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ABSTRACT

It is possible for a non-Normal bivariate distribution to have conditional dis-

tribution functions that are Normal in both directions. This article presents

several examples, with graphs, including a counterintuitive bimodal joint

density. The graphs simultaneously display the joint density and the con-

ditional density functions, which appear as Gaussian curves in the three-

dimensional plots.

Key words: Bivariate Normal distribution; Conditional probability; Bi-

modality.

1. INTRODUCTION

It is well known that the pair of marginal distributions does not uniquely

determine a bivariate distribution; for example, a bivariate distibution with

Normal marginals need not be jointly Normal (Feller, 1966, p. 69). In con-

trast, the conditional distribution functions uniquely deterimine a joint den-

sity function (Arnold and Press, 1989). A natural question then arises: must

a bivariate distribution with Normal conditional distributions be jointly Nor-

mal? The answer is no; in fact, the joint distribution thus specified must

fall in a parametric exponential family that we show includes such oddities

as bimodal densities and a distribution with constant conditional means but

nonconstant conditional variances. This paper presents a simple expression
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for the distributional result derived in Castillo and Galambos (1987); we

then graph some examples of bivariate density functions.

In general, a multivariate distribution on the variables (xl1, xz ) may

be characterized by its joint distribution or the conditional distributions

of (xilx, allj $ i) for all i. For many models, one can specify the set of

conditional distributions but cannot directly identify the joint distribution;

Brook (1964) and Besag (1974) connect these two specifications for nearest-

neighbour and Gibbs distributions, and show that the set of conditional

distributions for all xi determines the joint distribution. In addition, the

set of conditional distributions is constrained by the requirement that they

be consistent; that is, a single joint distribution should exist that reduces

to each conditional distribution. Even in the bivariate case, interesting

complications arise, as in the example of this paper.

Dawid (1979) and others stress the importance of identifying models by

their conditional distributions; our work may be of practical importance be-

cause we expand the class of multivariate distributions that can be simply

specified by conditionals. The supply of tractable joint distributions is lim-

ited, and it may be useful, for example, to model a bimodal joint density

using only conditional normal densities (see Figure 3).

2. PARAMETRIC FAMILY

Let x1 and x2 be two jointly-distributed random variables, for which x1 is
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normally distributed given X2 and vice-versa. Then their joint distribution,
after location and scale transformations in each variable, can be written:

f(X1,X2) oc exp(-1[Ax2x2+ +x2 222Bxp2 - 2CIxl - 2C2z2]), (1)

whence the conditional distributions are:

xIX|2 t N( A 2 +IC , I)

x2Ixi N(AI2+ 1 Ax2+1)

The only restrictions for (1) to be a probability density function are that

A > 0, and if A = 0, then IBI < 1. One can see that the conditional

variances are constant if and only if A = 0, in which case the conditional

mean functions are linear and the joint distribution is Gaussian.

This result can be extended to the general multivariate problem of vari-

ables xl.... ,zx whose conditional distributions (xilxi, allj $ i) are Gaus-

sian for all i. The resulting joint density must be of the form:

f(xi, - x,n) ax exp(- [ AkXll * nx")

The summation is taken over all 3" values of the exponents defined by each

ki attaining the values 0,1, or 2. The coefficients Ak are allowed to take on

any real values for which the joint density function has a finite integral.

3. EXAMPLES

We illustrate the diversity of this distributional family with graphs of three

bivariate densities that clearly differ from joint normality. Consider for
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simplicity the symmetric subfamily in which A = 1, B - 0, C1 = C2 = C,
with conditional distributions

XI JX2 P% Nf( 't+Z)

and similarly for x21x1. Figures 1-3 illustrate the corresponding joint densi-

ties for the values C = 0, 1, 4. Note that the grid lines in the graphs, which

are just unnormalized conditional density functions, are clearly Gaussian.

Figure 1 shows a joint density with zero conditional means that differs from

a Gaussian by having nonconstant conditional variances. The distribution

shown in Figure 2 is amusing in that (XI 1x2) N(1/(x2 + 1), 1/(x2 + 1))
and vice-versa, so that the conditional mean equals the conditional variance

at all points. Figure 3 presents a counterintuitive example of a bimodal

joint density with bimodal marginals but Gaussian conditional densities. It

is easily shown that, within this subfamily, the joint density is bimodal if

and only if C > 2.
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Figure 1. f(zl,z 2) ox exp(-I[xz2x + A2 + X2])

Figure 2. f(Xl,zX2) oc exp(-I[xT2?2 +z2 + X2 - 2x1- 2Z2])

Figure 3. f(XI,zX2) oc exp(-l[T2?A +X2 +X2 - 81 -8X2])


