Physiological Pharmacokinetic Analysis Using
Population Modeling and Informative Prior

Andrew GELMAN, Frederic BoIS, and Jiming JIANG

Distributions

We describe a general approach using Bayesian analysis for the estimation of parameters in physiological pharmacokinetic models.
The chief statistical difficulty in estimation with these models is that any physiological model that is even approximately realistic
will have a large number of parameters, often comparable to the number of observations in a typical pharmacokinetic experiment
(e.g., 28 measurements and 15 parameters for each subject). In addition, the parameters are generally poorly identified, akin to
the well-known ill-conditioned problem of estimating a mixture of declining exponentials. Our modeling includes (a) hierarchical
population modeling, which allows partial pooling of information among different experimental subjects; (b) a pharmacokinetic
model including compartments for well-perfused tissues, poorly perfused tissues, fat, and the liver; and (c) informative prior
distributions for population parameters, which is possible because the parameters represent real physiological variables. We discuss
how to estimate the models using Bayesian posterior simulation, a method that automatically includes the uncertainty inherent in
estimating such a large number of parameters. We also discuss how to check model fit and sensitivity to the prior distribution
using posterior predictive simulation. We illustrate the application to the toxicokinetics of tetrachloroethylene (perchloroethylene
[PERC]), the problem that motivated this work.
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1. INTRODUCTION

We discuss statistical estimation of models in pharma-
cokinetics—the study of the mechanisms and kinetics of
chemicals’ absorption, distribution, metabolism, and elimi-
nation by the body in animals or humans (e.g., Rowland and
Tozer 1989). Our purposes are twofold: to estimate the pa-
rameters of the model and, more important, to use the model
to estimate particular quantities of interest, such as the rate
at which the compound is metabolized under specified con-
ditions (e.g., breathing air with a known concentration of
the compound). Inferences about such estimands can then
be applied to risk analyses. For this and other purposes, it
is useful to have quantitative assessments of uncertainty.

For the purposes of public health, it is desirable to esti-
mate the distribution of individual characteristics, such as
parameters in a pharmacokinetic model, and the associated
quantities of interest over the population. Even better is
to determine how these quantities vary as functions of in-
dividual characteristics such as sex, age, and body mass.
In any case, however, the goal is to measure the distribu-
tion of population characteristics, rather than a single set
of parameters representing the “average person.” Hierar-
chical models have a long history in pharmacokinetics (see,
e.g., Racine-Poon and Smith 1990, Sheiner 1984, Sheiner,
Rosenberg, and Melmon 1972, and Yuh et al. 1994 for a
comprehensive bibliography).
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We discuss the estimation of pharmacokinetic models us-
ing indirect measurements on individuals. A known dose of
the compound is given to a subject, and then the concen-
tration of the compound is measured in the subject’s blood
and exhaled air. Repeated measurements are taken over sev-
eral hours. A pharmacokinetic model is set up that relates
the corncentration of the chemical in different compartments
(e.g., blood, fatty tissues, other tissues) within the subject’s
body, and the parameters of the model for that individual
are estimated based on the time series of measurements.

A characteristic difficulty of estimating pharmacokinetic
models is that they predict a pattern of concentration over
time that is close to a mixture of declining exponential func-
tions, with the amplitudes and decay times of the different
components corresponding to functions of the model pa-
rameters. It is well known (see, e.g., Acton 1970, p. 253)
that estimation of the decay times of a mixture of exponen-
tials is an ill-conditioned problem; that is, the parameters
in such a model are hard to estimate simultaneously.

Because of the difficulty of estimation, it is common prac-
tice to reduce the number of parameters to be estimated
in a pharmacokinetic model, either by fixing all but a few
parameters to guessed values and estimating the remain-
ing parameters or by setting up a model with very few
parameters—a one- or two-compartment model. The first
approach has the serious problem of producing inaccurate
estimates and underestimating uncertainty when the param-
eters to be fixed are not known accurately, as is typical in
experiments with live human subjects (see the discussion in
Woodruff and Bois 1993). The second approach has been
used with some success recently (e.g., Wakefield, Smith,
Racine-Poon, and Gelfand 1994), but has the limitation of
not allowing realistic multicompartment models to be fit.
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The complexity required of a model will depend on the
aims of the analysis and on the data available.

The problem of estimating metabolism from indirect data
can be addressed using a physiological pharmacokinetic
model; that is, one in which the individual and population
parameters have direct physical interpretations (e.g., blood
flow through the fatty tissue, tissue/blood partition coeffi-
cients). Such models allow the simulation and prediction of
a variety of doses in specific target organs, while including
complex nonlinear behavior of metabolic pathways (Bal-
ant and Gex-Fabry 1990; Gerlowski and Jain 1983; Leung
1991; Menzel 1987; Ritschel and Banerjee 1986). These
models are also rich in structure and permit the identifica-
tion of many of their parameter values through prior (e.g.,
published) physiological data. Following our own work
(Bois, Zeise, and Tozer 1990) and that of others (Bogen
and MacKone 1988; Guberan and Fernandez 1974; Koizumi
1989; Ward, Travis, Hetrick, Andersen, and Gargas 1988),
we decided to use such models. Because the parameters of
these models are essentially impossible to estimate from the
data alone, it is crucial that they have physical meaning and
can be assigned informative prior distributions.

Recent developments in Monte Carlo Bayesian statistical
computing have removed some of the obstacles that could
hamper the alliance of statistics and physiological phar-
macokinetic modeling. We describe the application to our
model of Markov chain simulation, which is a particularly
simple and powerful tool. A similar approach to pharma-
cokinetic modeling was presented by Wakefield et al. (1994)
and Wakefield (1996), for classical one-compartment mod-
els. By using a physiological model, we increase the num-
ber of parameters but can take advantage of a large body
of prior information on the parameter values.

We present our general approach in the context of the
application to the metabolism of tetrachloroethylene from
exposure in air. As results we report predictions and inter-
val estimates on the fraction of tetrachloroethylene (per-
chloroethylene [PERC]) metabolized at low and high doses
in humans. We discuss how this information can improve
our use of toxicokinetic modeling for exposure to toxic sub-
stances in the air. (Pharmacokinetic refers to drugs, and tox-
icokinetic refers to toxic compounds; for convenience, we
use the former term to refer to both.)

1.1 Background and Experimental Data for the PERC
Example

Detailed results of our analysis of PERC are given by
Bois et al. (1996). We briefly give the background here.
The greatest occupational exposures to PERC are in dry
cleaners, where 50 parts per million (ppm) is a typical con-
centration in air. (In comparison, the normal concentration
of PERC in air is about .001 ppm.) PERC is carcinogenic
in animals and is likely carcinogenic in humans as well.
Although the actual carcinogenic metabolites have not yet
been identified, the fraction metabolized is likely to be a
better measure of dose than is PERC exposure itself. In-
ference is needed because the total amount of metabolites
formed has never been directly measured; other endpoints
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have been observed, such as PERC blood and exhaled air
concentrations or the blood concentration and urinary ex-
cretion of particular metabolites. Extrapolation is needed to
infer low-dose metabolism from high-dose exposures; after
a high exposure, the fraction metabolized amounts to a few
percent, but this may not hold at low doses because of the
possible saturability of PERC metabolism (Ikeda, Ohtsuji,
Inamura, and Komoike 1972; Ohtsuki, Sato, Koizume, Ku-
mai, and Ikeda 1983).

We used previously collected data on the concentrations
of PERC in exhaled air and venous blood for six healthy
young adult Caucasian male volunteers exposed to PERC in
an inhalation chamber for 4 hours (Monster, personal com-
munication; Monster, Boersma, and Steenweg 1979), with
concentrations of PERC measured over the week follow-
ing exposure. Two exposure levels were used: 72 ppm (204
1g/L) and 144 ppm (409 ug/L). A subset of the experimen-
tal data is displayed in Figure [; for clarity, measurements
are shown for only two of the six subjects.

2. SETTING UP A MODEL

We set up a model in several stages. A pharmacokinetic
model describes the flow of the compound in the body in
terms of several parameters for each individual. A popula-
tion model describes the distribution of the parameters in
the population as a function of several population parame-
ters, which in turn have a prior distribution based on scien-
tific knowledge. Finally, the measurement model describes
the distribution of deviations of the data from their expected
values predicted from the pharmacokinetic model. Once all
parts of the model have been specified, they are combined
into a posterior distribution for Bayesian analysis.

2.1 Individual Pharmacokinetic Model

We use a previously developed model (Bois et al. 1990) in
which the human body is divided into four compartments:
poorly perfused tissues, well-perfused tissues, fat, and liver.
Given a known concentration of the compound in the air,
the concentration of the compound in each compartment
over time is governed by a first-order differential equation,
with parameters for the volume, blood flow, and partition
coefficient (i.e., equilibrium concentration relative to the
blood) of each compartment. Compartments are assumed
to be homogeneous, and distribution is flow limited. Pul-
monary exchanges are modeled by assuming instantaneous
equilibrium between alveolar air, venous blood, and arterial
blood, according to Andersen (1981). In addition, differen-
tial equations of the form dCy/dt = (Cyupy — Cs/Ps)Fs/ Vs
describe the time dependence of the concentration Cs of the
compound in each compartment s as a function of blood
flow F, volume Vi, arterial blood concentration Cy,, and
partition coefficient P,. These equations are linear except
for the liver compartment, in which a Michaelis—-Menten
term describes the kinetics of saturable enzymatic reac-
tions (Michaelis and Menten 1913) for the metabolic clear-
ance of the compound. For this compartment, dCs/dt =
(Cart - CQ/PS)Pl/VS - ‘/lluelxcs/[Vs'<I('rr:, + Cs)}: Where
Vinax 18 the maximum rate of metabolism and K, is the
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Figure 1. Individual Exhaled Air and Blood Concentrations Postexposure Time Profiles for Two Volunteers (O, Subject A; /\, Subject F) Exposed
to PERC for 4 Hours (Experimental Data of Monster et al. 1979). Measurements began immediately after PERC exposure ended. The left and
right halves of the figure correspond to exposed concentrations of 72 and 144 ppm. For clarity, measurements for only two of the six experimental

subjects are shown.

Michaelis constant. We use the notation 8 = (6k1, ..., 0kL)
as the vector of L parameters associated with person k. In
our particular setup, L = 15 (see Table 1 for a list of the
parameters).

This sort of model is standard in pharmacokinetics; see
the list of references for more details. Given the values
of the physiological parameters and initial exposure con-
ditions, we solve the differential equation to obtain con-
centrations of the compound and rate of metabolism as
a function of time, using Gear’s routine for stiff systems
(Gear 1971a,b) as implemented in our own software, MC-
Sim (available from STATLIB), to compute expected con-
centrations in blood and exhaled air and quantity metabo-
lized for a given period.

2.2 Population Model

One goal of this work is to estimate the distribution of
the individual pharmacokinetic parameters, in particular the
distribution of predicted values such as fraction metabo-
lized, in the general population or in subsets of it. In an ex-
periment with K individuals, we set up a hierarchical model
on the K vectors of parameters, 64, ..., 0. The hierarchi-
cal model allows us to estimate the population variability
and also improves the estimates for the individual subjects.
Both these points have been discussed by Yuh et al. (1994)
and, in a Bayesian context, by Wakefield et al. (1994).

A skewed, lognormal-like distribution is generally ob-
served for biological parameters, whereas most, if not
all, parameters also have physiological bounds. For each

individual, &, the individual pharmacokinetic parameters,
0y, after log transformation and appropriate scaling (see
later), are modeled as normal with population mean
and variance X7, truncated to lie within a specified num-
ber (typically, 3) of standard deviations of the mean, where
{=1,...,L indexes the pharmacokinetic parameters in the
model. The distributions are truncated to restrict the model
parameters to scientifically reasonable values (see Sec. 2.3).
In addition, the truncations serve a useful role when we
monitor the simulations of the parameters from their poste-
rior distribution. If the simulations for a parameter are stuck
near truncation points, this indicates that the data and the
pharmacokinetic model strongly contradict the prior distri-
bution, and some part of the model should be reexamined.
Because of the ill-conditioned nature of the problem, we
fear that if we were to fit a completely untruncated model,
we could possibly end up with parameter estimates that are
scientifically unreasonable. If the simulations for a param-
eter are stuck near a truncation point, this would indicate a
flaw in the model. An alternative approach would be to use
untruncated normal distributions and then check whether
simulations happened to be more than 3 standard deviations
from the prior mean; using truncation is a way to ensure that
the parameter simulations are in a reasonable range.

A minor modeling difficulty is that some of the param-
eters are constrained by definition. For each individual £,
the parameters 0o, 0i3, Ox4, and 65, the fractions of blood
flow to each compartment, are constrained to sum to 1.
Also, the parameters 60y, 037, and 6, corresponding to the
scaling coefficients of the organ volumes, are constrained to



Gelman, Bois, and Jiang: Physiologic Pharmacokinetic Analysis 1403
Table 1. Prior and Posterior (Fitted) Distributions of the Physiological Parameters,
for Each Individual and for the Population, From Bois et al. (1996).
. Posterior distributions for individuals
Population Population
Parameter prior A B (o D E F posterior
Ventilation/perfusion 1.6(x+ 1.3) 1.16 1.26 1.19 1.33 1.22 .961 1.19
ratio (VPR) x+13 X+ 1.15 x+ 1.15 X+ 1.14 X+ 1.15 X+ 1.15 X+ 1.15 X+ 1.13
Blood flow, well- A47(x+1.17) 653 .658 .647 .660 .626 .606 .637
perfused tissues (Fwp) x+1.17 X+ 1.06 x+1.07 X+ 1.07 x+ 1.06 x+ 1.08 x+ 1.08 X+ 1.06
Blood flow, poorly 20(x+1.22) 121 123 127 123 132 .134 129
perfused tissues (Fpp) X+ 1.22 X+ 1.12 X+ 1.13 X+ 1.13 X+ 1.12 X+ 1.13 X+ 1.13 X+ 1.1
Blood flow, 07(x+ 1.27) .048 .0442 .0462 .0437 .0507 .0582 .0488
fat (Ff) X+ 1.27 X+ 1.13 X+ 1.13 X+ 1.14 x+1.13 X+ 1.14 X+ 1.14 x+1.12
Blood flow, 25(x+1.15) 173 170 175 .168 .185 .195 179
liver (FI) X+ 1.15 X+ 1.15 X+ 1.16 X+ 1.15 X+ 1.15 X+ 1.16 x=+1.15 X+ 1.11
Volume, well- 27(x+1.36) .189 .201 .202 .201 .183 .188 196
perfused tissues (Vwp) X+ 1.36 X+ 1.14 x+ 1.15 x+ 1.16 x+ 1.15 x+1.15 X+ 1.14 X+ 1.09
Volume, poorly B5(x+1.17) 649 .636 .636 .636 .655 .65 .641
perfused tissues (Vpp) X+ 1.17 x+ 1.04 x+ 1.05 X+ 1.05 X+ 1.05 x+ 1.04 X+ 1.04 x+ 1.03
Volume, .033(x+ 1.1) .032 .033 .033 .033 .033 .032 .033
liver (VI) X+ 1.1 x+ 14 X+ 1.1 X+ 1.1 x+ 1.1 x+ 1.1 X+ 1.1 X+ 1.04
Partition coeff, 12(x+ 1.5) 15.1 16.4 15.3 15.6 18.7 15.8 16.0
blood/air (Pba) x+ 1.3 X+ 1.04 X+ 1.03 X+ 1.04 X+ 1.04 X+ 1.04 X+ 1.04 X+ 1.11
Partition coeff, 4.8(x+ 1.5) 1.83 1.98 1.95 2.00 1.83 1.83 1.92
well-perfused (Pwp) X+ 1.3 x+ 1.15 X+ 1.16 X+ 1.16 x+ 1.16 x+1.15 X+ 1.14 x+1.12
Partition coeff, 1.6(x=+ 1.5) 2.94 2.59 2.51 2.76 4.06 2.96 2.90
poorly perfused (Ppp) x+ 1.3 x+ 1.08 x+ 1.09 X+ 1.09 x+ 1.08 x+ 1.09 X+ 1.09 x+ 1.15
Partition coeff, 125(x+ 1.5) 82.3 69.1 73.9 49.1 171 85.4 84.1
fat (Pf) X+ 1.3 X+ 1.08 x+ 1.08 X+ 1.08 X+ 1.08 x+ 1.09 x+ 1.07 X+ 1.28
Partition coeff, 4.8(x+ 1.5) 2.93 3.07 3.21 3.09 3.16 2.94 3.08
liver (PI) X+ 1.3 x+1.32 x+ 1.33 X+ 1.32 X+ 1.33 x+ 1.33 X+ 1.32 X+ 1.12
Max metabolic rate .042(x+ 10) .0011 .00139 .00214 .00199 .00415 .00165 .00191
in liver (VMI) X+ 2 X+ 1.41 X+ 1.37 x-+ 1.30 X+ 1.34 X+ 1.30 X+ 1.38 X+ 1.45
Km 16(x+ 10) .801 .754 .660 .742 .650 771 .729
in liver (KMI) X+ 1.5 X+ 1.63 X+ 1.61 X+ 1.59 x-+ 157 X+ 1.59 x+ 1.60 X+ 1.20

NOTE: Prior distributions are lognormal truncated at +-3 standard deviations, except for the blood flows and organ volumes, which are constrained to sum to constants as described in the text.

The prior distributions are expressed as eM(x + es)

X+ 920, where S represents the uncertainty in the population mean and X, is the prior estimate of the population standard deviation. For

example, the prior distribution for KMI (bottom row of the table) shows that the population mean is estimated to be 16, with a one-standard deviation range of [1.6, 160}, and the population standard
deviation is estimated to be 1.5. Thus the values of KMI for the six subjects are believed to be fairly similar, but their overall level is poorly known in the prior distribution. Posterior distributions
for each individual are expressed as geometric mean x + geometric standard deviation, as computed from the posterior simulations. Posterior distributions for the population are computed by
simulating random additional persons from the population (based on the posterior distribution of the population parameters).

sum to .873 (the fraction of lean body mass not including
bones) for each individual. Of these three parameters, 6g,
the volume of the liver, is much smaller than the others and
is known relatively precisely. For the purposes of model-
ing and computation, we transform the model in terms of a
new set of parameters 1); and then define the physiological
parameters, y; as follows:

e¥ri
O = e¥r2 4 e¥r3 + e¥ka | e¥rs ’ for 1=2,3,4,5
Pkt
le = (873 - ewks) m y for [ = 6,7,

and

O = eV, for l¥10rlz8. (1)

The parameters 1z, . . ., Y5 and Yye, Yx7 are not identified
(e.g., adding any constant to g, . . ., x5 does not alter the
values of the physiological parameters, 6o, ..., 60ks), but
they are assigned proper prior distributions, and so we can
formally manipulate their posterior distributions. All sub-
stantive inferences are obtained on the scale of the 6,;’s. In
setting up the transformations, we purposely kept the same
number of parameters so that a model of prior indepen-
dence of the parameters would be scientifically reasonable.
For example, if we were to fix the parameters k2 to zero,
then the range of possible values for 6;; would not change,
but setting up independent prior distributions on 3, ¥4,
and x5 would lead to an asymmetric and scientifically un-
reasonable distribution on 6y;,l = 2, 3,4, 5.

The 1, parameters are assumed to follow normal distri-
butions with mean 4, and variance ¥?, truncated at a spec-
ified number of standard deviations. Modeling on the scale
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of v respects the constraints on ¢ while retaining the trun-
cated lognormal distributions for the unconstrained compo-
nents. Bois et al. (1996) and Gelman (1995) provide more
discussion of this choice of constrained model. All compu-
tations are performed with the v’s, which are then trans-
formed back to €’s at the end to interpret the results on the
natural scales.

In the model, the population distributions for the L pa-
rameters are assumed independent, a choice with which we
are comfortable because of the parameterization and scal-
ing used (e.g., blood flows as a proportion of the total rather
than on absolute scales). In general, setting up independent
population distributions means that between-subject infor-
mation about one parameter will not be used to help esti-
mate other parameters in the model. In a study with only
six subjects, very little information will be available from
the data on between-subject correlations, and we judge the
gain in efficiency from modeling these correlations to be
not worth the effort in modeling them, especially because
we have set up the model to minimize such correlations.

2.3 Prior Distribution

To fit the population model, we assign prior distributions
to the means and variances, p; and 212, of the L physio-
logical parameters. We specify a prior distribution for each
w; (normal with parameters M; and Sf, and based on sub-
stantive knowledge) and 7 (inverse-x?, centered at our es-
timate £2, of the true population variance and with a low
number of degrees of freedom v,—typically set to 2—to
indicate large uncertainties).

The hyperparameters M;, S, and X2, are based on esti-
mates available in the literature. We set independent prior
distributions for the y,;’s and ¥;’s because, under our pa-
rameterization, our prior information about the parameters
is essentially independent to the best of our knowledge. The
choice of values for the hyperparameters and the bounds for
truncation (expressed as a number of standard deviations to
be subtracted or added to the mean) for the PERC example
are summarized in the first column of Table 1. In setting
uncertainties, we try to be conservative and set the prior
variances higher rather than lower when there is ambiguity
in the biological literature (e.g., with the partition coeffi-
cients); as a result, truncation ranges of M =+ 3. (or, for the
case of VMI and KMI, M =+ 2S5) include the scientifically
plausible range of parameter values. We specify the prior
distribution for the unconstrained parameters ¢, in terms of
exp(M;), exp(S;), and exp(Xg;), which can be interpreted
as geometric means and standard deviations on the natu-
ral scale. For the constrained parameters 6;,1 = 2,...,7,
we specify the exponentials of the prior mean and stan-
dard deviation of the population mean on the logarithmic
scale, E(log6,), and the exponential of the prior estimate of
the population standard deviation on the logarithmic scale,
SD(log 8)).

Details and scientific background for the informative
prior distributions for the PERC example are given by Bois
et al. (1996). The parameters in a pharmacokinetic model
can be divided into two categories: those that describe the
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body and those that are characteristic of the compound be-
ing studied. The population distribution for any parameter
depends on the population of individuals under study. For
the PERC study, we were interested in the distributions for
young adult white males, but we believe that the method we
used to set the prior distributions is instructive in general.

We have some prior knowledge of y; and Y2, at least
in the form of standard values, as defined, for example,
by the (Caucasian) “Reference Man” of the International
Commission on Radiological Protection (ICRP 1975). To
take into account known physiological dependencies be-
tween the pharmacokinetic model parameters (e.g., between
organ volumes and body mass, or between alveolar venti-
lation rate and cardiac output), several of these parameters
are expressed in proportion to the lean body mass or other
parameter values, via scaling functions. The use of these
scaling functions goes back at least to Adolph (1949). Some
parameters—body mass, lean body mass, minute volume at
rest, and age—can be measured directly on each individ-
ual and are fixed at their observed values. We label these
exactly measured parameters as ¢ in the model.

The PERC-specific parameters in the model are partition
coefficients and the Michaelis—Menten coefficients, whose
prior distributions are set from the biological literature and
allometric scaling from animal measurements, as detailed
by Bois et al. (1996). The parameters are set rather roughly,
and this is reflected in large variances for their prior distri-
butions.

2.4 Measurement Model

At the individual level, for each subject, a series of mea-
surements can be taken of exhaled air and blood concentra-
tions. We label these as y;; and yo¢, with ¢ indexing time.
The expected values of the exhaled air and blood concentra-
tions are nonlinear functions, f,,(6;,¢;, E, t) of parameters,
exposure level (E), and time, with mn = 1 or 2 indexing
blood or air concentration. Given the 6;, ¢;, and E, one can
evaluate the pharmacokinetic differential equation over time
and compute f; and f5 for all values at which measurements
have been taken, thus obtaining the expected values of all
the measurements.

The concentrations actually observed in expired air and
blood are also affected by measurement errors, which are
assumed, as usual, to be independent and lognormally dis-
tributed, with mean zero and a variance cr?71 (on the log
scale). These also implicitly account for errors in the model;
we have no particuiar reason to believe that modeling er-
rors for air and blood measurements will be correlated.
The variance vector o2 has two components—o? for the
measurements in blood and o3 for the measurements in
exhaled air—because these measurements have different
experimental protocols and thus are likely to have differ-
ent precisions. For the Bayesian analysis, we assign the
standard noninformative prior distribution to the variances,
p(o?,03) < o7 %052 (see, e.g., Box and Tiao 1973). In vir-
tually any application, there will be sufficient data so that
the variances can be estimated accurately without requiring
any prior information about them.
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2.5 Hierarchical Model

For Bayesian inference, we obtain the posterior distribu-
tion (up to a multiplicative constant) for all the parameters
of interest, given the data and the prior information, by
multiplying all the factors in the hierarchical model: the
data distribution, p(y|v, ¢, E, t, 0?); the population model,
p(|p, B)p(p, £?|M, S%,%2); and the prior distribution,
plp, S2M, $2, 52)p(0?):

p(p, p, 32,
< p(y|, ¢, E, t,0%)p(th|p, =2

< T ITIT

k=1m=1 t

o?ly. E,t, ¢, M,S? %2 v)

)p(p, B2 M, S%, 22)p(a?)

10?,‘ U}kmt| log fm(ekr ¢k> E, t), 0'72;1):]

K L
|i H trunc l/)kl|/l'lyzl ):l
k=11=1
>< {

where 1 is the set of vectors of individual-level parame-
ters, u and X2 are the vectors of population means and
variances, o2 are the two measurement variances, y are the
concentration measurements, E are the exposure concentra-
tions, t are the exposure times, ¢ are the individual-level
covariates, and M, S, 3. and v are the hyperparameters. We
use the standard Bayesian notation for probability densities
(see, e.g., Gelman, Carlin, Stern, and Rubin 1995), with the
additional notation N, for the normal distribution trun-
cated at the specified number of standard deviations from
the mean. The indexes k,l.m, and t refer to subject, pa-
rameter, type of measurement (blood or air), and time of
measurement. For experiments such as the PERC study, in
which repeated studies are performed on the same subject,
the first factor in (2) should include a factor for each study.
The parameter 6y in the first factor in (2) is a function of
1 as given by (1). To compute (2) as a function of the
parameters, data, and experimental conditions, the function
f must be computed numerically over the range of time
corresponding to the experimental measurements.

I

:_—_]b

N (| My, SP)Iov = x (sz’/zyzoz)} oyt

T

1

(2)

3. BAYESIAN INFERENCE AND MODEL EVALUATION

A Bayesian analysis allows us to combine two forms of
information: “prior knowledge” from the scientific litera-
ture and experimental data in the context of the physiologi-
cal compartmental model. Neither source of information is
complete. If prior knowledge were sufficient, then the ex-
periments would not have had to be done; but existing data
alone are typically insufficient to pin down the parameters
to reasonable values. We wish to fit the data using scientif-
ically plausible parameter values, so that the analysis out-
puts distributions of parameter values that are consistent
with both the data and the prior information. Agreement
of posterior with data and prior should be checked, as we
discuss in Section 3.3.
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3.1 Computation

Our goals are twofold: to fit a pharmacokinetic model
to experimental data and to use this model to perform in-
ferences about quantities of interest, such as the popula-
tion distribution of the fraction of the compound metabo-
lized at a given dose. We achieve these goals using random
draws of the parameters from the posterior distribution,
p(, u, 22, 0%y, E,t, ¢, M, S? 2, v). Because the param-
eter vector has many components, we cannot just calculate
the posterior distribution for a grid of reasonable values.
Instead, we use a variant of the Gibbs sampler to perform
random walks through the posterior distribution. The Gibbs
sampler is an iterative procedure that is particularly con-
venient in the case of hierarchical models. This method
belongs to a class of Markov chain Monte Carlo tech-
niques that has recently received much interest. (For review
and illustration see Gelfand, Hills, Racine-Poon, and Smith
1990, Gelfand and Smith 1990, Gelfand, Smith, and Lee
1992, Smith 1991, Tanner 1993, Wakefield et al. 1994, and
others.)

The Gibbs sampler is based on performing a random walk
through the posterior distribution by updating parameters or
groups of parameters based on their conditional posterior
distribution. For our model, we iteratively update the pa-
rameters in the following sequence: o2, X2, pu, 1, ..., Y.
Each of these is actually a vector parameter. The condi-
tional distributions for the components of o2, 32, and p are
inverse-gamma, inverse-gamma, and normal and are well-
known results from the Bayesian analysis of hierarchical
linear models (see Gelfand et al. 1990). However, the con-
ditional distributions for the parameters ¥ have no closed
form (because the pharmacokinetic function f is nonlinear),
and so we sample from them using steps of the Metropolis
algorithm, which requires only the ability to compute the
posterior density up to a multiplicative constant, as in (2).

The Metropolis algorithm can jump one component of
Py at a time (thus KL jumps in each iteration) or, using
vector jumps, one individual at a time (thus K jumps in
each iteration, with each jump of a L-dimensional vector
). Under either jumping rule, the only factors of the pos-
terior density that need to be computed for the Metropolis
algorithm are those corresponding to subject A. This is an
important concern, because evaluating the function f to ob-
tain expected values of measurements is the costliest part of
the computation. The scaling constant of the jumping rule
can be set to some reasonable value after some preliminary
runs. For example, the scale can be set so that the accep-
tance rate of the Metropolis algorithm is approximately .44
for the one-component-at-a-time jumping rule or .23 for the
vector jumping rule (see Gelman, Roberts, and Gilks 1995).

Five independent simulation runs were performed, with
starting points obtained by sampling each 1); at random
from its prior distribution and then setting the population
averages y; at their prior means, M;. The samplers were
then begun by drawing o2 and X2. Initially, 15,000 itera-
tions were computed from each run using one-component-
at-a-time Metropolis jumping, with a normal candidate dis-
tribution for component ¢, centered at the current value
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Table 2. Convergence Monitoring of the Last 5,000 lItera-
tions From Each Five Parallel Runs of Length 15,000.

VL

Parameter

VPR 1.36
Fwp 1.27
Fpp 1.06
Ff 1.13
Fl 1.22
Vwp 1.09
Vpp 1.05
Vi 1.06
Pba 1.00
Pwp 1.02
Ppp 1.05
Pf 1.01
Pl 1.08
VMI 1.06
KMI 1.13
o1 1.00
o2 1.00

NOTE: Parameters are described in Table 1. The convergence criterion, \/TR, is the estimated
potential scale reduction of the posterior interval for each parameter (on the log scale) if simula-

tions were continued indefinitely (Gelman and Rubin 1992). At convergence, \/E = 1. Physio-
logical parameters are shown only for the population geometric mean, (on the log scale), which

were the slowest to convergence. Later simulations yielded values of \/E closer to 1 with very
litle change in the posterior inferences for the parameters and other estimands of interest.

and with standard deviation equal to S;/20. (The factor of
20 was set after some preliminary runs.) Each run of 15,000
iterations required about 36 hours of CPU time on a Sun
Sparc 10 workstation. In practice, the model was gradually
implemented and debugged over a period of months, and
one reason for our trust in the results is their general con-
sistency with earlier simulations of different variants of the
model.

The convergence of the simulations was monitored by
comparing the variance between and within sequences for
all parameters of interest. Specifically, for each parameter
we compute the variance ratio R = (V/W)(df/(df — 2)),
where V is the estimated posterior variance of the param-
eter using the simulations from all the sequences, W is
the pooled within-sequence variance, and (df/(df —2)) is
a correction for sampling variability (see Gelman and Ru-
bin 1992 and the associated discussion). Table 2 presents
the convergence monitoring results for the population pa-
rameter set and the experimental variance estimates o7 and
o2. Convergence was better for the individual subject pa-

rameters, 1. At perfect convergence, V'R values should
all be equal to 1; after 15,000 iterations, most were less than
1.1. The highest value is 1.36, for the population ventila-
tion over perfusion ratio (VPR) suggesting that additional
simulations might reduce the posterior interval for the pop-
ulation VPR by up to a factor of 1.36.

A later set of 5 x 50,000 iterations was computed using
one-individual-at-a-time Metropolis jumping, with a normal
candidate distribution centered at the current value, with
covariance matrix proportional to that of the initial simula-
tion runs, and with scale tuning so that the acceptance rate
was approximately .23. The later simulations were about 15
times faster per iteration because they required only K = 6
updating steps instead of KL = 90 steps per iteration. Be-
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cause of storage limitations, every tenth iteration of the pa-

rameter vector was saved. After the additional runs, the \/_ﬁ
values were reduced to all lie below 1.2, with very little
change in the posterior inferences compared to the earlier
simulations.

3.2

When the simulations have reached approximate conver-
gence, the posterior distribution for any parameter (or any
function of the parameters) can be approximated by the
set of draws from the last half of the simulated sequences
(see Gelman and Rubin 1992), or a random subset of those
draws if computation or storage is a concern. We are typi-
cally interested in the following summaries of the posterior
distribution.

Inference for Quantities of Interest

3.2.1 Extrapolation Scenarios. To obtain the distribu-
tion of the fraction of the compound metabolized under a
specified scenario (e.g., inhalation with a specified concen-
tration in the air), we can evaluate the differential equation
model numerically under the appropriate input conditions.
For each individual k, we compute the fraction metabo-
lized for each simulated parameter vector v;; using the set
of simulations yields a distribution of the fraction metab-
olized for that individual. The variance in the distribution
for each individual is due to uncertainty in the posterior
distribution of the physiological parameters, 1.

To obtain the distribution of the fraction of PERC metab-
olized at low exposure and high exposure by each of the six
subjects, we simulated continuous exposure to PERC for 3
weeks under two scenarios (.001 ppm and 50 ppm), using as
input the posterior simulations of the parameter values. For
each simulated scenario, the amount (in milligrams) metab-
olized the last day was divided by the amount inhaled on
that day. The amount inhaled is equal to the alveolar ven-
tilation rate (L/min) x 1,440 (min) x the PERC inhalation
level (mg/L).

Similar simulations were performed for the population
(i.e., predictions for an additional person, exchangeable with
the subjects in the study) by simulating random vectors of
the physiological parameters from their simulated popula-
tion distribution. The variance in the population distribution
of fraction metabolized includes posterior uncertainty in the
parameter estimates and also real variation in the popula-
tion.

Figure 2 shows the posterior distributions of the PERC
fraction metabolized by each subject of the Monster et al.
experiment at high (50 ppm) and low (.001 ppm) expo-
sures under our model. The figure also shows the covariance
between the high-dose and the low-dose estimates of the
fraction metabolized in the six subjects. These simulated
vectors are random draws from their joint (multivariate)
distributions, not just from the marginal distributions. The
population distributions of the fraction metabolized look
similar to a mixture of the distributions in Figure 2. Inter-
val estimates can be obtained as percentiles of these distri-
butions. At high exposure, the 95% interval of the fraction
metabolized in the population is [.52%, 4.1%]; at low expo-
sure it is [15%, 58%]. Large variations also exist between
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Figure 2. Estimates of the Fraction of PERC Metabolized per Day
for a Continuous Inhalation Exposure to 50 ppm Versus the Estimated
Fraction Metabolized at .001 ppm, for the Subjects of the Monster et al.
(1979) Experiments. For each of the six plots, 500 random simulation
draws are displayed. (From Bois et al. 1996. Reprinted with permission.
Copyright 1996 Springer-Verlag GmbH & Co.)

individuals; for example, a factor of 2 difference is seen
between similar subjects A and E in Figure 2.

Figure 3 shows the relation of fraction of PERC metab-
olized in 1 day (after 3 weeks continuous inhalation expo-
sure) to exposure level. It also gives the range based on the
population simulations. At low exposure levels, the frac-
tion metabolized remains constant, because metabolism is
linear. Saturation starts occurring above 1 ppm and is about
complete at 10 ppm. At higher levels, the fraction metabo-
lized decreases linearly with exposure, because the quantity
metabolized per unit time is at its maximum.

When interpreting these results, one must remember that
they are based on a single experiment. This study appears
to be one of the best available; however, it includes only
six subjects from an homogeneous population, measured at
only two exposure levels. Much of the uncertainty associ-
ated with the results is due to these experimental limita-
tions. Uncertainty could be reduced by additional analyses,
but population variability, which in this study is approxi-
mately as large as uncertainty, could increase when a more
heterogeneous group of subjects is included.

3.2.2 Estimates of Model Parameters. We can also di-
rectly look at the posterior distributions of the individual
and population parameters. We transform from )y, to 6,
and summarize the distributions by the geometric mean and
standard deviation of the posterior simulations of each of
the AL components. Table 1 summarizes the distributions
of the parameter values from the posterior simulations for
the PERC example. Most important, the parameters still
retain physiologically plausible values and are consistent
with their prior distributions. The standard deviations (i.e.,
posterior uncertainties) in individual parameters are gener-
ally smaller than the prior uncertainties, showing that sub-
stantial information has been gained from the experimental
data, even at high exposure levels.

Deviations from the prior distributions indicate the spe-
cific information brought by the in vivo experiment. Phys-
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Figure 3. Estimated Fraction of PERC Metabolized as a Function
of Inhalation Exposure Level. The thick line corresponds to the mean
population model predictions. The thin lines bracket the 99% posterior
interval; the dotted lines, the 95% interval for the population, based on the
random simulations. (From Bois et al. 1996. Reprinted with permission.
Copyright 1996 Springer-Verlag GmbH & Co.)

ical constraints on the mass balance of the compound led
to a good identification of the scaling coefficients of the
metabolic parameters. (Their posterior standard deviations
correspond approximately to a factor of 1.5.) The estimated
population mean of VMI, the scaling coefficient of the max-
imum rate of metabolism, decreased by a factor of 20 from
the prior to the posterior distribution. (This is within a rea-
sonable range, considering that the prior geometric standard
deviation was 10.) Therefore, the maximum rate of PERC
metabolism in humans appears to be much lower than the
values extrapolated from rodents on the basis of body mass
to the power .7. Estimates of the population variation shows
interindividual variation of about a factor of 2, which is
not uncommon for metabolic parameters (see, e.g., Opdam
1989).

3.3 Evaluating the Fit and Sensitivity of the Model

In addition to their role in inference given the model, the
posterior simulations also can be used in several ways to
check the accuracy of the model and its sensitivity to prior
assumptions.

Most directly, we can examine the errors of measure-
ment and modeling by comparing observed data, y;,;;, to
their expectations, f,(6;, ¢;, E, t), for all the measurements,
based on the posterior simulations of §. The errors can be
summarized quantitatively or used graphically to check for
patterns or outliers. A perfect fit is not expected given the
analytical measurement errors in the data (and given that the
fit is measured by comparison to the posterior distribution,
not the best-fit parameters). For the PERC example, the de-
viations are small (predicted and observed do not deviate by
more than 65% of the observed value, with an average de-
viation of 11% in absolute value), with no apparent pattern
(see Bois et al. 1996).
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Figure 4. Posterior Simulation Draws of the Fraction Metabolized at High and Low Exposures (e, .001 ppm exposure; o, 50 ppm exposure)
for Subject A, Plotted Against Simulations of Four Parameters for Subject A: (a) the fat/blood partition coefficient (Pf), (b) the blood/air partition
coefficient (Pba), (c) the scaling coefficient of the maximum rate of metabolism (VMI), and (d) the Michaelis—Menten coefficient (KMI).

Another way to check the model is to compare the poste-
rior distributions of parameters to their prior distributions,
as we in fact did in the discussion of parameter estimates at
the end of Section 3.2. Large shifts from prior to posterior
(beyond what might be expected from the prior standard de-
viation) would suggest a flaw in the model or a misguided
prior specification. The sensitivity of the model to the prior
distribution can be assessed by comparing variation: If the
posterior variation for a parameter is not much less than its
prior variation, then the data have supplied little informa-
tion about that parameter.

Another assumption that can be tested in this model is
that of independence between the L = 15 individual-level
parameters in the population distribution. We can test this
assumption by examining the posterior correlations of the
parameters, as follows. For each of the L(L —1)/2 pairs of
parameters ¢,j € 1,..., L and for each posterior simulation
draw, we computed the sample correlation of those parame-
ters across the six subjects: p;; = corrg(dri, dx;). For each
i,7, we then computed the mean and variance of the p;;
values across the 25,000 simulation draws, to yield an esti-
mated population correlation and a standard error. Because
the correlations were computed across only six subjects, the
standard errors were by necessity large (mostly between .3
and .5). The estimated correlations for the pairs of param-
eters were all below .5 in absolute value, with the excep-
tion of the blood/liver partition coefficient, the ventilation
over perfusion ratio (VPR), and the Michaelis-Menten co-

efficient (KM1), all of which had estimated population cor-
relations with each other at about .8 (with standard errors
in the correlations of about .12). The high correlations do
not invalidate our individual-level pharmacokinetic analy-
sis, but they do imply that an improved model, including a
population correlation between these parameters or possi-
bly a reparameterization, would allow the between-subject
information to be used more efficiently. To put it another
way, the population part of the model is used to express un-
certainty in predictions and borrow strength for inferences.
By including the correlations in the population model, we
would tend to obtain a smaller estimate for population vari-
ability and more precise inferences about individual-level
parameters.

Another important concern in a Bayesian analysis is the
sensitivity of posterior inferences to prior distributions.
Consider a quantity of interest @ (typically some function
of the model parameters 6; e.g., the fraction metabolized
under some specified exposure) and a particular parameter
01;. The dependence of @ on 6, can be assessed by the cor-
relation of Q and 6y, the regression of @ on 6y, or, better
still, a scatterplot of @ versus 0; in the posterior simula-
tions. Inference for @ is sensitive to the assumed prior dis-
tribution for 6y, if the two quantities are dependent in their
posterior distribution and the posterior distribution for 6y,
is sensitive to its prior distribution. This sort of sensitivity
analysis is also useful when designing future data collec-
tion; it is desirable to gather additional information about
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Figure 5. Model Simulation of the Opdam et al. (1986) Inhalation
Experiment. Six subjects were exposed to PERC at levels ranging from
.5 to 9 ppm. Alveolar/inhalation concentration ratios were reported (open
circles). The thick line corresponds to the mean ratios predicted by our
population model, adjusted with Monster et al. (1979) data. The solid and
dotted lines correspond to 99% and 95% posterior simulation bounds.

the parameters that are highly correlated with summaries
of interest. To illustrate, Figure 4 displays the relationship
between the fraction metabolized at high dose or low dose
and the most influential parameters for subject A (using
that individual as an example). Many parameters affect the
fraction metabolized at low dose, but VMI essentially de-
termines the fraction metabolized at high dose, because of
the saturation phenomenon.

Finally, a model can be checked by comparing its pre-
dictions to additional data not used in the original fit. To
validate the model, we simulated another inhalation exper-
iment on human volunteers (Opdam and Smolders 1986).
Opdam and Smolders exposed six subjects to constant lev-
els of PERC ranging from .5 to 9 ppm and followed alve-
olar concentration during exposure (up to 50 minutes). We
assumed a 5 ppm exposure for every subject, because the
published report does not permit matching of exposure lev-
els to subjects. Assuming a level of .5 or 9 ppm changes the
results slightly, given the nonlinearity of PERC metabolism
indicated by the Monster et al. (1979) data, but not substan-
tially given the noise in the data. The model is not linear,
and thus different input levels do change its behavior, but
the change in alveolar concentration of PERC appears very
small when plotted with the data (i.e., the deviations be-
tween models and data dwarf the difference between mod-
els). These data were obtained in the same laboratory as
those of Monster et al., and the population studied was
similar. However, Opdam and Smolders’s subjects are at
least in part different from Monster et al. volunteers, as
three women are included. We used the “normal breathing”
data reported in figure 3 of Opdam and Smolders’s report.
Simulations were performed for the population using the
posterior simulation draws of the vectors p and 2. Fig-
ure 5 presents the data and the model prediction (with 95%
and 99% simulation bounds). The model adjustment is good
overall, even though exposure levels were 5 to 100 times
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lower than those used in the Monster et al. experiments.
However, short-term kinetics (i.e., less than 15 minutes af-
ter the onset of exposure) are not very well described by
the model, which includes only a simple description of pul-
monary exchanges. This is unlikely to seriously attect the
quality of predictions for long-term, constant exposures.

4. DISCUSSION

Our results illustrate the use of Bayesian statistical tech-
niques to bring together, through physiological modeling,
in vivo data on human PERC toxicokinetics and physiolog-
ical information on specific parameters. The method is very
general, and we propose that it could be applied to any sim-
ilar problem. In this section we discuss the methodological
aspects of the work presented here and then address the
results obtained and their importance.

4.1

Physiologically based toxicokinetic models allow the
simulation of various endpoints in specific target organs,
while accounting for possible nonlinearities. Thus using
these models is often advocated for more accurate risk as-
sessment. One of the distinctive features of physiological
modeling is to provide the opportunity to use relevant prior
information on parameter values. The general tendency has
been to assign specific values to some parameters and to ad-
just others to achieve a good—sometimes simply visual—
agreement with experimental data. Considering the variabil-
ity within the general population and the uncertainty about
many parameters, which are difficult to measure accurately,
it can be fundamentally misleading to fix input parame-
ters or present results in the form of a single value (Louis
1991). In controlled human studies, heterogeneity is gener-
ally limited by the choice of healthy young males of par-
ticular ethnic group, as in the Monster et al. (1979) experi-
ment. This may change with the recent National Institutes
of Health requirement to include women and members of
various ethnic groups in such studies (National Institutes of
Health 1990). In the general population, heterogeneity may
result in a wide range of responses. The ability to incorpo-
rate this information into risk assessments is still extremely
limited.

These concerns should be foremost in risk assessments
and instrumental in consideration for reducing popula-
tion exposures. Much of the “‘conservatism” used in stan-
dard risk assessment procedures was developed to account
for population variation. Substitution of a “conservative”
methodology by a single modeled value based on a small
subset of the human population could result in inadequate
public health protection. For these reasons, all modeling
results should include an assessment of all levels of uncer-
tainty involved in the model structure and input parameters.

Toxicokinetics and Risk Assessment

4.2 The Case of PERC

This work was initiated following a California Environ-
mental Protection Agency workshop focusing on the scien-
tific basis for establishing a carcinogenic unit risk value for
PERC. A key issue in the unit risk development was the
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value of the fraction of PERC metabolized at low exposure
levels. This is an issue because of the absence of a total
mass balance study of PERC metabolism at low exposure
in humans. The estimated fraction metabolized in humans
appeared to be dependent in part on the choice of data for
analysis and in part on the assumptions made regarding un-
recovered PERC in the experiments (Alexeef, Lewis, Zeise,
Cox, and Schunk 1991). Thus an effort was made to criti-
cally evaluate the best study available and to incorporate as
much useful information as possible.

The data of Monster et al. (1979) were thought to be the
most scientifically rigorous developed, yet they appeared to
suffer in their applicability to risk assessment due to the
high exposure concentrations used (five orders of magni-
tude greater than ambient levels) and the narrow population
evaluated (six healthy, young adult Dutch males). In addi-
tion to the data of Monster et al., it also was desirable to
incorporate preliminary human in vitro information regard-
ing PERC metabolism (Reitz 1992).

Defining prior distributions for the physiological parame-
ters was difficult (Bois et al. 1996). Though it is well known
that these parameters exhibit a wide range of inter- or intra-
individual variability, the only values readily available (and
those always used in physiological modeling) are “refer-
ence” values for young Caucasian males. Such reference
values artificially reduce the population variance estimates.
What is really needed is a database giving access to the
population distributions of important physiological param-
eter values. Such a database would be usable for all types
of physiological modeling and for both toxicants and drugs.
Due to the current lack of information, we had to use “refer-
ence” values to the population means, and we gave reason-
able guesses for population standard deviations and trunca-
tion limits.

By extrapolating to near-ambient environmental levels
(approximately .001 ppm), after deriving the posterior pa-
rameter distributions, we estimate the fraction of PERC
metabolized at low doses, after inhalation, as in the range
[15%, 58%]. These percentages contrast sharply with those
estimated from high exposure (50 ppm): a 95% posterior
interval of [.5%, 4.1%]. This high-exposure estimate is
in agreement with the Monster et al. (1979) figures for
the recovery of inhaled PERC; in the experiments, un-
changed PERC recovery was 80% to 100%, and approx-
imately 2% of the inhaled dose was recovered in urine as
trichloroacetic acid. However, risk assessments using a frac-
tion metabolized calculated directly from the experiment,
without considering exposure concentration, would likely
underestimate the potential carcinogenic risk at low PERC
exposure, by a factor of approximately 20. Hattis, White,
Marmorstein, and Koch (1990) reviewed the literature on
model-based estimates of the fraction of PERC metabolized
at low dose (1 ppm). Previous estimates range from 2% to
86%. None of these were obtained by a complete statistical
estimation procedure. Not surprisingly, the lowest estimates
were obtained from models that assumed linear metabolism
and were parameterized with high exposure data. Our model
contains explicitly a nonlinear Michaelis-Menten term for
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metabolism but is not constrained to behave nonlinearly.
Had metabolism actually been linear for the Monster et
al. volunteers, then our estimate of KMI would have been
driven to the upper bound of its prior distribution, where
the Michaelis—Menten term would behave linearly. This did
not happen, and KMI stabilized around a value 2,000 times
smaller than its a priori upper bound. Although the expo-
sure levels were high in the experiments (72 and 144 ppm),
the course of PERC concentrations in blood and exhaled
air was followed with sufficient precision over a extended
period and over a large range of tissue concentrations. This
experimental design is sufficiently powerful to allow a rea-
sonable identification of VMI and KMI values.

4.3 Statistical Issues

The approach presented here has five key features, all
of which work in combination: (1) a physiological model,
(2) a population model, (3) prior information on the popula-
tion physiological parameters, (4) experimental data, and (5)
Bayesian inference. If any of these five features are missing,
then the model will not work: (1) without a physiological
model, there is no good way to obtain prior information
on the parameters; (2) without a population model, there
generally are not enough data to estimate the model inde-
pendently on each individual; (3 and 4) the parameters of
a multicompartment physiological model cannot be deter-
mined accurately by data or prior information alone; and (5)
Bayesian inference yields a distribution of parameters con-
sistent with both prior information and data, if such agree-
ment is possible. Because it automatically includes both in-
ferential uncertainty and population variability, the hierar-
chical Bayesian approach yields a posterior distribution that
can be directly used for an uncertainty analysis of the risk
assessment process.

Two other important components of our methodology are
computation and model checking. Iterative simulation has
been an increasingly useful tool in Bayesian analysis of
complex models (see, e.g., Besag and Green 1993, Gilks et
al. 1993, and Smith and Roberts 1993), and this example
is no exception. Faster simulation algorithms enable one to
fit more realistic models, which in turn inspire the devel-
opment of faster computational algorithms, and so forth.
Along with the fitting of a complicated model (and the po-
tential for serious errors in modeling or computation) comes
the responsibility to check that the resulting inference is
consistent with both data and prior information. We per-
form these checks using the simulations of the parameters
from their posterior distribution.

Wakefield (1996), in a discussion of studies with large
numbers of subjects (in the hundreds), considered three
kinds of generalizations to the sort of population model
we have considered here: using individual-level covariates,
modeling population correlations between individual pa-
rameters, and going beyond the normal distribution. In an
experiment with individuals with measured covariates X,
our population model can be naturally extended to a regres-
sion model of the form E(vy;) = X3, thus replacing the
parameters j; by vectors 3;. Correlations between param-
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eters can be modeled by replacing the vector of variances,
¥2,...,%% by an L x L matrix, 2. Finally, the normal
distributions on y; can be replaced by wider-tailed dis-
tributions such as the ¢ if necessary or modeled nonpara-
metrically (see Davidian and Gallant 1993 and Davidian
and Giltinan 1993). These generalizations are all important;
correlation modeling is most useful for studies with large
numbers of individuals, and using covariates or nonnormal
distributions is most useful when fitting data to heteroge-
neous populations.

Finally, we note that different features of the model
are especially useful in different contexts. The population
model is important when analyzing data from a large group
of subjects and can be embedded within a regression model
to allow finer distinctions when studying the effects in
the general population under nonlaboratory conditions. The
physiological model is important if we wish to use the same
model to study other compounds, as many of the parameters
can be carried over directly to the new setting. Ultimately,
this suggests the prospect of combining information from
many laboratories in a program for general population phar-
macokinetic modeling.

[Received February 1995. Revised May 1996.]
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