the number of simulations. RRMSE is calculated as

√

1
L

∑L
l=1

(

y−ŷl
y

)2

. For the Bayesian methods negbin, lognormal, bb,

cluster_inds, and knowsizes, the 50% (95%) intervals are calculated from the 25th and 75th (2.5th and 97.5th) percentiles

of the posterior predictive distribution for y. For the classical methods, we rely on asymptotic normal theory and the variance

estimators4. The relative widths of the uncertainty intervals are calculated by dividing the width of the uncertainty interval by

the true y and averaging across the L simulations.

In each plot, the x-axis is the metric value and the y-axis denotes different models. The panels represent the different within-

cluster sampling schemes. The top two plots are for the fixed-percentage schemes, where nj = �Nj for � = 0.1 and � = 0.5,

j = 1,… , Js. The bottom two plots represent the self-weighting samples, with nj = 10 and nj = 50, j = 1,… , Js. The colors

of the circles represent different first-stage sample sizes Js, Js ∈ {10, 50}.

We now describe the results for each of these three comparisons for the four combinations of outcome type (continuous and

binary) and population cluster size model (Poisson and multinomial distributions) as explained in the previous section.

Bayesian methods generally yield more efficient inference than classical estimators, particularly with small number of clus-

ters. For continuous y, the Bayesian models outperform the design-based estimators, both for the Poisson and the multinomially

distributed population cluster sizes in Figures 1 and 2 , respectively. The differences are rather small when Js = 50 but pro-

nounced when Js = 10. The Hájek estimator has large bias, particularly when the sample is self-weighting, but including

auxiliary information as the GREG estimator does greatly reduces the bias. Still, the classical estimators yield unstable results,

evident in the high RRMSEs. The Bayesian estimators are preferable here with lower bias and RRMSE, and yield short uncer-

tainty intervals whose coverage rates are close to or above the nominal level. For binary y, there is little difference between

the Bayesian methods and the Hájek estimator when the number of sampled clusters is large, Js = 50. This holds for both the

Poisson-distributed cluster sizes in Figure 3 and the multinomially distributed cluster sizes in 4 . When the number of sampled

clusters is small, the Hájek estimator and the Bayesian methods has comparable bias and RRMSE. However, the coverage rates

for the Hájek estimator are often below the nominal level, particularly when the sample is not self-weighting (top row of plots).

We compare the parametric and nonparametric approaches by the predictive performance ofNj’s from nonsampled clusters

and the inference on finite population mean. We collect the posterior mean estimation of the predicted Nj’s and compare the
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density with that for the trueNj’s. Bayesian bootstrap is robust by yielding density estimation of predictedNj’s that is close to

the truth but can be off on the tails since it only uses the observed sizes. The two parametric approaches are sensitive about model

assumptions. When the number of selected cluster is large, the three approaches tend to perform similarly. Both the parametric

and nonparametric approaches are statistically valid and have competitive performances. For continuous y the parametric models

negbin and lognormal perform comparably to the nonparametric bb with unbiased estimates and similar RRMSEs in Figures

1 and 2 particularly under large Js, while coverage is generally higher for the parametric models in Figure 2 . For binary y,

with Poission-distributed cluster sizes the parametric models have a bit higher bias in Figure 3 , ranging around 1-1.5%, while for

multinomially distributed cluster sizes in Figure 4 the parametric models are less biased than the nonparametric one, especially

when the sample is not self-weighting and the number of clusters is small. Coverage rates vary but are most consistently around

or above the nominal level both for the parametric and nonparametric methods. For both continuous and binary y, there is little

difference in RRMSEs and uncertainty interval lengths between the parametric and nonparametric methods.

Incorrectly omitting cluster sizes as cluster-level predictors—that is, using cluster_inds instead of knowsizes—has small

impact when y is continuous for either the Poisson or the multinomially distributed population cluster sizes. The bias, RRMSE,

and coverage rates for the two methods are similar in both Figures 1 and 2 , even though knowsizes has subtle improvement.

The differences between cluster_inds and knowsizes are minor for binary y as well; cluster_inds does not perform

appreciably worse than knowsizes in either Figure 3 or 4 , the Poisson or the multinomially distributed population cluster

sizes. This is because the coefficients 1 of log
c(Nj) in the simulation are small (-0.341 in the Poisson case; and 0.097 in the

multinomial case). If y andNj are unrelated, it is not necessary to includeNj in the model, even under PPS sampling; allowing

the regression parameters to vary by cluster as in cluster_inds is sufficient for valid inference. In the application study of

Section 4, we find that including the cluster sizes as cluster-level predictors will substantially reduce bias and RRMSE with

continuous outcome when the correlation between y andNj is large (1 = 1.81). However, the resulted difference is negligible

under binary outcome comparing to the approach only including cluster indicators as random effects models. It’s pivotal to

account for the two-stage structure comparing to the PPS design. This shows when the sampling design is complex, including

two-stage sampling, cluster sampling, PPS and SRS, some design feature could play a bigger role than others. We recommend

controlling for all the design features if possible.

4 FRAGILE FAMILIES STUDY APPLICATION

To evaluate the performance of our method in a more realistic survey context, we use a modified version of the Fragile Families

study design in conjunction with a presumed outcome model to implement the finite population inference. We would like to

use the Fragile Families sampling frame to illustrate the benefits of Bayesian models accounting for the design features. For
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convenience, we use the outcome estimation model that is the same as the generation model, which assumption can be released

as future extensions.

The Fragile Families study5 divided the 77 U.S. cities with 1994 populations of 200,000 or greater into nine strata based on

their policy environments and labor markets. Eight of the strata were for cities with extreme values in at least one of the three

policy dimensions under consideration (labor markets, child support enforcement, and welfare generosity), and the ninth stratum

was for cities that had no extreme values. One city was selected with PPS in each of the eight extreme strata, with a target sample

size of 325 births in each city. In the last stratum, eight cities were selected via PPS, with a target sample size of 100 births

in each. There was an intermediate stage of selecting hospitals, which we ignore for the paper illustration. We use the Fragile

Families study’s city population of 77 cities in 1994 as the sampling frame and implement two-stage cluster sampling under PPS.

As a simulation, we use the city population (divided by 100 for computational convenience) as both the measure of sizeMj

and the number of units in the cluster Nj , though the ultimate unit of sampling in the study was births and number of births in

cities should be accounted for. We exclude the three cities that would be selected with probability one for a total of J = 74 cities.

For each unit in the population, we generate an outcome y according to our model in (13). While the original Fragile Families

sampling design involves nine strata, we combine them into a single stratum. As in the actual study design, we sample 16 cities

with probability proportional to the city population. In each sampled city, we sample either 325 or 100 births, depending on

whether the city is a large- or small-sample city5, which results in a self-weighting sample.

Figures 5 and 6 show the outputs for when the outcome is continuous and binary, respectively, in terms of relative bias,

RRMSE, coverage rates and relative widths of 50% and 95% uncertainty intervals. The main findings are consistent with the

simulation studies.

For continuous y in Figure 5 , the Bayesian methods (with the exception of negbin) outperform the design-based estimators

in terms of RRMSE and uncertainty interval width and are comparable on bias and coverage. The Bayesian methods yield

uncertainty intervals that are less than half the width of those based on the design-based methods, with coverage rate that is

close to the nominal level. Among the three Bayesian methods, bb and lognormal perform similarly, and both are better than

the negbin assumption. The negative binomial population distribution performs poorly with large bias and RRMSE but low

coverage rate. Excluding cluster sizes leads to worse performance, with higher bias and RRMSE and longer uncertainty intervals

for cluster_inds compared to knowsizes. When the outcome and cluster sizes are highly correlated, including cluster sizes

improves the prediction, which can be enhanced by the known mean values of auxiliary variables for nonsampled clusters

When y is binary as in Figure 6 , we again see that the Bayesian methods yield better results in terms of bias, RRMSE,

and coverage than the classical Hájek estimator. The uncertainty intervals of the Hájek estimator are the shortest but are close

to those from the Bayesian methods. Comparing the parametric and nonparametric models, lognormal is unbiased, however,

bb and negbin generate biased estimates. The three models have comparable RRMSEs and uncertainty interval lengths with
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conservative coverage rates above or equal to the nominal levels. The effects of excluding the cluster sizes are small, with

cluster_inds having only slightly larger bias and RRMSE, and lower coverage rates than knowsizes.

To further investigate the population distribution of cluster sizes, Figure 7 shows the density plots for 100 cluster sizes

drawn from the assumed Poisson and multinomial distributions and the 74 (non-certainty for selection) Fragile Families city

populations. From the plots, both the Poisson distribution and the multinomial/Gamma distribution used in the simulation study

are different from the population distribution of cluster sizes in the Fragile Families study. The cluster sizes in the Fragile Families

study are highly skewed. Hence, in the application, the negative binomial size-biased distribution assumption is not appropriate

to depict the cluster size population with poor performance. The performance is accessed by comparing the predictive density

distribution of the nonsampled cluster sizes in Figure 8 . We collect the posterior mean estimates of the nonsampled cluster

sizesNj’s under the parametric and nonparametric approaches, in contrast with the true density. The Bayesian bootstrap method

avoids the parametric assumption and yields robust inference, and the lognormal distribution as the size-biased choice is able

to capture the skewness and performs competitively, which is also demonstrated in Figure 5 and Figure 6 . We can modify the

parametric assumptions and improve the inference with suitable prior knowledge.

5 DISCUSSION

We propose an integrated Bayesian model for the finite population inference from a two-stage cluster sample under PPS. Two-

stage cluster sampling is popular across health surveys, however, the corresponding model-based inference has methodology

challenges. Our method combines predicting measures of size for nonsampled clusters with estimation for the population mean

into a single approach that propagates uncertainty from the two steps. We consider both parametric and nonparametric methods

for modeling cluster sizes. The parametric models directly account for the unequal probabilities of selection by using the closed-

form size-biased version of the underlying population distribution, while the nonparametric Bayesian bootstrap draws from the

observed cluster sizes with probabilities that are weighted by the odds of that cluster not being selected.

While design-based approaches are common in survey inference, variance estimation is often challenging. Current estima-

tion approaches include theoretical approximations4 and resampling methods30. In contrast, our integrated approach yields the

posterior distribution for the quantities of interest about the finite population, from which variances, uncertainty intervals, and

any other functions can easily be computed. The proposal accounts for the design features in modeling and yields inference that

is consistent with design-based approaches.

The Bayesian methods generally outperform the design-based estimators and improve inference stability, particularly when

the number of sampled clusters is small. The performance of the parametric methods negbin and lognormal is comparable to

that of the nonparametric Bayesian bootstrap.When extra information about the population cluster sizes is available, for example,
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from previous years or similar groups, we can incorporate through the informative prior information. Moreover, the parametric

methods are straightforward to implement in Stan, whichmakes them accessible to researchers whose expertise is in areas outside

of statistics or programming. The results for parametric and nonparametric methods are more similar when Js = 50 than when

Js = 10 in many of the scenarios our simulation study considered. The parametric method is subject to model misspecification

especially under small sample. We recommend using the parametric methods as an initial step and perform model diagnostics

to select those robust against misspecification. An important diagnostic measure is to check whether the population cluster sizes

are highly skewed, as in the case of the Fragile Families setup shown in Figure 7 . Thus, reasonable prior knowledge of the

population distribution of cluster sizes should guide the model choice of parametric or nonparametric approach.

In our study, under binary y, the Bayesian methods were less clearly superior to classical methods in estimating the finite

population proportion. One possible reason is that few auxiliary or predictive variables are included in the model. However,

when the cluster sizes are highly skewed, as in the Fragile Families case, Bayesian methods perform significantly better, in terms

of lower bias and more reasonable coverage, than the classical estimators.

There are several interesting directions in which the current research could be extended. First, our simulation has not consid-

ered the case whereMj ≠ Nj in depth. The natural next step would be to extend the Fragile Families simulation to include the

case where the measure of sizeMj is the city population, but the cluster sizeNj itself is the total number of births in the city. In

doing so, we must make some additional assumptions. So far, we have assumed that we knowMj only for the sampled clusters,

but what about Nj? If bothMj and Nj are only available for sampled clusters, we shall predict bothMj and Nj for the entire

population. One idea is to assume that Nj is a function ofMj and use regression models to predict Nj givenMj , perhaps the

on the log scale to avoid predicting negative cluster sizes and difficulties with cluster sizes ranging over several orders of mag-

nitude. In the Fragile Families study, the correlation between the log of city populationMj and log of total birthsNj is 0.78, so

this seems like a promising strategy.

Second, the outcome model can be extended with flexible modeling strategies. To focus on evaluation of different approaches

to accounting for the design effect and predicting the nonsampled cluster sizes, for the outcome model, the estimation model

we use is the same as the data generation model. In practice, we recommend outcome modeling that is robust against misspec-

ification. Flexible models in the literature can be explored, such as heteroscedasticity assumption, penalized spline regression

models, and nonparametric Bayesian models. The multilevel models stabilize estimation via smoothing across clusters. The

partial pooling effect can be strengthened with generalized covariance structure, e.g., covariance kernel functions in Gaussian

process regression models.

Another direction would be to consider a stratified PPS design as in the original Fragile Families study design. This extension

introduces another challenge in that we would need to adjust for the strata structure in our model. For the parametric cluster size
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models, we would need to partially pool the size parameters (e.g., �, � in the negative binomial model, �, � in the lognormal)

across strata, adding another layer of complexity to the model.

Bayesian approaches are well equipped to account for the design features in the survey data under complex sampling design

through hierarchical modeling. Computational software development, such as the use of Stan, makes modeling approaches

enhance the advantage.Moremethodology developments are necessary to incorporate additional information about the sampling

into modeling, such as known population size, paradata and auxiliary variables.
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FIGURE 1 Results for continuous y with cluster sizes Nj drawn from a Poisson distribution. The top two plots are for fixed-
percentage SRS schemes, and the bottom two are for fixed-number SRS samples. Hájek: the Hájek estimator; greg: generalized
regression estimator; bb: Bayesian bootstrap; negbin: negative binomial distribution; lognormal: lognormal distribution;
cluster_inds: the model with random cluster effects but without the cluster size predictor; knowsizes: the model with known
population cluster sizes.
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FIGURE 2 Results for continuous y with cluster sizes Nj drawn from a multinomial distribution. The top two plots are for
fixed-percentage SRS schemes, and the bottom two are for fixed-number SRS samples. Hájek: the Hájek estimator; greg:
generalized regression estimator; bb: Bayesian bootstrap; negbin: negative binomial distribution; lognormal: lognormal dis-
tribution; cluster_inds: the model with random cluster effects but without the cluster size predictor; knowsizes: the model
with known population cluster sizes.
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FIGURE 3 Results for binary y with cluster sizes Nj drawn from a Poisson distribution. The top two plots are for fixed-
percentage SRS schemes, and the bottom two are for fixed-number SRS samples. Hájek: the Hájek estimator; bb: Bayesian
bootstrap; negbin: negative binomial distribution; lognormal: lognormal distribution; cluster_inds: the model with random
cluster effects but without the cluster size predictor; knowsizes: the model with known population cluster sizes.
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FIGURE 4 Results for binary y with cluster sizes Nj drawn from a multinomial distribution. The top two plots are for fixed-
percentage SRS schemes, and the bottom two are for fixed-number SRS samples. Hájek: the Hájek estimator; bb: Bayesian
bootstrap; negbin: negative binomial distribution; lognormal: lognormal distribution; cluster_inds: the model with random
cluster effects but without the cluster size predictor; knowsizes: the model with known population cluster sizes.
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FIGURE 5 Results for continuous y with cluster sizes Nj in the Fragile Families study design. Hájek: the Hájek estimator;
greg: generalized regression estimator; bb: Bayesian bootstrap; negbin: negative binomial distribution; lognormal: lognormal
distribution; cluster_inds: the model with random cluster effects but without the cluster size predictor; knowsizes: the model
with known population cluster sizes.
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FIGURE 6 Results for binary y with cluster sizes Nj in the Fragile Families study design. Hájek: the Hájek estimator; bb:
Bayesian bootstrap; negbin: negative binomial distribution; lognormal: lognormal distribution; cluster_inds: the model
with random cluster effects but without the cluster size predictor; knowsizes: the model with known population cluster sizes.
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FIGURE 7 Density plot of 100 cluster sizes drawn from a Poisson distribution with rate 500 (Pois), a Gamma/multinomial
distribution (Multi) with a multinomial draw fromGamma(10,1)-distributed samples multiplied by 100, and the Fragile Families
(FF) study design. The x-axis is on the original scale in the left plot and the log10 scale in the right.
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FIGURE 8 Predictive density comparison for nonsampled cluster sizes Nj in the Fragile Families study design. negbin:
negative binomial size-biased distribution; lognormal: lognormal size-biased distribution; bb: Bayesian bootstrap; true: true
distribution.
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