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Bayesian Hierarchical Spatial Models: Implementing
the Besag York Molli¢ Model in Stan

Abstract

This report presents a new implementation of the Besag-York-Mollié (BYM)
model in Stan, a probabilistic programming platform which does full Bayesian
inference using Hamiltonian Monte Carlo (HMC).

We review the spatial auto-correlation models used for areal data and disease
risk mapping, and describe the corresponding Stan implementations. We also
present a case study using Stan to fit a BYM model for motor vehicle crashes
injuring school-age pedestrians in New York City from 2005-2014 localized to
census tracts.

Stan efficiently fit our multivariable BYM model having a large number of
observations (n=2095 census tracts) with small outcome counts < 10 in the
majority of tracts. Our findings reinforced that neighborhood income and social
fragmentation are significant correlates of school-age pedestrian injuries. We also
observed that nationally-available census tract estimates of commuting methods
may serve as a useful indicator of underlying pedestrian densities.

Keywords: Bayesian inference, Intrinsic Conditional Auto-Regressive model,
Besag-York-Mollié model, probabilistic programming, Stan, pedestrian injuries

Introduction

Spatial auto-correlation is the tendency for adjacent areas to share similar
characteristics. Conditional Auto-Regressive (CAR) and Intrinsic Conditional
Auto-Regressive (ICAR) models, first introduced by Besag (1974), account for
this by pooling information from neighboring regions. The BYM model (Besag,
York, and Mollié 1991), is a lognormal Poisson model which includes both an
ICAR component for spatial auto-correlation and an ordinary random-effects
component for non-spatial heterogeneity. Because either component of the BYM
model can account for most or all of the individual-level variance, it is difficult
to fit using MCMC methods. In this report we present an implementation of the
BYM2 model (Riebler et al. 2016), a reparameterization of the BYM model, in
Stan, a probabilistic programming platform which does full Bayesian inference
using Hamiltonian Monte Carlo (HMC). Stan’s No U-Turn Sampler (NUTS)
provides better and more robust estimates for models such as the BYM model
which have complex posteriors than samplers which use Gibbs or Metropolis
algorithms.
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Part one of the paper reviews spatial modeling concepts and introduces the
Stan language, tools, and workflow. First, in section Models, we review the
specification of the CAR and ICAR models and show why it is much faster to
compute log probability density of the ICAR model instead of the CAR model.
Then we review the original formulation of the BYM model and present the
BYM2 model, a reparameterization of the BYM model where all parameters
have clear interpretations and the choice of hyperpriors is straightforward.

The Stan Programs section is an introduction to both the Stan language and
the the R package rstan. As a first Stan program, we implement the ICAR model.
The expressive power of the Stan language allows for a straightforward translation
from the mathematical model to a Stan program. Using Stan’s vectorized
operations, the joint specification of the ICAR model in Stan corresponds
directly to its mathematical formulation over the pairwise differences between
neighboring regions. To validate this model, we fit the areal map over 2095 New
York City census tracts with rstan and use the R package ggplot2 to show how
the model recovers the spatial structure present in the data. The second Stan
program implements the BYM2 model.

Finally, in the Case Study section, we present a full, substantive example
of a Stan spatial analytic model using the BYM2 model to fit New York City
motor vehicle crash data. The study aims to map the geographic distribution
of school-age pedestrian injuries at the census tract level from 2005-2014, as
well as explore sociodemographic factors associated with their occurrence at the
community level.

Models

Conditional Autoregressive Models

Areal data consists of a finite set of regions with well-defined boundaries,
each of which has a single measurement aggregated from its population. Counts
of rare events in small-population regions are noisy; removing this noise allows
the underlying phenomena of interest to be seen more clearly. Conditional
autoregressive (CAR) models smooth noisy estimates by pooling information from
neighboring regions. Given a set of N regions, the binary neighbor relationship
(written ¢ ~ j where i # j) is 1 if regions n; and n; are neighbors and is otherwise
0. For CAR models, the neighbor relationship is symmetric but not reflexive; if
i ~ j then j ~ 4, but a region is not its own neighbor.

Spatial interactions between pairs of units ¢ and j can be modeled condition-
ally as a normal random variable ¢, which is an N-length vector ¢ = (¢1, ..., d,)7.
In the full conditional distribution, each ¢; is conditional on the sum of the
weighted values of its neighbors (w;; ¢;) and has unknown variance

$i | 5.5 # i~ N> wijes, 0

Jj=1

Specification of the global, or joint distribution via the local specification of the



conditional distributions of the individual random variables defines a Gaussian
Markov random field (GMRF). Besag (1974) proved that the corresponding joint
specification of ¢ is a multivariate normal random variable centered at 0. The
variance of ¢ is specified as a precision matrix ) which is simply the inverse of
the covariance matrix ¥, i.e. ¥ = Q7! so that

¢~ N(Ov Qil)

For standard multivariate normal random variable ¢, the precision matrix @
is constructed from two matrices which describe the neighborhood structure of
the N regions: the diagonal matrix D and the adjacency matrix A. The diagonal
matrix is an N X N matrix where each diagonal entry n;; contains the number of
neighbors of region n; and all off-diagonal entries are zero. The adjacency matrix
is an N X N matrix where entry n;; is 1 if regions n; and n; are neighbors and
0 otherwise and all diagonal entries n;; are zero.

The adjacency matrix encodes the neighborhood graph. If any region in the
map can be reached from any other region via a series of neighboring regions,
then the map is a single, fully connected component. The number of components
of a neighborhood graph ranges from 1 to N, in the case where all regions are
islands. To see how this works, we construct a simple example using a map
over 4 regions (ny,n2,ng,ny) consisting of a single component with neighbor
relations: (1~ 2,2~ 3,3 ~ 4)

The adjacency matrix A is:

ny mn2 N3 N4

ng (0 1 0 0
ng{ 0 1 0 1
ng\0 0 1 0

The diagonal matrix D is:

ny Nz N3 N4

nn ({1 0 0 0
ng| 0 2 0 0
ng{ 0 0 2 0
ng \0 0 0 1

To make the standard multivariate normal random variable ¢ have a proper



joint probability density, the precision matrix () must be symmetric and positive
definite. For the CAR model Q is defined as

Q=D(I—aA)

where I is the identity matrix and 0 < a < 1. The term « is the CAR model
parameter which controls for the amount of spatial dependence, where a = 0
implies spatial independence. Scaling A by a makes the quantity D( — aA)
positive definite. Because the neighbor relationship ¢ ~ j is symmetric by
definition for CAR models, both A and ) are symmetric.

For the above example, when o = 0.5, D(I — aA) is:

n na ng Ny
nq 1 —0.5 0 0
ny | —0.5 2 —0.5 0
ns 0 —0.5 2 —0.5
Ny 0 0 —-0.5 1

The log probability density of ¢ is proportional to

" log(det(Q)) — 567 Q0

where n is the number of components in the neighborhood graph. Computing
the determinant of @ requires N2 operations, e.g., when N = 100, det(Q) takes
a million operations and when N = 1000 it takes a billion operations. For large
number of regions N, this is computationally expensive for an MCMC sampler
as the sampler recomputes the probability density of ¢ for each new proposal.

Intrinsic Conditional Autoregressive Models

The intrinsic conditional autoregressive (ICAR) model sets a to 1, effectively
eliminating « from the model so that the quantity D(I — a A) simplifies to D — A.
For the above example, D — A is

ni 1 -1 0 0
ng| -1 2 -1 0
ng| 0 -1 2 -1
ng \ 0 0 -1 1

Now the value of the determinant of @ is 0. The ICAR prior is improper but
the posterior is proper once you include some data.

MCMC samplers compute the log probability up to a proportionality constant.
When computing the log probability density of the ICAR model, the term
5 log(det(Q)) is constant and therefore drops out of the calculation. This
reduces the number of operations needed to compute the log density from N3
to N2, making it possible to fit datasets for large areal maps with an MCMC



sampler running on a modern laptop computer in only a few hours, instead of
many days.

In the ICAR model, each ¢; is normally distributed with a mean equal to
the average of its neighbors. Its variance decreases as the number of neighbors,
denoted d;, increases. The conditional specification of the ICAR model is:

Zi~'¢i i’
(6] 6rmg) =N (=522 20

where 0,2 is the unknown variance.
The joint specification of the ICAR random vector ¢ centered at 0 with
common variance 1 rewrites to the pairwise difference formulation:

p() o oxp |~ 3 (90— 65

g

Writing the joint density as the pairwise difference makes it easy to reason about
the behavior of this model: each (¢; — ¢j)2 contributes a penalty term based on
the distance between the values of neighboring regions; minimizing this term
results in spatial smoothing. The pairwise difference is non-identifiable; any
constant added to ¢ washes out of the term ¢; — ¢;. Adding the constraint
>N ¢ = 0 centers this model. With this constraint the log probability density
is defined because the domain of integration is restricted to the set of parameters
summing to 1.

The Besag-York-Mollié Model

The BYM model is a lognormal Poisson model developed for disease risk
mapping which includes both an ICAR component for spatial smoothing and an
ordinary random effects component for non-spatial heterogeneity. The Poisson
regression is used to estimate the unknown log relative risk #; for zone i, (i =
1,2,...n), given y;, the observed number of cases. The BYM model specifies:

ni=pt B+ b+
where:

e u is the overall risk level, i.e., the fixed intercept.

e 1 is the matrix of explanatory spatial covariates such that x; is the vector
of covariates for areal unit ¢ and 3 is vector of regression coefficients which
are constant across all regions, i.e., fixed effects.

e ¢ is an ICAR spatial component.

e 6 is an an ordinary random effects component for non-spatial heterogeneity.

The BYM model uses both spatial and non-spatial error terms to account
for over-dispersion not modelled by the Poisson variates. When the observed



variance isn’t fully explained by the spatial structure of the data, the independent
error terms will account for the rest. However, this model becomes difficult to
fit because either component can account for most or all of the individual-level
variance. Without any hyperpriors on ¢ and 6 the sampler will be forced to
explore many extreme posterior probability distributions; the sampler will go
very slowly or fail to fit the data altogether. Riebler et al. (2016) provides
an excellent summary of the underlying problem as well as a survey of the
subsequent refinements to the parameterization and choice of priors for this
model.

In order to fit the BYM model to their data using a custom Gibbs sampler,
Besag, York, and Mollié (1991) use gamma hyperpriors on the precision param-
eters 74 and 7y, with carefully chosen parameter values for each. Subsequent
versions of this model use constraints designed to create a “fair” prior which
places equal emphasis on both spatial and non-spatial variance, based on the
formula from Bernardinelli, Clayton, and Montomoli (1995):

1 1
VT, 0TVmr

where m is the average number of neighbors across all regions in the dataset.
Because the values used for the gamma hyperprior on 79 depend on the value
of m, the choice of hyperpriors is dependent on the dataset being analyzed and
therefore must be reevaluated for each new dataset accordingly.

sd(0;) ~ sd(¢;)

The BYM2 Model

The BYM2 model (Riebler et al. 2016) follows the Penalized Complexity
framework (Anonymous 2017), which favors models where the parameters have
clear interpretations, allowing for assignment of sensible hyperparameters to each.
Like the BYM model, the BYM2 model includes both spatial and non-spatial
error terms and like the alternative model of Leroux, Lei, and Breslow (2000), it
places a single precision (scale) parameter o on the combined components and a
mixing parameter p for the amount of spatial/non-spatial variation. In order for
o to legitimately be the standard deviation of the combined components, it is
critical that for each 4, Var(¢;) ~ Var(6;) ~ 1. This is done by adding a scaling
factor s to the model which scales the proportion of variance p.

Because the scaling factor s depends on the dataset, it comes into the model
as data. Riebler et al. recommend scaling the model so the geometric mean of
these variances is 1. This scaling factor can be computed from the neighborhood
graph in the transformed data block of the Stan program, but here we compute
this value using R’s INLA::inla.scale.model function and pass it into the
Stan model as data.

In the BYM2 model, the original BYM model’s combination of components
¢ + 6 is rewritten as

((Vols)o" + (VT=p)6") o

where:



e p € [0,1] models how much of the variance comes from the spatially
correlated error terms and how much comes from the independent error
terms

e ¢" is the ICAR model

o 0" ~ N(0,n), where n is the number of connected subgraphs. When the
neighborhood graph is fully connected 8* ~ N(0,1).

e s is the scaling factor computed from the neighborhood graph such that
Var(¢;) ~ 1.

e o > 0 is the overall standard deviation for the combined error terms

For BYM2 models over neighborhood graphs which are not fully connected,
(i.e., n > 1), each connected subgraph has its own variance, and must be scaled
accordingly. The Stan programming language is powerful enough to allow for
disconnected subgraphs and island regions, however the indexing required to
keep track of each subgraph increases the complexity of the code, therefore in
this paper we present a Stan program for fully connected neighborhood graphs.

Stan Programs

Stan is a highly-expressive general probabilistic programming language for
the specification of statistical models. A Stan program computes the joint
log probability density of a set of continuous parameters up to a proportional
constant. Full Bayesian inference is carried out using Stan’s No U-Turn Sampler
(NUTS) which uses Hamiltonian Monte Carlo (HMC) to obtain a set of draws
from the posterior. HMC samplers are more efficient and robust than Gibbs and
Metropolis samplers (Anonymous 2014), allowing for better estimates of models
with complex posteriors such as the BYM model.

First Stan program: icar.stan

A Stan program consists of a set of named program blocks which occur in
a fixed order. Stan is an imperative programming language, thus the variable
declarations and statements in program blocks and user-defined functions are
executed in program order. Stan is a strongly-typed language, i.e., variable
declarations specify the variable type and all operations must respect the declared
variable type. Variables must be declared before they can be referenced. Data
variables are declared in data and transformed data blocks. Parameter variables
are used in parameters and transformed parameters blocks. Declarations and
statements are terminated with a semicolon (;). Comments are delimited by a
pair of forward slash characters (//) and continue through to the end of the line.

Listing 1 presents a Stan program which computes the ICAR spatial random
variable ¢ given a set of neighboring regions.



functions {
real icar_normal_lpdf(vector phi, int N, int[] nodel, int[] node2) {
return -0.5 x dot_self(phi[nodel] - phi[node2])
+ normal_lpdf(sum(phi) | 0, 0.001 * N);

}
data {
int<lower=0> N;

1
2
3
4
s |}
6
7
8
9 int<lower=0> N_edges;

10 int<lower=1, upper=N> nodel[N_edges]; // nodel[i], node2[i]
neighbors

1 int<lower=1, upper=N> node2[N_edges]; // nodel[i] < node2[i]

12 }

13 | parameters {

14 vector[N] phi;

15 |}

16 | model {

17 phi ~ icar_normal_1lpdf(N, nodel, node2);

1B |}

Listing 1: Program icar.stan

Lines 2-5 of icar.stan define a custom distribution function icar_normal_lpdf
for an ICAR random variable phi. This function computes the ICAR prior as the
pairwise difference of neighboring elements of phi and enforces the sum-to-zero
constraint. The function name ends in _lpdf which signals that this function
defines a log probability density function. _1pdf functions have the signature of
return type real and the first argument is either type real or type array of reals.
It takes the following arguments:

e the spatial random variable phi
e N, the number of areal regions
o integer array nodel

o integer array node2

Together nodel and node2 encode the neighbor relationships as a graph edgeset:
nodel holds the set of indexes corresponding to ¢; and the node2 holds the
indexes corresponding to ¢;, where i < j. To see how this works, in the ex-
ample in the previous section, there are 4 regions labeled 1 through 4 and 3 edges:

nodel node2

edge 1 | 1 2
edge 2 | 2 3
edge 3 | 3 4

Encoding the neighbor relations as an edgeset requires less memory than
specifying a full N x N adjacency matrix when the adjacency matrix is sparse. In
our small example, the adjacency matrix has 16 elements. The edgeset requires
scalar variables N, and N__edges, and 2 parallel arrays of indices for a total of 8



elements. In general, for a neighborhood of N regions where the average number
of neighbors for a region is K, the space required to store an edgeset is N x K,
where K < N. As N increases, K usually remains constant, thus the edgeset
encoding is more efficient.

Because Stan provides vectorized operations as well as multi-index expressions,
line 3 of the body of function icar_normal_lpdf

-0.5 * dot_self(phi[nodel] - phi[node2])

is the direct translation of the pairwise difference formula

p(0) xcexp | —5 3 (61— 6;)°

i~vj

The entries in arrays nodel and node2 are indexes for phi. The expressions
phi[nodel] and phi[node2] are multiple indexing expressions; each evaluates to
a vector of length N_edges whose entries are values of phi at the indices in nodel
and node2. Vector subtraction yields the vector of pairwise differences. The Stan
math library function dot_self multiplies this vector by itself, the result is the
sum of the squares of the pairwise differences.

The expression on line 4 enforces the sum-to-zero constraint on phi:

normal_lpdf(sum(phi) | 0, 0.001 * N);

Since the random vector phi sums to zero, it follows that the mean of phi must
also be zero, but instead of requiring the mean to be exactly zero, this constraint
“soft-centers” the mean by keeping it as close to zero as possible. This expression
calls Stan’s implementation of the normal probability density. The calling syntax
for a probability density functions follows probability function notation so that
a vertical bar is used to separate the outcome from the parameters of the
distribution. The straightforward specification of this constraint is:

normal_lpdf(mean(phi) | 0, 0.001);

The mean is the sum of the vector elements divided by the vector length and
division is a relatively expensive operation. By multiplying the location and
scala parameters by the vector length, we remove the division operation from
the formula.

For ICAR models the neighborhood structure comes into the model as data.
Data variables are declared in the data block, (lines 7-12). The variables N and
N_edges specify the size and range limits on the edgeset arrays nodel and node2,
therefore the former are declared before the latter. Constraints on the range
of allowed values for a variable follow the variable type name in the variable
declaration. Because the variables N and N_edges hold size information they are
constrained to be greater than or equal to 0. The edgeset arrays are indexes over
the N areal regions, therefore these are constrained to be between 1 and N. These
constraints are enforced when the data is read in during model instantiation.

The ICAR spatial random variable ¢ is declared in the parameters block,
lines 13-15, and the model block, lines 16-18 computes the log probability density
up to a proportional constant.



The model block computes the total log probability density by specifying the
distribution of phi (line 17) using a sampling statement. A sampling statement
specifies that the expression on the left hand side of the symbol ~ is distributed
according to the right hand side log probability density function, (or log proba-
bility mass function for discrete distributions). Despite the name, this statement
doesn’t actually perform sampling; it is functionally equivalent to incrementing
the total log probability density by the value returned by calling the equivalent
log probability density function with the with left hand side expression as the
first argument. E.g., line 17 is equivalent to incrementing the total log probability
density by the value returned by : icar_normal_lpdf(phi | N, nodel, node2)

Fitting Stan Models to Data with RStan

We use the R package rstan to fit the ICAR model to the map of areal
regions used in the case study in the following section. This package contains
functions to compile and fit Stan models, generate reports, and save and reload
model fits. The function stan compiles a Stan program to C++, instantiates
the compiled model together with the inputs specified in the data block of the
Stan program, and then runs the HMC sampler to produce a set of draws from
the target log probability density specified by the model block.

The spatial data in our example consists of the neighborhood graph over the
New York City 2010 census tracts. After downloading the geographic datafiles
from the US Census Bureau, we used the R package spdep to get a list of all
neighbors for the census tracts in the case study (n1=2095). The neighborhood
graph was edited to create a fully connected graph. Finally, we transformed the
list into the set inputs to match the to the data variables in program icar.stan:
integer variables N and N_edges, and integer array variables nodel and node2,
the graph edgeset. The file bym2_nyc_data.R contains these inputs.

The script fit_icar_nyc.R sets up the R environment, loads the data, fits
the model to the data, and provides diagnostics and a summary of the resulting
sample.

# fit model icar.stan to NYC census tracts neighborhood map

library(rstan);

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

source(file="bym2_nyc.data.R");

icar_nyc_stanfit = stan("icar.stan",
data=1list(N,N_edges,nodel,node2),
control=1list(max_treedepth=15));

check_hmc_diagnostics(icar_nyc_stanfit);

print(icar_nyc_stanfit, probs=c(0.25, 0.75), digits_summary = 1);

The stan function returns a stanfit object which contains both the posterior
draws and sampler diagnostic values produced by each chain used to detect
problems with the model fit. The arguments to the stan function specify the Stan
program file, the list of data variables, and controls to the sampler. The default
settings will use the NUTS HMC sampler to run 4 chains for 2000 iterations,
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http://mc-stan.org/rstan/
http://mc-stan.org/rstan/reference/stan.html
https://cran.r-project.org/web/packages/spdep/spdep.pdf
http://mc-stan.org/rstan/articles/stanfit_objects.html

where the first 1000 iterations are warmup and the last 1000 iterations are saved
as output, producing a sample consisting of 4000 draws from the posterior.

The check_hmc_diagnostics function checks that the sampler was able to
able to fully and effectively explore the joint distribution specified by the model.
It reports on

 divergences, which signal that the HMC sampler cannot adequately explore
all regions of the posterior, resulting in a biased sample. Increasing
the sampler’s adapt_delta control can sometimes resolve this problem,
otherwise it may be necessary to reparameterize the model. See (Betancourt
2017).

o treedepth - iterations which exceed maximum treedepth result in slow
sampling time; to resolve this, increase the treedepth via the sampler’s
max_treedepth control. In this example, it was necessary to increase the
max_treedepth control above 12 in order to eliminate these warnings.

e E_BFMI - the Bayesian Fraction of Missing Information for each chain.
This can sometimes be resolved by increasing the number of warmup
iterations, otherwise it may be necessary to reparameterize the model.

The print function returns a set of summary statistics, described in the
RStan vignette Accessing the contents of a stanfit object.

The summary is a matrix with rows corresponding to parameters
and columns to the various summary quantities. These include
the posterior mean, the posterior standard deviation, and various
quantiles computed from the draws. ... For models fit using MCMC,
also included in the summary are the Monte Carlo standard error
(se_mean), the effective sample size (n_eff), and the R-hat statistic
(Rhat).

Here we call the print function with optional arguments probs and digits_summary.
The probs argument specifies that only the 0.25 and 0.75 quantile estimates
should be displayed. In this example, 1 digit of precision is sufficient to check
the summaries for all elements of parameter phi. This call returns the following.
Inference for Stan model: icar.

4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean  sd 25% 75% n_eff Rhat
phi[1] 0.0 0.0 0.8 -0.5 0.6 3354 1
phi[2] 0.0 0.0 0.8 -0.5 0.5 3130 1
phi[2094] 0.0 0.0 1.3 -0.9 0.9 2110 1
phi[2095] 0.0 0.0 1.3 -0.8 0.9 2058 1

Although the summary information is designed to be read from left to right,
the column which should always be checked first is the rightmost column labeled
Rhat. The R-hat statistic is a measure of convergence. When a chain fails to

11
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converge, the draws returned by the sampler are not a sample from the posterior
distribution and cannot be used for estimation. All R-hat values should be
extremely close to 1 and values greater than 1.1 are an indication that one or
more of the chains have failed to converge during warmup. All values in the
Rhat column of the summary are 1, indicating that the chains have converged.

The second column from the right labeled is labeled n_eff. The number of
effective samples (Neg) is the number of independent samples with the same
estimation power as the N autocorrelated samples. An MCMC sampler produces
an estimate of the mean. The error in that estimate depends on the number of
effective samples Neg. The column se_mean is the Monte Carlo sampler error
(MCSE) which is is proportional to 1/y/Neg instead of 1/v/N. Tt is computed
by sd/v/n_eff. As Neg increases, the MCSE approaches 0 and the estimated
parameter mean approaches the true mean. Conversely, when Neg is low, so is
the precision of the estimate. In this example, all Neg values are above 1200 with
median value 2598, which is sufficient to estimate all parameters with reasonable
precision.

Since the R-hat and (Neg) statistics indicate that this is a valid sample with
sufficient number of independant draws to estimate all parameters, the next step
is to check the estimates for all parameters in the model. The parameter phi is
a multivariate normal random variable centered at zero with precision matrix
Q. The print summary column labeled mean shows that the estimated mean for
all elements of the vector phi are zero, indicating that this Stan program is a
correct implementation of the ICAR model.

The spatial structure implied by the ICAR prior phi is encoded in its co-
variance matrix . Since the mean of each ¢; depends on that of its neighbors,
we expect to see high co-variance between neighboring regions and we expect
co-variance between non-neighboring regions to be close to zero. To check this
we extract the set of draws for the vector phi from the fitted ICAR model using
RStan’s extract function. Instead of working with the covariance matrix we use
the correlation matrix which standardizes the range of values to [—1,1]. We use
the R package ggplot2 to plot the results.

The elements of phi are ordered by a numeric ID which consists of a borough
code followed by the census tract ID. The borough codes impose the following
order on the five boroughs of New York City: Manhattan, Bronx, Brooklyn,
Queens, Staten Island. The borough code ordering doesn’t correspond to the
neighborhood graph over the boroughs; i.e., the Bronx is not adjacent to Brooklyn,
Queens doesn’t share a border with Staten Island. By plotting the correlation
matrix in input order without further clustering we expect to see that within a
borough, adjacent elements n and n + 1 are likely to be neighbors and should be
positively correlated, while across boroughs elements are unlikely to be neighbors
and should only be weakly correlated or anti-correlated. Because this matrix is
symmetric, we only show correlations for the upper triangular matrix.

12



ICAR Model Spatial Correlation for NYC Census Tracts
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Figure 1: Correlation Matrix for NYC Census Tracts ordered by Borough, Tract ID

In this plot, black lines mark the divisions between the five boroughs. Bright
red indicates strong correlation, white indicates no correlation, dark violet
indicates anti-correlation, and pale red or violet indicates weak correlation
or anti-correlation, respectively. The overall pattern shows high correlation
(bright red) within each borough and weak anti-correlation (pale violet) between
boroughs.

The boroughs of Staten Island and Queens have no common border. Zooming
in on the upper right corner, the census tracts of Staten Island and part of
Queens, show the pattern of high correlation within each borough and weak
anti-correlation between the two boroughs.

13



Staten Island

Figure 2: Correlations Between Queens and Staten Island Census Tracts

These diagnostics and plots validate the Stan model fit of the New York City
neighborhood graph to the ICAR prior.

Second Stan program: bym2.stan

The Stan program bym2.stan implements the BYM2 model for a fully con-
nected neighborhood graph. The log probability density is a Poisson GLM with
a fixed intercept and vector of coefficients together with a combined random
effects component consisting of an ICAR model for spatial smoothing and an
ordinary random effects component for non-spatial heterogeneity. This combined
random effects component is is scaled by a parameter for the overall standard
deviation. The Poisson regression is specified in the model block as

y ~ poisson_log(log_E + beta® + x * betas + convolved_re * sigma);

The combined random effects components is specified as:

(Vo/s) 6"+ (\/1=p) 0"

This is coded as the variable convolved_re which is declared and defined in the
transformed parameters block:

convolved_re = sqrt(rho / scaling_factor) * phi
+ sqrt(l - rho) * theta;

In a Stan program, the model block contains the specification of the likeli-
hood and priors. The parameters block is a declarations-only block; parame-
ters are declared here and constraints are specified in the model block. The
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transformed parameters block uses the set of proposed (unconstrained) param-
eters to compute derived values; these derived values are used to compute the
likelihood. The declarative nature of a Stan program makes it easy to see the
role that every variable plays in the model, however for complicated models,
implementation logic is spread across the program blocks, as is the case here.
The complete implementation of the BYM2 model is shown in Listing 2.

( ]
functions {

real icar_normal_lpdf(vector phi, int N, int[] nodel, int[] node2) {
return -0.5 x dot_self(phi[nodel] - phi[node2])
+ normal_lpdf(sum(phi) | 0, 0.001 * N);
}
}
data {
int<lower=0> N;
int<lower=0> N_edges;
int<lower=1, upper=N> nodel[N_edges]; // nodel[i], node2[i] are nbs
int<lower=1, upper=N> node2[N_edges]; // nodel[i] < node2[i]

int<lower=0> y[N]; // count outcomes

vector<lower=0>[N] E; // exposure

int<lower=1> K; // num covariates

matrix[N, K] x; // design matrix

real<lower=0> scaling_factor; // scales the variance of the spatial
effects

}
transformed data {
vector[N] log_E = log(E);

}
parameters {
real beta0; // intercept
vector[K] betas; // covariates
real logit_rho; // proportion spatial variance
vector[N] phi; // spatial effects
vector[N] theta; // heterogeneous effects
real<lower=0> sigma; // overall standard deviation
}

transformed parameters {
real<lower=0, upper=1> rho = inv_logit(logit_rho);
vector[N] convolved_re = sqrt(rho / scaling_factor) * phi
+ sqrt(l - rho) * theta;
}
model {
y ~ poisson_log(log_E + beta® + x x betas + convolved_re * sigma);
beta® ~ normal(0, 1);
betas ~ normal(0, 1);
logit_rho ~ normal(0, 1);
sigma ~ normal(0, 1);
theta ~ normal(0, 1);
phi ~ icar_normal_lpdf(N, nodel, node2);
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43
44
45
46
47
48
49
50
51
52
53
54
55

56

}
generated quantities {
vector[N] eta = log_E + beta® + x * betas + convolved_re * sigma;
vector[N] mu = exp(eta);
int y_rep[N];
if (max(eta) > 20) {
// avoid overflow in poisson_log_rng

print("max eta too big: ", max(eta));
for (n in 1:N)
y_rep[n] = -1;
} else {
for (n in 1:N)
y_rep[n] = poisson_log rng(eta[n]);
}

Listing 2: Program bym?2.stan

The functions block (lines 1-6) contains the definition of the function
icar_normal_lpdf which computes the ICAR prior, as in the program icar.stan.

The data block (lines 7-17) contains the definitions for the four variables
which specify neighborhood structure, as well as the data and outcomes from the
disease mapping study, i.e., the observed counts per region, population (offset),
number of regions, dimensions of the vector of covariates, design matrix.

The transformed data block (lines 18-20) puts the offset term on the log scale.
The data and transformed data blocks only executed once, when Stan instantiates
the model together with the data. This program specifies the scaling factor
as data; however it is possible to compute this directly from the neighborhood
graph, in which case, this variable would be declared in the transformed data
block, along with the statements required to compute this value.

The ensemble of the parameters block (lines 21-28), transformed parameters
block (lines 29-33), and model block (lines 34-42), specifies the model parameters
and the likelihood and priors. For every step of the sampler, the statements in
the transformed parameters and model block are computed in order using the
set of proposed (unconstrained) parameters. The total log probability density is
incremented by the sampling statements in the model block.

The generated quantities block (lines 43-56) computes additional quantities
of interest. This block is executed once per iteration, at the point where the
sampler proposal has been accepted. The quantities of interest are computed
using the (unconstrained) values of all parameters and transformed parameters
for that draw. Here we use the generated quantities block to generate two
quantities of interest based on the parameters for that draw:

o mu - the estimated of input y (lines 44-45)
o y_rep - an estimate of new data ¢ (lines 46-55).

On line 54 we use Stan’s poisson_log_rng function to generate a new
observation y_rep based on the data and estimated parameters for that draw.
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Lines 47-51 guard against potential numerical problems which may occur during
warmup. We use the generated y_rep values and the Stan’s bayesplot package
for R to carry out posterior predictive checks (PPC), (Gabry et al. 2017). PPC
is a model checking procedure in which a model is used to generate new data
from from the current data. From Gabry et al.:

The idea behind posterior predictive checking is simple: if a model is
a good fit we should be able to use it to generate data that resemble
the data we observed.

In the next section we fit the BYM2 model with the data from our case study
and then evaluate the model fit.

Case Study: Youth Pedestrian Injuries in NYC, 2005-2014

In New York City (NYC) pedestrians account for approximately half of all
traffic fatalities (Fung and Conderino 2017). Small-area spatiotemporal modeling
using Bayesian models such as the Besag-York-Mollie (BYM) model can be a
useful tool to explore areas of high risk for pedestrian crashes and to evaluate
the joint role of sociodemographic and traffic related risk factors (Anonymous
2015). This case study focuses on school-age pedestrian crashes using ten years of
recent data from 2005-2014. We used the Stan platform to fit the BYM2 model
to dataset consisting of census tract counts of school-age pedestrian crashes,
exploring the effects of commuting patterns, vehicular traffic density, social
fragmentation, and income.

Methods
Measures

We obtained motor vehicle collision data from the New York City Department
of Transportation for the ten most recent years of data available at the time
of request (2005-2014). Within this dataset, we identified collisions involving
school age children 5-18 years of age as pedestrians. We then assigned each crash
to the census tract in which it occurred, using boundaries from the 2010 United
States Census.

We obtained 2010 US Census counts of youths aged 5-18 in each census tract
from the US Census Bureau (“American Factfinder,” n.d.) We also obtained
the Census Bureau’s American Community Survey (ACS) five-year estimates
of median household income and the percentage of commuters who traveled to
work by means other than a private vehicle (i.e., by walking, bicycling, or using
public transportation) for each tract for 2010-2014. We constructed an index of
social fragmentation based on the work of Peter Congdon (Congdon 2012), as
described previously study (Anonymous 2015), using updated ACS estimates
of vacant housing units, householders living alone, non-owner occupied housing
units, and population having moved within the previous year. We standardized
each of these metrics with a mean of zero and added them together as a single
index. Finally, we obtained street level annual average daily traffic (AADT) data
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from the New York State Department of Transportation on the New York Open
Data portal (“Annual Average Daily Traffic (Aadt): Beginning 1977,” n.d.). We
created a spatial overlay of streets and census tracts to assign each census tract
the maximum AADT value of its underlying streets in 2015.

We used the spdep: :poly2nb R function to assign adjacency between census
tracts, allowing water boundaries. We manually added contiguity between the
Rockaway peninsula and the rest of Queens (which are separated by a Jamaica
Bay, a large body of water) for a fully connected map. We excluded parks,
cemeteries, and any other census tracts for which the population of children
between ages 5 and age 18 was five or fewer resident children.

Analysis

We computed descriptive statistics and applied the BYM2 model in Stan
to create smoothed estimates of youth pedestrian crash rates while quantifying
the effects of pedestrian and public transit commute methods, traffic density,
income, and social fragmentation. We log transformed both traffic counts and
income in order to normalize their distributions, as the model initially failed to
converge with the non-transformed data. The specification of the model was as
follows, where the unit of analysis is census tracts:

e y = count of school age pedestrians ages 5-18 injured in traffic crashes.

o x1 (“pct__commute”) = percent commuters using means other than private
vehicle (i.e. walking, bicycling, or public transit).

o x2 (“log income”) = log of median household income.

o x3 (“std_frag_index”) = standardized index of social fragmentation (va-
cancy, rentals, living alone, recently moved).

o x4 (“log_aadt”) = log of maximum AADT value in each tract in 2015.

o an offset term for the youth population ages 5-18 in each census tract.

e the BYM2 convolved random effects term, comprising parameters rho, phi,
and theta, the proportion of spatial variance, the spatial ICAR term, and
the non-spatial vector of normal random variates, respectively.

¢ the overall variance of the convolved random effects term sigma.

Results

Descriptive Statistics

From 2005-2014 there were 17,529 crashes (1,753 per year, on average) injuring
school age pedestrians in NYC (Figure 3) of which 17,193 (98.1%) occurred in
populated census tracts. There was a range of 0 to 57 and a median of 6 such
crashes per census tract (Table 1), which exhibited a strong Poisson distribution
(Figure 4).
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Figure 3: School age pedestrians injured in traffic crashes, NYC 2005-2014
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Figure 4: Histogram of school-age pedestrian injury counts per census tract, NYC 2005-2014

Table 1 summarizes the distribution of pedestrian injuries (ages 5-18 yrs)

and sociodemographic measures by NYC census tracts having youth population
> 5 (n=2095). Median household income ranged in these tracts from $9,000 to
$232,000 in 2010-2014, with a median of $53,890. The proportion of workers who
traveled to work by means other than a private vehicle (e.g. walking, bicycling, or
taking public transportation) ranged from 10% to 100%, and was heavily right-
skewed with most census tracts having >50% of workers commuting by walking,
bicycling, or using public transportation. By definition, social fragmentation was
centered around zero. The census tract maximums of annual average daily traffic
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Table 1: Distribution of measures by census tract

med min mean max
Youth pedestrian injuries, 6 0 8.2 57
2005-14
Population ages 5-18 years, 2010 510 6 596.4 3,315
Med. household income in USD, $53,890 $9,327 $58,497 $232,266
2010-14
Pct. commute by 73.9 9.7 69.8 100
walk/cycle/public trans, 2010-14
Standardized social -0.1 -6.7 0 18.7

fragmentation index
Traffic Volume (AADT), 2015 19,178 843 37,248 276,476

volumes (AADT) per underlying segment within each tract ranged from 800 to
277,000 vehicles per day with most tracts having maximum AADT counts below
50,000 vehicles. Histograms and maps of each of these measures are included in
a supplemental appendix.

Model Results

To fit the BYM2 model to the New York City pedestrian crash data using
RStan we ran 4 chains of 2000 iterations each where the first 1000 draws were
warmup and the last 1000 draws were saved as output for a total of 4000 draws
from the posterior. Running the 4 chains in parallel on a MacBook Pro laptop
computer with a dual-core 3.1 GHz processor and 16GB of memory took 21
minutes, as measured by R’s proc.time function. The reported elapsed time
(time from start to finish) was 1296 seconds and the user processing time (total
time across all threads) was 4839 seconds, thus running 4 chains sequentially
would take 4 times as long. The RStan function check_hmc_diagnostics found
no problems encountered by the sampler and the RHat values for all parameters
were extremely close to 1.0, indicating that the model had successfully converged.

To carry out posterior predictive checking on the fitted model we first obtain
the generated quantity y_rep from the stanfit object, and then use Stan’s
bayesplot (R) package to generate a visual comparison of the data y and the
simulated new data ¢ using the ppc_ dens_ overlay function.
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Figure 5: Posterior Predictive Check, density overlay

The dark line is the distribution of the observed outcomes y and each of the
50 lighter lines is the kernel density estimate of one of one of the rows in y_rep.
The lighter overlays follow the distribution of y, with a tendency towards the
mean value. To further investigate, we use the ppc_ stat function which plots
the distribution of y_rep against the distribution of the data y for some test
statistic. The default test statistic is the mean, therefore we run the command as:
ppc_stat(y, y_rep). As with the density plot, the test statistic plot indicates
that the BYM2 model fits the data.

T = mean

T(}'ren)

| 76)

80 82 8.4

Figure 6: Posterior Predictive Check, test statistic

Table 2 shows the summary of the parameter estimates from the fitted
model. Because the commute data is recorded as a percentage between 0 and
1 and not on the scale 0 to 100, it is necessary to divide the “pct_commute”
regression coefficient by 100 in order to properly interpret its contribution. Thus
for every percentage point increase in population commuting by means other
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Table 2: Parameter estimates from BYM2 Model

mean Se_mean sd X2.5 X975 N _eff R.hat

intercept -3.5 0 05 -45 -2.5 1255 1
commute 0.5 0 02 0.2 0.9 it 1
log income -0.1 0 0.0 -0.2 0.0 1204 1
std frag index 0.1 0 0.0 0.0 0.1 1527 1
log traffic 0.0 0 0.0 0.0 0.0 2551 1
rho 0.4 0 0.1 0.3 0.5 219 1
sigma 0.8 0 0.0 0.8 0.9 301 1

than a private vehicle, there was a exp(0.005) = 0.5% increase in the expected
count of youth pedestrian injuries, controlling for income, vehicular traffic, social
fragmentation, and population. The credible interval ranged from a exp(0.002)
= 0.2% to exp(0.009) = 0.9% increase in pedestrian injuries per percentage point
increase in on-foot commuters. There was a 1.2% decrease in youth pedestrian
injuries per 10% increase in median household income. Social fragmentation was
also significantly associated with youth pedestrian injuries, with an exp(0.1) =
10% increase in youth pedestrian injuries per standard deviation increase in the
combined index (i.e. vacancy, non-owner occupied housing, recent moves, and
householder living alone), controlling for other model covariates. The credible
interval for the effect of daily traffic included zero in our fully adjusted model
after controlling for social fragmentation and pedestrian/bicyclist/public transit
commute rates. The parameter sigma, the overall variance of the combined
random effects term was exp(0.8) = 2.2, indicating substantial overall variance.
Nearly half of that variance, parameter rho, was spatially structured exp(0.4) =
49%.

From the fitted model we also obtain the quantity of interest mu, which is
the estimate of school-age pedestrian injuries for each populated census tract.
Because BYM models contain both a spatial and non-spatial random effects com-
ponent, they are able to account for almost all of the over-dispersion not modelled
by the Poisson variates (Figure 6). The overall burden of youth pedestrian in-
juries was most heavily concentrated in the Bronx, northern Manhattan/Harlem,
and central Brooklyn, as well as some pockets of Queens and Staten Island,
(Figure 7).
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Figure 7: Per-tract injuries, actual counts vs. fitted BYM2 model estimates
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Figure 8: Fitted BYM2 model estimated counts of school-age pedestrian crash injuries, 2005-
2014

Discussion of the Case Study

NYC has embraced initiatives such as the national Safe Routes to School
program (“Safe Routes,” n.d.) and Vision Zero (“Vision Zero: Traffic Safety
by Sweden,” n.d.) in order to build on progress to date, recognizing that no
traffic fatality should be considered acceptable. Our analysis explored spatial
associations with traffic crashes injuring school age pedestrians in NYC, while
illustrating the utility of Stan for computationally-intensive hierarchical modeling.
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We found that income and social fragmentation were significant predictors of
risk; that is, accounting for traffic and pedestrian-dominant travel, there was
an effect of transience in low-income communities having high levels of rentals,
vacancies, relocations, and residents living alone. All of these data are publicly
available and frequently updated via the American Community Survey for census
tracts throughout the US, which may provide communities with a useful tool to
help identify areas of increased risk for pedestrian injury in the absence of other
readily available data.

Spatial correlation, that is the tendency of higher rates of injury to cluster
around other areas with high injury rates, played a moderate role in risk predic-
tion for youth pedestrian injuries in NYC. About half of the random variance
in our model was attributable to spatial correlation, accounting for commute
method, income, traffic, and social fragmentation. Accordingly, the fitted map
demonstrated gradual spatial smoothing, lending stability to the visualization of
areas of high risk for a relatively rare outcome at the fine spatial scale of census
tracts.

Despite the complexity of our model and the large number of samples, the
model successfully converged in Stan in 21 minutes on an ordinary desktop
computer. Moreover, as described in the model development portion of this
manuscript, we believe the use of Hamiltonian Monte Carlo simulation provides
an improved method of sampling the posterior distribution compared with Gibbs
and similar random-walk style Markov chain sampling.

Notably, the neighborhoods of central Brooklyn, the Bronx and northern
Manhattan are more predominant in our map of youth pedestrian injuries
compared with maps of total pedestrian injuries, which are relatively more
concentrated in central and lower Manhattan (Viola, Roe, and Shin 2010). One
primary reason for the differences between youth and all-age pedestrian injury
maps is most likely the influence of daytime commuter population influx in
central and lower Manhattan, as noted by Viola et al (2010). Areas having high
frequencies of youth pedestrian injuries also tend to overlap with areas having
the largest youth populations in NYC.

Because our analysis included a population offset term, we excluded large
parks such as Central Park in Manhattan, Prospect Park in Brooklyn, and
Van Cortlandt Park in the Bronx, even though such parks have both vehicular
and pedestrian travel. Census tracts, moreover, are defined for the purposes
of counting residents, and their boundaries do not necessarily have etiologic
relevance to the study of pedestrian injuries (i.e. there can be diverse road types
and traffic patterns within a census tract). Previous work, for example, has
demonstrated the utility of virtual street audits to identify specific features of
the built environment associated with pedestrian crashes at smaller spatial scales
(Anonymous 2016). Future work should explore the impacts of infrastructure
and other safety interventions on localized pedestrian crash rates, capitalizing
on the efficiency of BYM modeling in Stan.
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Conclusion of the Case Study

Stan proved to be an efficient and precise platform to build a hierarchical
spatial model for youth pedestrian injuries in NYC. We confirmed prior findings
that neighborhoods with higher social fragmentation and lower median incomes
are disproportionately affected by pedestrian injuries. Our findings also demon-
strate that the proportion of workers commuting to work by walking, bicycling,
and public transit is correlated with youth pedestrian risk. This nationally and
publicly available metric may serve as a useful surrogate index of pedestrian
density in the absence of other readily available data. Finally, the performance
and results obtained using Stan demonstrate its utility and strength for future
spatial and spatiotemporal epidemiologic research, especially with large datasets.

Disclaimer

This report utilizes information which was originally compiled by the New
York City Department of Transportation (DOT) for governmental purposes;
the information has subsequently been stratified and aggregated for analysis
by the authors of this manuscript. DOT and the City of New York make no
representation as to the accuracy or usefulness of the information provided by
this application or the information’s suitability for any purpose and disclaim any
liability for omissions or errors that may be contained therein.
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Figure 9: Pairs plot of NYC case study regression data: injuries, population, predictors
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Figure 10: Areal map of reported injuries per census tract, NYC 2005-2014
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Figure 11: Areal map of school-age population per census tract, NYC 2005-2014
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Figure 12: Areal map of median household income per census tract, NYC 2005-2014
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Figure 13: Areal map of standardized index of social fragmentation per census tract, NYC
2005-2014
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Figure 14: Areal map of pct commuters using means other than private vehicle per census
tract, NYC 2005-2014
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Figure 15: Areal map of maximum AADT count in each tract, NYC 2015



