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Summary. Conventional measures of model fit for indexed data (e.g., time series or spatial data) summarize
errors in y, for instance by integrating (or summing) the squared difference between predicted and measured
values over a range of x. We propose an approach which recognizes that errors can occur in the x-direction
as well. Instead of just measuring the difference between the predictions and observations at each site (or
time), we first “deform” the predictions, stretching or compressing along the x-direction or directions, so as to
improve the agreement between the observations and the deformed predictions. Error is then summarized by
(a) the amount of deformation in x, and (b) the remaining difference in y between the data and the deformed
predictions (i.e., the residual error in y after the deformation). A parameter, λ, controls the tradeoff between
(a) and (b), so that as λ → ∞ no deformation is allowed, whereas for λ = 0 the deformation minimizes the
errors in y. In some applications, the deformation itself is of interest because it characterizes the (temporal or
spatial) structure of the errors. The optimal deformation can be computed by solving a system of nonlinear
partial differential equations, or, for a unidimensional index, by using a dynamic programming algorithm.
We illustrate the procedure with examples from nonlinear time series and fluid dynamics.

Key words: Calculus of variations; Deformation; Dynamic programming; Errors-in-variables regression;
Goodness of fit; Image registration; Morphometrics; Spatial distribution; Time series; Variance components.

1. Introduction

A fundamental problem in data analysis is quantifying the fit
of predictions to data. To address this question in a spatial
or temporal context, it is conventional to think of predictions
(and observations) as descriptions of y as a function of one or
more spatial or time indexes x, and to summarize errors by
integrating some discrepancy function over x (e.g., the mean-
squared error in y or mean absolute error in y).

In fact, though, errors—both in the sense of discrepan-
cies between predictions and observations, and in the sense
of variations of observed values about their true values—can
occur in the y or x directions, not just in y. Measures of misfit
should recognize that fact. From this perspective, predictions
should be locally stretched or compressed (“deformed”) in
the x-direction (or directions) so as to improve the agreement
between deformed predictions and the observations. Overall
error can be summarized both in terms of the error in y that
remains following the deformation, and the amount of defor-
mation in x that was performed. This work differs from errors-
in-variables regression (e.g., Madansky, 1959) in that we are
modeling continuous deformation, not independent errors,
in x.

Our work is conceptually related to “morphing” (derived
from “metamorphosing”), a technique used in image registra-
tion, in which one image is continuously deformed into an-

other. Morphing has been used in many applications and has
a long history in mapping and biology. Our work goes be-
yond existing uses of morphing in that we use it as a tool to
measure model fit. Moreover, most morphing methods (e.g.,
Goshtasby, 1988; Bookstein, 1991; Lee et al., 1996; Yan et al.,
2000) require identification of specific features shared by both
images, which may be easy for movie images (eyes, nose,
mouth, etc.) or satellite photos (roads, buildings, etc.) but
is not so simple for comparing model predictions to obser-
vations. For example, predictions and observations may have
different numbers of local maxima and local minima. A recent
overview of the field of image registration from a statistical
perspective, including a novel implementation, is provided by
Glasbey and Mardia (2001). While we develop a new varia-
tional approach to image registration here, the primary ob-
jective is to use these techniques to measure model misfit.
This new method is necessary because we must perform the
image registration many times (existing methods rely on high-
dimensional nonlinear optimization and can be quite slow).

There have been several attempts to quantify error in loca-
tion in the applied literature. For example, Martinson, Menke,
and Stoffa (1982) discuss a one-dimensional problem similar
to ours, in a signal processing context. In addition, there have
been some attempts in the meteorological literature to de-
fine distortion measures for model misfit (e.g., Hoffman et al.,
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1995; Marzban, 1998; Ebert and McBride, 2000). These meth-
ods are more restrictive than the methods developed here and
typically require substantial user input. The one-dimensional
problem is also treated by Ramsay and Silverman (1997,
2002), but their focus is on registration, not using registra-
tion to understand model fit.

2. Summarizing Errors in Terms of Scaling
and Deformation

2.1 Mathematical Formulation

If observations and predictions are defined for all x in some
set A, then the scaling of y and a deformation function f(x)
can be combined into a total error measure, as in Ramsay and
Silverman (1997),

Iλ(y, ŷ) ≡ min
f∈D

{
∫

A

G(y(x), ŷ(f(x))) dx

+λ

∫

A

F (x, f(x)) dx

}

. (1)

Here, G is a discrepancy metric between y and ŷ, and F mea-
sures the amount of deformation, defined by f(x), relative
to the identity map f(x) = x. Because F measures the dis-
crepancy between the deformation and the identity map, we
require F (x, x) = 0 for all x in the region over which there
are measurements. By deforming the predictions (rather than
the observations), we favor sets of predictions that have more
extreme values.

The parameter λ controls the tradeoff between prediction
error in y and deformation in x. As λ → ∞, even minor defor-
mations become strongly penalized, thus f(x) − x → 0, hence
Iλ approaches the integrated squared error. On the other
hand, if λ = 0, then any allowed deformation can be attained.
In between, λ might be set based on external knowledge or
preference; for example, a researcher evaluating hurricane pre-
diction models might stipulate that an error of 20 km/hour in
peak wind speed is equivalent to an error of 50 km in location.
In other cases, it can be helpful to perform calculations over
a range of λ so as to investigate the tradeoff between scaling
and deformation, as we illustrate in examples below.

We characterize the set of allowable deformations as those
that occur in elastic deformation. For predictions and obser-
vations that are defined over the same region, the two con-
figurations must have the same boundaries, so we constrain
our deformations to be one-to-one functions. If f is not onto,
the deformation could discard some predicted values, and this
could lead to misleading results because arbitrarily poor pre-
dictions could match the observations completely after apply-
ing such a deformation. A physical requirement of elasticity
is that the deformation continuously moves each particle of
the initial configuration to one and only one location in the
final configuration. The analytical expression of this require-
ment is that the determinant of the Jacobian matrix of the
deformation be strictly positive (see, e.g., Boresi and Chong,
2000). With a unidimensional index this condition is simply
that the deformation be strictly increasing, as in Ramsay and
Silverman (2002).

2.2 Bayesian Interpretation

As with many nonparametric methods, the deformed pre-
diction surface can be interpreted as a Bayes posterior es-
timate under certain assumptions about the data-generation
and measurement processes (e.g., Wahba, 1978). Exploring
this connection can help us better understand when the pro-
cedure should do well and in what situations it would be less
appropriate. For the methods in this article, the deformations
correspond to a model on x and the errors correspond to a
model on y |x. In addition, in a Bayesian framework, tuning
parameters such as λ in (1) can be formulated as hyperparam-
eters and estimated from hierarchically structured datasets.
(We do not work with such data structures in this article,
but we find it helpful to at least consider how to set up the
problem.)

In conventional practice, predictions are related to sam-
pled values in terms of a measurement error model, y(x) =
ŷ(x) + ǫ(x), where ǫ is some error process, and the accuracy
of the predictions is assessed via some functional of ǫ. Here
we, instead, have the model y(x) = ŷ(f(x)) + ǫ(x), where f is
the deformation. Assume that we have independent, constant-
variance measurement/prediction error after we take account
of the deformation of the index variable, and denote the vari-
ance of this error by σ2. In this case, the f that minimizes
Iλ in (1) is the posterior mode corresponding to some prior
distribution on the space of deformations.

The expression Iλ in (1) can be interpreted as the nega-
tive of the log-posterior density of the functional parameter f

given data y and predictions ŷ. The error metric G then rep-
resents the log likelihood of the data corresponding to some
specified probability distribution on the errors ǫ (e.g., the sum
of squared errors corresponds to independent Gaussian errors
with equal variances).

In the Bayesian formulation, the penalty function F rep-
resents the logarithm of a prior distribution on the space of
functions f. Different specifications of F in terms of squared
differences between f(x) and x, or their differentials, corre-
spond to various Gaussian process priors for f (quadratic log-
density functions), with the added restriction that the deter-
minant of the Jacobian matrix of f be strictly positive.

2.3 Choosing the Functions F and G

The error measure, G, may be any function that summarizes
the error in y, such as the squared error, relative error, or
any other measure of fit. Because specification of such func-
tions has been well explored in the statistical literature, for
convenience we simply use squared error here:

G(y(x), ŷ(f(x))) ≡ [y(x) − ŷ(f(x))]2. (2)

In some applications, other choices may be more sensible. Re-
cently, Ramsay and Silverman (2002) proposed

GA(y(x), ŷ(f(x))) ≡ [Ay(x) − ŷ(f(x))]2,

for some scalar A. This error measure will be useful when
there is multiplicative error, but there are two problems with
this formulation: if ŷ ≈ 0 then A ≈ 0 (thus the estimate of f

is largely meaningless), and there are identifiability problems
when we try to estimate the pair (A, f), as we discuss in
Section 4.1. If multiplicative error is suspected, one should
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first log the data prior to summarizing the error with a sum
of square type measure.

2.3.1 Choosing F for unidimensional index. The function
F is a measure of the amount of deformation represented by
the deformation f. To the extent that the function f differs
from the identity map, it represents a stretching and compres-
sion of the x dimension. Natural choices for the function that
quantifies the deformation include F (x, f(x)) ≡ [f(x) − x]2,
F (x, f(x)) ≡ [log f ′(x)]2, and F (x, f(x)) ≡ [f ′(x) − 1]2. Just
as there are many possible choices for measuring error in y,
there are many possible choices for quantifying the amount of
deformation in x. For this article, we use

F (x, f(x)) ≡

[

df(x)

dx
− 1

]2

. (3)

Somewhat surprisingly, the choice of the deformation
penalty function has implications for the smoothness of the re-
sulting deformation. As a simple example, suppose A = [0, 1],
y(x) = 0, and ŷ(x) = x. For this example, we can find an ex-
plicit expression for the deformation using several different de-
formation penalty functions. If F (x, f(x)) = [f ′(x) − 1]2 then
the optimal deformation is f̂(x) = sinh(λ−1/2x)/ sinh(λ−1/2),
whereas if F (x, f(x)) = [f(x) − x]2, then the optimal de-
formation is f̂(0) = 0, f̂(1) = 1, and f̂(x) = (λx)/(1+λ) for
x ∈ (0, 1). Below, we present methods which allow us to find
the first of these deformations; the second is found by com-
pleting the square under the integral in the definition of Iλ.
The second of these deformations is not continuous for any
value of λ, while the first is continuous for all λ > 0. Be-
cause we seek continuous deformations, we actually want the
continuous function that is as close as possible to the discon-
tinuous deformation for the second penalty function. Below,
we demonstrate how we can exploit the smoothness of a de-
formation to obtain an algorithm, which finds the optimal
deformation rapidly, and for this reason we find the deriva-
tive penalties useful.

2.3.2 Choosing F for multidimensional index. The multidi-
mensional case presents substantial computational challenges.
We focus here on the two-dimensional case; generalizing to
higher dimensions is then straightforward. In two dimen-
sions, the deformation is a vector-valued function f(x1, x2) =
(f 1(x1, x2), f 2(x1, x2)). For this article, as a direct generaliza-
tion of the unidimensional approach, to measure the extent of
deformation we simply compare each partial derivative of f to
1 using squared error loss. For a thorough discussion regarding
the choice of deformation penalty and the many possibilities,
the reader is referred to Glasbey and Mardia (2001). These
other deformation measures could also be used with the ap-
proach proposed here because these measures are functionals
of the derivatives of the deformation.

3. Computation

To find the function f that minimizes the integral in the defi-
nition of our statistic, we use the calculus of variations. This
technique allows us to find f by solving a certain boundary
value problem (the Euler–Lagrange equations). While it can
be difficult to solve these problems numerically in more than
one dimension, we have solved them successfully for several
applied problems, some of which are presented below. The

advantage of the use of the calculus of variations is that we
can find deformations very rapidly (in less than a minute for
the two-dimensional example presented below). In contrast,
if one finds f by nonlinear optimization, as in Glasbey and
Mardia (2001), then according to the authors it takes roughly
30 minutes for some problems. Moreover, the solution one ob-
tains using nonlinear optimization algorithms could just be a
local optimum.

Throughout this article, we interpolate between values at
observed sites when necessary in order to reconstruct a con-
tinuous set of observations and predictions from a set of obser-
vations and predictions at a finite collection of sites. The need
for interpolation is clearest in the unidimensional context be-
cause sites must map into and onto the sites with a map that
is strictly monotone, and the only strictly monotone bijective
map from one finite ordered set into another with the same
cardinality is the identity. We parameterize f by its values at
the sites where we have observations and linearly interpolate
to obtain the value of f at locations between the observed
sites. In the univariate case, values of f are needed only at the
x values of the observations and at the x values onto which the
predictions are mapped. One could use a different interpola-
tion approach to find a smooth, continuous deformation f, but
this is not necessary in the univariate case, and the details of
the result would depend on the interpolation method. In the
two-dimensional implementation we use numerical methods
that define f at locations other than the observed sites.

3.1 Using Dynamic Programming to Solve

the One-Dimensional Problem

In the unidimensional case, we can use dynamic program-
ming (see Bellman, 1957) to obtain an approximation to the
solution to the Euler–Lagrange equation. The resulting al-
gorithm is extremely stable numerically and will always find
the global optimum. In contrast, existing methods rely on
high-dimensional optimization and are subject to the usual
problems we associate with such methods, such as conver-
gence to local optima and long computing times. Dynamic
programming is a method for solving sequential decision prob-
lems where the goal is to optimize some function of the entire
sequence of decisions. The unidimensional problem can be
construed as a sequential decision problem in which we find
f(x) as we allow x to traverse the interval A. This formu-
lation also indicates why there is no direct generalization of
this procedure to higher-dimensional problems. Our dynamic
programming implementation only allows determination of an
approximate solution because the values of the range of f must
be a discrete set, but because this discrete set can approach
the set of real numbers the solution can reach any desired
level of accuracy.

The basic idea of the application of dynamic programming
to our problem is to relate the minimized value of the approx-
imation to Iλ (which restricts the range of f ) when there are n

observations, Fn, to the value of this discrete approximation
when there are n − 1 observations, Fn−1.

Suppose the n observations are equally spaced in x, and
label the sites 1 to n. Let Cm be the set of piecewise lin-
ear, strictly increasing functions with nodes at {1, . . . ,n} such
that the values at the nodes are of the form (m + j)/m for
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j = 0, 1, . . . ,m(n − 1) with m> 1. Let Ci,j = {f ∈ Cm : f(i) =
(m + j)/m}, let

Fi(j) = min
f∈Ci,j

∫ i

1

[y(x) − ŷ(f(x))]2 + λ[f ′(x) − 1]2 dx.

As m increases, the gap between possible values of f(i) de-
creases, and this gap can be made arbitrarily small by choos-
ing a sufficiently large value of m. For f to be bijective we
require f(1) = 1 and f(n) = n.

Let f̂ be the optimal deformation for f ∈ Cm. If f̂(i) =
(m + j)/m, then the requirement that the deformation does
not tear the predictions implies that f̂(l) ∈ (1, (m + j)/m) for
l = 2, . . . , i− 1. The dynamic programming principle demands
that for any optimal deformation f̂ , if f̂(i− 1) = (m + k)/m,
then f̂(l) for l > i − 1 must be the optimal deformation for
the initial condition, which specifies f̂(i− 1) = (m + k)/m.
Hence

Fi(j) = min
k∈[1,j]

[

Fi−1(k)

+

∫ i

i−1

([y(x) − ŷ(f(x))]2 + λ[f ′(x) − 1]2) dx

]

,

(4)

for i = 2, . . . ,n − 1 and j = ⌈1 + (i− 1)/m⌉, . . . , ⌊n− (n− i)/
m⌋. The f in this expression is just a function of i, j, k be-
cause the expression entails f(i− 1) = (m + k)/m and f(i) =
(m + j)/m, and other values of f are obtained via linear inter-
polation. Explicitly incorporating linear interpolation in the
integral in equation (4) leads to
∫ i

i−1

([y(x) − ŷ(f(x))]2 + λ[f ′(x) − 1]2) dx

=
1

3

⌈
j
m ⌉

∑

l=⌊m+k
m ⌋

1

βi−1 − β̂l
j−k
m

×

{[

αi−1 +

(

i− 1 +
lm− k

j − k

)

βi−1 − α̂l − (l + 1)β̂l

]3

−

[

αi−1 +

(

i− 1 +
lm−mk

j − k

)

βi−1 − α̂l − lβ̂l

]3}

+λ

(

j − k

m
− 1

)2

, (5)

where αk = yk − k(yk+1 − yk ), βk = yk+1 − yk , and α̂k

and β̂k are defined analogously, but with hats on the y’s.
Let G(i, j, k) be the term in solid brackets in equation (4),
so that Fi(j) ≡ mink∈[1,j] G(i, j, k). Once we compute Fi(j)
by recording arg mink∈[1,j] G(i, j, k) for all i, j, it is simple to

find the optimal deformation because f̂(n) = n and f̂(l) =
(m + arg mink∈[1,f(l+1)m−m] G(l, f̂(l + 1)m − m,k))/m for
l < n. Software that implements the procedure is available
at www.biostat.umn.edu/∼cavanr.

3.2 Calculus of Variations for the One-Dimensional Problem

Another way to find the optimal deformation is to solve the
Euler–Lagrange equations using general techniques for the so-

lution of boundary value problems. The differential equation
using the deformation penalty from (3) is

λ
d2f

dx2
= ŷ′(f(x))[ŷ(f(x)) − y(x)],

and if the observations and predictions are on the unit in-
terval, the boundary conditions are f(0) = 0 and f(1) = 1.
Unfortunately, this differential equation is a singular pertur-
bation problem (for λ → 0), and the singularly perturbed
problem does not necessarily have a unique solution; see, e.g.,
De Jager and Furu (1996) or O’Malley (1991). For example,
if A = [0, 1], y(x) = x, and ŷ(x) = 2 + x, then there is no
solution to the equation with λ = 0. In practice this means
that we cannot always find a numerical approximation to the
solution of the two-point boundary value problem for small
λ, due to numerical instabilities. This same example illus-
trates that methods that rely on nonlinear optimization can
encounter problems because the optimal solution can be on
the boundary of the parameter space.

Another problem with the calculus of variations approach
is that we cannot guarantee that the resulting deformation
is strictly monotone. One is tempted to use a penalty func-
tion to rule out nonmonotone solutions (i.e., add a term to
the definition of Iλ, which penalizes nonmonotone solutions
to the extent that the numerical techniques will not produce
nonmonotone solutions), but such a technique will not work:
it is easy to show that if there is no monotone solution to
our two-point boundary value problem without a nonmono-
tonicity penalty function, then adding such a penalty func-
tion to rule out nonmonotonic solutions generates a bound-
ary value problem with no solutions at all. (The proof rests
on the uniqueness of solutions to ordinary differential equa-
tions.) This same problem is encountered by other methods;
for example, Glasbey and Mardia (2001) give a method for
checking whether the warping function is bijective but do not
use these constraints when they find the warp function. We
take the same approach here. In practice, solutions are mono-
tone provided λ exceeds some problem-specific value.

We think the dynamic programming approach is the
method of choice for unidimensionally indexed data (because
it is numerically stable and finds the global optimum), so
we use this method exclusively for such data. However, the
calculus of variations approach generalizes more directly to
higher-dimensioned indexes, as we discuss here.

3.3 Calculus of Variations in Multiple Dimensions

We measure the deviation of a deformation from the iden-
tity map with a two-dimensional (and, by implication, higher-
dimensional) extension of (3), by comparing the diagonal of
the Jacobian of the deformation to the identity matrix. The
measure of total misfit is

Iλ(y, ŷ) = min
f∈D

{
∫ ∫

A

(

[y(x1, x2) − ŷ(f1(x1, x2), f2(x1, x2))]
2

+λ

[(

∂f1

∂x1

− 1

)2

+

(

∂f2

∂x2

− 1

)2])

dx1 dx2

}

.

The calculus of variations gives the following nonlinear el-
liptic system of partial differential equations (PDEs) for the
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deformation f that minimizes the previous integral,

λ
∂2fi
∂x2

i

=
∂ŷ

∂fi
(f1(x1, x2), f2(x1, x2))

× [ŷ(f1(x1, x2), f2(x1, x2)) − y(x1, x2)],

for i = 1, 2; see, e.g., Renardy and Rogers (1993). We assume
measurements and predictions are on the unit square. The
deformation must be one to one, hence the boundaries must
map to themselves, so the boundary conditions are f 1(0, x2) =
f 2(x1, 0) = 0, f 1(1, x2) = f 2(x1, 1) = 1, f 1(x1, 0) = f 1(x1, 1) =
x1, and f 2(0, x2) = f 2(1, x2) = x2 for all (x1, x2) in the unit
square.

We then solve the system of PDEs (approximately) using
numerical methods. We have found the use of Brandt’s full
approximation storage algorithm helpful in numerically solv-
ing these systems; see, e.g., Hackbusch (1985) and Press et al.
(1992). This algorithm uses a multigrid, finite difference ap-
proach to numerically solve the system of equations. Because
the system is only weakly coupled (due to the choice of penalty
function), finding the solution is relatively easy. With other
choices for the deformation penalty function, one obtains dif-
ferent sets of equations. Due to the singular perturbation at λ
= 0, one should find optimal deformations with a decreasing
sequence of λ’s because the algorithm can become unstable
when λ gets small. Software for the solution of these systems
is available at www.biostat.umn.edu/∼cavanr.

4. One-Dimensional (Time-Series) Examples

4.1 An Example with an Explicit Solution

Before getting into real-data applications of the method, we
explore some of the mathematical challenges that arise with
deformation, even in one dimension, in the context of a sim-
ple example with an explicit solution. Suppose y(x) = 0 and
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Figure 1. The optimal deformation f(x) for each of the three values of λ for an example in which the solutions can be
calculated analytically (top row). Deformed predictions for each of the three models (bottom row).

ŷ(x) = x for x ∈ [0, 1
2
] and ŷ(x) = 1 − x for x ∈ [ 1

2
, 1]. The as-

sociated two-point boundary value problem is then

λ
d2f

dx2
=

{

f for 0 ≤ f(x) < 1
2
,

f − 1 for 1
2
≤ f(x) ≤ 1,

with boundary conditions f(0) = 0 and f(1) = 1. There are
infinitely many (weak) solutions when λ = 0 (namely fa(x) =
1{x>a} for all a ∈ (0, 1)) but for any λ > 0 the optimal defor-
mation is

fλ(x) =















sinh(λ−1/2x)

2 sinh(λ−1/2/2)
if 0 ≤ x ≤ 1

2
,

sinh
(

λ−1/2(x− 1)
)

2 sinh(λ−1/2/2)
+ 1 if 1

2
≤ x ≤ 1.

This solution is monotone for all λ. Figure 1 shows graphs
of the optimal deformation and the deformed version of the
predictions for various values of λ. As we allow λ to ap-
proach zero, the solution approaches the discontinuous func-
tion f(x) = 0 for x ≤ 1

2
and f(x) = 1 for x > 1

2
.

This example illustrates that the optimal deformation will
try to wipe out peaks in ŷ that are not in y by squeezing them
into oblivion. In the limit, the discontinuous function we ob-
tain completely erases the peak. This example illustrates a
fundamental problem with methods for registration: defor-
mation of a curve can appear to reduce prediction error even
when we think the curves do not differ in terms of phase.
Ramsay and Li (1998) note a similar phenomenon and see
this as a weakness, but we do not. For the above example,
the predictions are very close to the observed values for val-
ues of x near the boundaries. We can think of some of these
as misplaced predictions; hence, we should move these pre-
dictions toward 0.5, and this is what the optimal deformation
does in this example. In the limit, there is no error in y after
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accounting for deformation. Note that if the observations had
been all −1 we would find the same optimal deformation as
above, but after deformation with the limiting deformation,
the predictions would still differ from the observations by 1.
This illustrates that the idea of error in x and error in y are
indeed distinct notions.

To see the identifiability problems associated with the pa-
rameters (A, f) in the approach of Ramsay and Li (1998)
noted in Section 2.3, suppose ŷ(x) is as above but now
y(x) = ŷ(x)/2. Then there are two solutions that result in
no error after applying the transformation corresponding to
the pair: namely (2, x) and (1, f ∗(x)) where f ∗(x) = x/2 for
x ∈ [0, 1/2] and f ∗(x) = x/2 + 1/2 for x ∈ (1/2, 1]. Hence,
for small λ there will be two nearly equivalent modes.

4.1.1 Practical implications of the singular perturbation.
Discontinuities (or extremely sharp deformations) will lead
to great difficulties with most numerical implementations. For
example, we could try to parameterize f as a piecewise linear
function on a mesh, but this would lead to numerical under-
flow/overflow problems as we take λ smaller if we parameter-
ize the solution so that all first differences of the deformation
are positive. If we, instead, were to solve the two-point bound-
ary value problem by discretizing and then numerically solv-
ing the system of equations, then, as λ → 0, we would have to
use some sort of adaptive grid that gets much denser at the
high end of the interval, or use a very fine mesh in order to
obtain a reasonably accurate solution. Our finite difference so-
lution to the set of PDEs associated with the two-dimensional
problem has difficulty in solving the discretized set of equa-
tions on the coarsest grid when λ becomes too small.

The problem with the calculus of variations approach can
be remedied by finding the deformation over a class of better-
behaved functions. Dynamic programming avoids the sin-
gular perturbation problems because the restriction on the
range imposes implicit constraints on the minimum and max-
imum derivative of the deformation. Restricting the size of the
derivative of the deformation when implementing the calculus
of variations method can serve the same purpose (although it
is not obvious how we would implement this restriction). The
explicit example illustrates how a restriction on the maximum
derivative puts an upper bound on how much a peak can get
squeezed. Similarly, the lower bound on the derivative of the
deformation (1/m in the dynamic programming approach)
constrains how much stretching is allowed.

4.1.2 Bayesian interpretation. We can view the singular
perturbation problem under a Bayesian lens, applying the
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Figure 2. Observed number of trapped Canadian lynx (solid lines) and three sets of predictions (dashed lines). The models
predict the time series in different ways and have different patterns of errors.

ideas of Section 2.2 to this specific model. As above, assume
the deformation is piecewise linear with nodes at the sampled
locations, but now suppose f(i) = f(i − 1) + η(i) where η(i)
is a sequence of i.i.d. positive random variables with mean 1
and variance σ2

f . If we replace the integrals in the definition
of our statistic by summations, then we have the statistic

Sλ(y, ŷ) = min
f∈D

I
∑

i=1

[y(i) − ŷ(f(i))]2

+λ

I
∑

i=1

[f(i) − f(i− 1) − 1]2,

and this makes sense if we define ŷ(i) by interpolation for non-
integral f(i). The deformation for a given λ is the same defor-
mation we obtain from minimizing

∑

i
[y(i) − ŷ(f(i))]2/σ2 +

∑

i
[f(i) − f(i− 1) − 1]2/σ2

f , and so f̂ has an interpretation as
a linear Bayes estimate (or as a posterior mode for a Gaussian
model) under our nonlinear deformation and additive error
model. Within this context, λ can be interpreted as a vari-
ance ratio. Decreasing λ is equivalent to specifying a larger
value of σf relative to σ, and in the limit λ → 0, σf → ∞,
corresponding to a noninformative prior distribution on the
distribution of the increments.

4.2 An Example Using the Canadian Lynx Series

We illustrate the one-dimensional method with the often-
analyzed series of Canadian lynx trapped in the Mackenzie
River area from 1821 to 1934 (Elton and Nicholson, 1942).
Although these data have been analyzed dozens of times (see
Tong, 1990, for a review), our intention is not to compare all
methods of prediction for this dataset but rather to use this
example to illustrate the ability of our method to compare the
fits of different sets of predictions. We compare three simple
models, two of which are biologically motivated. For illustra-
tion, we fit each model to the first 80 years of data in order
to predict the final 34 years (only these final years are shown
in the plots).

4.2.1 Three models fit to the lynx data. For our first set of
predictions (which we refer to as model A), we model the nat-
ural logarithm of the number of lynx trapped as a stochastic
process and use the best-fitting autoregression (in terms of
Akaike’s information criterion) in order to predict the num-
ber of lynx trapped. The chosen autoregression has four terms,
and the predictions are shown in Figure 2A, along with the
actual data from the last 34 years of the series.
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Our other predictions are based on an explicit bio-
logical model, in particular, the simplest predator–prey
model of species interaction, with the predators and prey
being lynx and snowshoe hare; see Reilly and Zeringue
(2004) for more detail. If u1(x) is the number of lynx
at time x, and u2(x) is the number of snowshoe hare
at time x, then the simplest deterministic predator–prey
model assumes these quantities are related via the nonlinear
system,

du1

dx
= −α1u1 + β1u1u2,

du2

dx
= α2u2 − β2u1u2,

where αj , βj for j = 1, 2 are positive parameters.
To obtain predictions, we need to add an equation relating

the measured lynx trappings, y(x), for x = 1, . . . ,n, to the
size of the lynx population. If α0 is the proportion of the lynx
population trapped (assumed constant over time), then we
assume

y(x) = α0u1(x) + ǫ(x),

where ǫ(x), x = 1, . . . ,n is an independent Gaussian measure-
ment error process. If we use a forward difference represen-
tation of the dynamics, allow for Gaussian noise in the sys-
tem equations, and set the measurement variance to zero, we
can use the (linear) Kalman filter to obtain predictions once
prior distributions are specified for all the parameters (this
is model B). The prior information (parameterized as inde-
pendent normal distributions) to which we have access is not
of very high quality, but the predictions (using the posterior
mode) do match the approximate magnitude and temporal

x

f(
x
)

1900 1910 1920 1930

1
9

0
0

1
9

1
0

1
9

2
0

1
9

3
0

model A

x

f(
x
)

1900 1910 1920 1930

1
9

0
0

1
9

1
0

1
9

2
0

1
9

3
0

model B

x

f(
x
)

1900 1910 1920 1930

1
9

0
0

1
9

1
0

1
9

2
0

1
9

3
0

model C

year

ly
n
x

1910 1920 1930

0
5
0
0
0

1
0
0
0
0

model A

year

ly
n
x

1910 1920 1930

0
5
0
0
0

1
0
0
0
0

model B

year

ly
n
x

1910 1920 1930

0
5
0
0
0

1
0
0
0
0

model C

Figure 3. The optimal deformation f(x) for each of the three models in Figure 2 using λ = 0—that is, prediction error in y

is minimized with no concern for deformation error (top row). The data (solid lines) and deformed predictions (dashed lines)
for each of the three models (bottom row).

spacing of peaks and valleys in the numbers of lynx trapped
(see Figure 2B).

A third set of predictions was obtained by letting θ1(x) =
log(β2u1(x)) and θ2(x) = log(β1u2(x)) to obtain the system,

log(y(x)) = α + θ1(x) + δ(x),

dθ1

dx
= eθ2 − α1,

dθ2

dx
= α2 − eθ1 ,

where δ(x) for x = 1, . . . ,n is a sequence of independent Gaus-
sian measurement errors (and we use the natural logarithm).
We then conduct Bayesian inference for the six parameters
in this model (two initial conditions, α, α1, α2, and the stan-
dard deviation of the measurement noise) using the same prior
means but with much larger variances than in model B to ob-
tain model C. The predictions produced by this model (using
the posterior mode) are shown in Figure 2C.

Figure 3 displays the optimal deformation and the de-
formed predictions for all three models using λ = 0. Setting
λ = 0 is of interest because the resulting deformation is inde-
pendent of the metric F chosen used to quantify the departure
of the deformation from the identity.

4.2.2 Summarizing the prediction errors of the fitted models.
We compare the models by examining their summary mea-
sures of misfit; that is, G(y(x), ŷ(f(x))) from (2) and F (x,
f(x)) from (3), for a range of λ. The left plot in Figure 4
displays the root mean integrated squared error (RMISE),

(
∫

G(y(x), ŷ(x)) dx/
∫

dx)
1/2

, plotted by the standardized de-

formation penalty, (
∫

F (x, f(x)) dx/
∫

dx)
1/2

, for all three mod-
els using the dynamic programming algorithm. To construct
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Figure 4. The tradeoff between prediction error in y and deformation error in x for the three models displayed in Figure 2.
These three plots show deformation error as measured in three different ways.

these curves, we found the optimal deformation for hundreds
of values of λ, then computed the components of error using
these deformations.

Under these fitting criteria, model C dominates the other
two models: for any given mean squared error (measured by
G), the prediction from model C requires the least amount
of deformation (as measured by F). Conversely, for any level
of deformation, model C fits with the lowest mean squared
error in y. Models A and B are very poor by comparison to
model C. As Figure 3 illustrates, model A underpredicts the
peak numbers of lynx trapped by a factor of 5–10, though
it does correctly predict the approximate year and duration
of at least the first couple of peaks. Model B, on the other
hand, predicts the magnitudes and durations of the peaks
within a factor of 2 or so, but misplaces the peaks badly in
time.

The left plot in Figure 4 shows that most of the error in
model A is error in the units of number of trappings: no
amount of deformation substantially reduces the RMISE in
the number of lynx trapped. In contrast, a large portion of
the error in model B is error in placement of predictions over
time: if moderate deformations are allowed (where the aver-
age difference between the deformation’s derivative and 1 is
about 1), the RMISE in lynx trapped is greatly reduced. This
implies that if it is more important to predict the approximate
magnitude of large fluctuations over extended periods than to
predict the exact timing of these fluctuations (e.g., suppose
we are trying to determine an inventory schedule over an ex-
tended period), then model B is a better guide than model
A.

4.2.3 Considering other measures of deformation, F. The
measure of deformation we have used thus far seems reason-
able for many applications. However, it is relatively easy to
alter the dynamic programming procedure to allow for dif-
ferent measures of deformation. We illustrate with the lynx
predictions: the plot in the center of Figure 4 shows, for each
of the three fitted models, the RMISE versus the standard-
ized version of another deformation penalty, F (x, f(x)) =
[log(f ′(x))]2. The primary difference between this deforma-
tion penalty and the previous is this treats stretching and
compression of the x-axis in a symmetric fashion (whereas the
previous penalty favors compression of the x-axis). The right-

most panel in Figure 4 displays the errors using the penalty
function F (x, f(x)) = [f(x) − x]2. The λ values for this case
are not directly comparable to those with the other measures
of deformation; indeed, the units are not even the same: here,
λ has units of lynx2/ year2 (once we standardize G and F by
dividing by the length of time over which we integrate). The
curves for model A and model B cross at λ = 6900, so that
these models are “equally good” if we are indifferent between
an error of 1 year or an error of 83 lynx (69001/2 ≈ 83).

5. A Two-Dimensional (Image) Example

5.1 An Example Using Meteorological Data

Our two-dimensional example uses a dataset from the
University of Washington Department of Atmospheric Sci-
ences Short-Range Ensemble Forecast System (SREF). The
SREF is an ensemble of the fifth-generation Pennsylvania
State University–National Center for Atmospheric Research
Mesoscale Model (MM5), a community research numerical
weather prediction model. Each member of the ensemble uses
a different global analysis from numerical weather centers
around the globe (see Table 1) as the initial condition for its
solution. One member is also initialized from the “centroid”
analysis, an analysis created by finding the mean for each pa-
rameter of the other six global analyses. Due to uncertainty
in the initial conditions and slight differences in model physi-
cal approximations, each analysis is slightly different and re-
sults in a different numerical solution. The SREF is run daily
for the northeast Pacific Ocean and the northwestern United
States and Canada. The charts shown extend from the date-
line (180) to 90E and from 30N to 60N. Numerical calcula-
tions are on a Lambert conformal grid with a grid spacing of
approximately 36 km or 126 by 150 grid points.

The charts are the 48-hour predictions for the 500 mb pres-
sure surface height of the seven ensemble member numerical
forecasts initialized on 00 GMT October 30, 2002. The veri-
fying analysis is the centroid analysis, the mean of the seven
global analyses, for 00 GMT November 1, 2002. We treat the
verifying analysis as the observations because these are the
best estimates of what occurred on November 1 since they
use observations from October 30 and the next 2 days to esti-
mate the true pressure distribution on November 1. Pressure
cannot be measured directly everywhere on the globe, so it
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Table 1
Summary of numerical weather prediction methods used

Model name Description Production center

AVN Global Forecast System U.S. National Center for Environmental Prediction
CMCG Global Environmental Multi-Scale Model Canadian Meteorological Center
ETA ETA Limited-Area Mesoscale Model U.S. National Center for Environmental Prediction
GASP Global Analysis and Prediction Model Australian Bureau of Meteorology
NGPS Navy Operational Global Atmospheric

Prediction System
Fleet Numerical Meteorological and Oceanographic Center

TCWB Global Forecast System Taiwan Central Weather Bureau
CENT Multianalysis Centroid (mean of the six

models listed above)
University of Washington Atmospheric Sciences Department

must be reconstructed from a number of different sources.
The weather pattern is a large blocking ridge extending up
from the NE Pacific Ocean into British Columbia and two
low-pressure systems starting to cut under the main ridge.
Figure 5 shows the seven sets of predictions and the verifying
analysis.

For each model we solved for the optimal deformation sev-
eral dozen times using a decreasing sequence of values for λ.
As in the lynx example, we can compare the models by exam-
ining the tradeoff between the deformation penalty and the
RMISE (see Figure 6). The model with the greatest RMISE
before deformation (TCWB) has the greatest amount of error
in spatial placement, as witnessed by how much the RMISE
can be lowered by spatial deformation. Based on examination
of Figure 5, and given the RMISE without any deformation it
is not clear that AVN and CENT are really better predictions
than the others: perhaps the others simply slightly misplaced
an area of high or low pressure. Figure 6 demonstrates that
this is not the case because allowing for deformation does not

verification avn cent cmcg

eta gasp ngps tcwb

Figure 5. The verification analysis and seven sets of predictions of pressure.

largely alter the ordering of the quality of the predictions.
Such conclusions would not be possible without a method
that considers different components of error.

Finally, Figure 7 shows the optimal deformation for two sets
of predictions. The misfit of the TCWB predictions largely
consists of a shift to the upper left compared to the observa-
tions, while the misfit of the AVN predictions involves some
twisting in the middle of the field. If such large-scale shifts
are witnessed for a given model in many instances (as we see
for TCWB here), then this suggests a simple way to improve
the model.

6. Discussion

Predictions for indexed data are usually summarized in terms
of error in y, but this is often inappropriate because modeling
misspecification or misfit is often better summarized in terms
of error in y and in x.

In this approach, the parameter λ controls the tradeoff
between deformation in x and error in y. If λ = 0, the
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Figure 6. The tradeoff in deformation error and RMISE for the seven sets of predictions in Figure 5.

deformation minimizes the integrated error in y (subject to
the elasticity constraint). As λ → ∞, no deformation is al-
lowed, and all error is assumed to occur in y. The tradeoff
parameter λ may be selected by the researcher, or may in
some cases be estimated from data. Alternatively, results can
be calculated for a selection of values of λ as a way of inves-
tigating the properties of the model misfit.

We expect the main benefit of this approach to be decompo-
sition of errors into separate components, perhaps for a range
of λ as in the lynx example, but there are cases in which
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Figure 7. The limiting allowable deformation for two of the sets of pressure predictions from Figure 6 represented as vector
fields.

the statistic Iλ may be important in its own right. For ex-
ample, if the deformation measure (and tradeoff parameter)
are chosen correctly, then Iλ can be directly used for model
selection. This application requires more study; for example,
we have not investigated the sampling behavior of the statis-
tic Iλ, without which differences in Iλ for any given value
of λ cannot be deemed due to systematic factors rather than
noise. In a Bayesian predictive context this is quite simple
because uncertainty in the predictions leads to uncertainty in
Iλ. If the predictions are a function of a vector of parameters,
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then Iλ is a function of these same parameters, so if we have
posterior samples of the parameter vector, then we use these
samples to numerically integrate the parameter vector out
of Iλ.
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Résumé

Les mesures conventionnelles d’ajustement à un modèle pour
des données indexées (par exemple des séries temporelles ou
des données spatiales) résument les erreurs en y, par exemple
en intégrant (ou en sommant) le carré de la différence entre
les valeurs prédites et les valeurs mesurées dans un large in-
tervalle de valeurs de x. Nous proposons une approche qui en-
visage que les erreurs peuvent aussi se produire en x. Plutôt
que de calculer simplement la différence entre prédiction et
observation à chaque site (ou date), nous ≪déformons≫
d’abord les prévisions, en étirant ou en comprimant dans la
(ou les) direction(s) x, pour améliorer l’accord entre les ob-
servations et les prévisions ≪déformées≫. L’erreur est alors
résumée par a) la quantité de ≪déformation≫ en x, et b)
la différence restant en y entre les données et les prévisions
≪déformées≫ (autrement dit l’erreur résiduelle en y après
≪déformation≫). Un paramètre, λ, contrôle le compromis
entre a) et b), de sorte que si λ → ∞ aucune déformation
n’est autorisée, alors que si λ → 0 la déformation minimise les
erreurs en y. Dans certaines applications la déformation elle-
même est intéressante acr elle caractérise la structure (tem-
porelle ou spatiale) des erreurs. La déformation optimale peut
être obtenue en résolvant un système d’équations aux dérivées
partielles non-linéaires, ou pour un indice unidimensionnel en
utilisant un algorithme de programmation dynamique. Nous
illustrons la procédure par des exemples de séries temporelles
non-linéaires et de dynmique des fluides.
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