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Summary. In problems with missing or latent data, a standard approach is to first impute the unobserved
data, then perform all statistical analyses on the completed dataset—corresponding to the observed data
and imputed unobserved data—using standard procedures for complete-data inference. Here, we extend this
approach to model checking by demonstrating the advantages of the use of completed-data model diagnos-
tics on imputed completed datasets. The approach is set in the theoretical framework of Bayesian posterior
predictive checks (but, as with missing-data imputation, our methods of missing-data model checking can
also be interpreted as “predictive inference” in a non-Bayesian context). We consider the graphical diagnos-
tics within this framework. Advantages of the completed-data approach include: (1) One can often check
model fit in terms of quantities that are of key substantive interest in a natural way, which is not always
possible using observed data alone. (2) In problems with missing data, checks may be devised that do not
require to model the missingness or inclusion mechanism; the latter is useful for the analysis of ignorable
but unknown data collection mechanisms, such as are often assumed in the analysis of sample surveys and
observational studies. (3) In many problems with latent data, it is possible to check qualitative features of
the model (for example, independence of two variables) that can be naturally formalized with the help of
the latent data. We illustrate with several applied examples.
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1. Introduction
1.1 Difficulties of Model Checking with Missing

and Latent Data
The fundamental approach of goodness-of-fit testing is to dis-
play or summarize the observed data, and compare this to
what might have been expected under the model. If there
are systematic discrepancies between the data summaries and
their reference distribution under the assumed model, this
implies a misfit of the model to the data. Model checks in-
clude analytical methods such as χ2 and likelihood ratio tests,
and graphical methods such as residual and quantile plots. In
missing- and latent-data settings, two complications arise that
can in practice often lead to models being checked in only a
cursory fashion if at all.

The first complication comes because in missing-data situ-
ations the reference distribution of a data summary, whether
analytical or graphical, is implicitly determined by the data
that could have been seen under the model. As a result, com-
paring the data to what could have been observed requires a
model for the missing-data mechanism—in order to obtain a
reference distribution for which data points are observed—as

well as a model for the data themselves. Modeling the process
that generated the missing data can be difficult, and any re-
quirement that this be done will drastically reduce the practi-
cality of model checking procedures. As a result, model check-
ing is generally applied either to complete-data segments of
the problem or only approximately.

The second complication arises with the latent data (de-
fined broadly to include, for example, group-level parameters
in hierarchical models). Even if there is a full model for the
observation process (and, hence, it is not a problem to sim-
ulate replications of the observed data), the latent data may
be of scientific interest. As such, we may wish to construct
tests using these latent categories or variables. As an exam-
ple, one may think of regression diagnostics in hierarchical
models involving residuals calculated on the basis of group-
level parameters (that are considered as latent data). Unlike
standard residuals that are difficult to interpret for hierarchi-
cal models (see Hodges, 1988), those based on latent data are
independent.

The characterization of unobserved data as “missing” or
“latent” is somewhat arbitrary; as is well known in the
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context of EM and similar computational algorithms, latent
and missing data have the same inferential standing as un-
known quantities with a joint distribution under a probability
model. For the purpose of this article, we distinguish based
on the interpretation of the completed dataset: missing data
have the same structure as observed data whereas latent data
are structurally different. For example, Section 4.2 describes
a situation in which children’s ages are reported rounded to
the nearest 1, 6, or 12 months (see the top graph in Figure 6).
We consider the children’s true ages as latent data, in that if
we were given the completed dataset (all the true ages and all
the reported ages), then we would wish to distinguish between
the true and reported ages—they play different roles in the
model. In fact, in this example, the type of rounding (whether
to 1, 6, or 12 months) is another latent variable. How could
missing data arise in this context? If some of the children
in the study were missing some recorded covariates, or if age
were not even reported for some children, these would be miss-
ing data—because, once these data were imputed, they would
be structurally indistinguishable from the observed data.

1.2 Predictive Checks with Unobserved Data
In this article, we propose to resolve difficulties of model
checking in missing- and latent-data settings using the frame-
work of Bayesian posterior predictive checks (Rubin, 1984;
Gelman, Meng, and Stern, 1996). The general idea of predic-
tive assessment is to evaluate any model based on its pre-
dictions given currently available data (Dawid, 1984). Pre-
dictive criteria can be used as a formal approach for the
evaluation and selection of models (Geisser and Eddy, 1979;
Seillier-Moiseiwitsch, Sweeting, and Dawid, 1992). Here we
focus on graphical and exploratory comparisons (as in Buja
et al., 1988; Buja, Cook, and Swayne, 1999; Gelman, 2004),
in addition to numerical summaries based on test statistics.

Gelman et al. (1996) define posterior predictive checks as
comparisons of observed data yobs to replicated datasets yrep

obs
that have been simulated from the posterior predictive distri-
bution of the model with parameters θ. In this article, we
extend posterior predictive checking within the context of
missing or latent data by including unobserved data in the
model checks. Model checking then will be applied to com-
pleted data, which will typically require multiple imputations
of the unobserved data.

The approach of including unobserved data in model checks
will be shown to yield various advantages. The situation is
similar to that of the EM algorithm (Dempster, Laird, and
Rubin, 1977), data augmentation (Tanner and Wong, 1987),
and multiple imputation (Rubin, 1987, 1996). The EM and
data augmentation algorithms take advantage of explicitly ac-
knowledging unobserved data in finding posterior modes and
simulation draws. The multiple imputation approach similarly
accounts for uncertainties in missing data for Bayesian infer-
ence. The approach proposed in this article then completes
this idea for model checking. In general, a key advantage of
completed-data model checks is that they can be directly un-
derstandable in ways that observed-data checks are not, al-
lowing, for example, graphical model checks (analogous to
residual plots) that are interpretable without need for formal
computation of reference distributions. We shall illustrate this
with several instances of missing- and latent-data problems

from a wide range of application areas, with various statisti-
cal models, and a variety of graphical displays.

Despite the simplicity of the approach, we have seen it
only rarely in the statistical literature (with exceptions in-
cluding the analysis of realized residuals in linear models
and censored-data models, Chaloner and Brant, 1998, and
Chaloner, 1991; and latent continuous responses in discrete-
data regressions, Albert and Chib, 1995). We attribute this
to an incomplete conceptual foundation. We hope that this
article, by placing completed-data diagnostics in a general
framework (in which observed-data test statistics are a spe-
cial case), and illustrating in a variety of applications, will
motivate their further use.

This article is organized as follows. Section 2 defines the ba-
sic notation and ideas underlying our recommended approach,
first for missing and then for latent data. Sections 3 and 4
present several examples from applied work by ourselves and
others, and Section 5 discusses some of the lessons we have
learned from these applied examples.

2. Notation, Underlying Ideas, and Implementation
We set up our completed-data model checking using the the-
oretical framework of Little and Rubin (1987) and Gelman
et al. (2003, Chapter 7) for Bayesian inference with missing
data. The two relevant tasks are defining the predictive distri-
bution for replicated data, and choosing the completed-data
summaries to display. We discuss the theoretical issues in de-
tail in Section 2.1 for the case of missing data and then in
Section 2.2 briefly consider the latent data setting. We present
our approach in algorithmic form in Section 2.3.

2.1 Missing Data
2.1.1 Bayesian notation using inclusion indicators. We use

the term missing data for potentially observed data that, unin-
tentionally or by design, have been left unobserved. Consider
observed data yobs and missing data ymis, which together form
a “completed” dataset ycom = (yobs, ymis). If y were fully ob-
served, we would perform inference for the parameter vector
θ defined by the data model p(y | θ) and possibly a prior dis-
tribution p(θ). Instead, we must condition on the available
information: the observed data yobs and the inclusion indica-
tor vector I, which describes which units of y are observed
and which are not. (For simple scenarios of missingness, we
would label Ii = 1 for observed data i and 0 for missing data.
More generally, I could have more than two possible values
in settings with partially informative missing-data patterns
such as censoring, truncation, and rounding.) The model is
completed by a probabilistic “inclusion model,” p(I | ycom, φ),
with a prior distribution p(φ | θ) on the parameters φ of the
inclusion model.

Bayesian analysis then works with the joint posterior dis-
tribution p(θ, φ, ymis | yobs, I) ∝ p(θ) p(φ | θ)p(ycom | θ)p(I | ycom,
φ). It is necessary to formally include I in the model because,
in general, the pattern of which data are observed and which
are unobserved can be informative about the parameters of
interest in the model. In addition, all these probability dis-
tributions are implicitly conditional on any fully observed
covariates.

An important special case occurs if p(θ, ymis | yobs, I) =
p(θ, ymis | yobs) ∝ p(θ)p(ycom | θ), in which case the inclusion
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model is ignorable (Rubin, 1976). A key issue in using ignor-
able models is that they do not require a model p(I | ycom, φ)
or a functional form for p(φ | θ). Two jointly sufficient condi-
tions for ignorability are “missingness at random”—that the
probability of the missing-data pattern depends only on ob-
served data—and “distinct parameters”—that φ and θ are
independent in their prior distribution. In practice, most sta-
tistical analyses with missing data either assume ignorabil-
ity (after including enough covariates in the model so that
the assumption is reasonable; for example, including demo-
graphic variables in a sample survey and making the assump-
tion that nonresponse depends only on these covariates) or set
up specific nonignorable models. As we shall discuss in Section
2.1.3 and in the example in Section 3.1, under an ignorable
model one can simulate replications of the completed data
ycom without ever having to simulate or model the missing-
data mechanism.

2.1.2 Posterior predictive replications in case of missing
data. Replicating the complete data is relatively simple, re-
quiring knowledge only of the complete-data model and pa-
rameters, whereas replicating the observed data also requires
a model for the missingness mechanism. Thus, from the stand-
point of replications, observed datasets—which are charac-
terized by (ycom, I)—are more complicated than completed
datasets ycom.

To simulate replicated datasets for model checking, one can
start with the observed data and observed inclusion pattern
(yobs, I), then estimate the parameter vector θ simultane-
ously with the missing data ymis—this is the data augmen-
tation paradigm of Dempster et al. (1977) and Tanner and
Wong (1987). In simulation-based inference, the result is a
set of “multiple imputations” l = 1, . . . ,L of the completed
data y l

com along with the corresponding draws of the param-
eters (θl, φl). The completed datasets can be compared to
their expected distribution under the model, or to properties
of the reference distribution such as independence, zero mean,
or smoothness.

In general, a replicated experiment can lead to a different
missing-data pattern, and so the reference distribution for yobs

must be determined from the reference distribution of ycom

along with that of the inclusion pattern I.
2.1.3 Test variables in the presence of missing data. In pre-

dictive model checking, test variables can be thought of as
data displays or summaries, and a key issue is how to con-
struct graphical summaries to reveal important (and often
unanticipated) model flaws. This is the problem of exploratory
data analysis (Tukey, 1977), here in a modeling context. The
best way to understand these choices is to look at practical
examples, as we do in Sections 3 and 4. We set up a general
notation here.

With missing data, the most general form of a test vari-
able is T (ycom, I, θ, φ), the corresponding posterior predictive
replication being T (yrep

com, I rep, θ,φ). Since yobs is a determinis-
tic function of ycom and I, this formulation includes observed-
data tests as a special case. In general, we imagine replicating
ycom and possibly replicating I, but the latter only if the test
quantity depends on the pattern of missing data. As we dis-
cuss here and in the examples, it often makes sense to choose
a test variable that depends only on ycom and not on I at all.

Although test variables of the form T(yobs) are easier to
compute for any given dataset, we would like to consider test

variables of the form T(ycom), for three reasons. First, the
substantive interest typically lies in the complete-data model
(what we would do if we observed all the data), so a test
variable based on the completed data should be easier to un-
derstand substantively. This is important, considering that
“practical significance” is as important as “statistical signif-
icance” in model checking. Second, as noted at the end of
the previous section, the posterior predictive distribution for
y rep

com depends only on the complete-data model (and, of course,
the posterior distribution for θ), whereas the posterior predic-
tive distribution for yrep

obs can also depend on the distribution
for the inclusion variable (because the observed units need
not be the same in the observed and replicated data). As a
result, test statistics of the form T(ycom) can be checked us-
ing fewer assumptions than are required to test T(yobs). This
is particularly important when using ignorable models such
as are often assumed in the analysis of observational stud-
ies (see Gelman et al., 2003, Section 7.7). Third, in many
cases the reference distribution of the replicated test variable,
T(y rep

com), has a particularly simple form, often involving in-
dependence among variables. As a result, the model can be
checked informally using just the simulated realized values,
T(ycom), with an implicit comparison to a known reference
distribution.

2.2 Latent Data
Latent data can be defined as the structurally unobserved
variables that play a key role in the model for the observed
data. Consider observed data yobs that are modeled in terms of
latent data ylat, with “completed” dataset (yobs, ylat). Latent-
data problems may be considered as a special case of the gen-
eral missing-data case, characterized by a structurally mod-
eled inclusion variable I. Bayesian analysis then uses the
joint posterior distribution p(θ, ylat | yobs) ∝ p(θ) p(ylat | θ) ×
p(yobs | ylat, θ).

In the latent-data context, I is structurally fixed, and so
there are no inclusion-model parameters φ. Hence, we then
have two main possibilities to define the posterior predictive
replications: (a) keeping ylat fixed and varying yobs (i.e., setting
yrep

lat = ylat and drawing yrep
obs from p(yobs | ylat, θ), and (b) varying

both ylat and yobs (i.e., drawing (yrep
lat , y

rep
obs) from p(ylat, yobs | θ) =

p(ylat | θ) p(yobs | ylat, θ)).
In the latent-data context the most general form of a test

summary is T(yobs, ylat, θ), the corresponding posterior predic-
tive replication being T(yrep

obs, y
rep
lat , θ). This formulation includes

observed-data test summaries as a special case. In general,
we recommend examining the test summaries that check in a
natural way, key features of the model under consideration.
In many latent-data models such summaries will depend on
ylat as well as yobs.

Many datasets fit with latent-data models also have miss-
ing data. One can then put the inclusion indicators I into the
model and proceed as in Section 2.1, with the additional fea-
ture that latent data are present. Test variables can be defined
from the completed observable data ycom, which includes the
imputations of the missing and latent data.

2.3 Implementation
The most general implementation of the completed-data
model checks proceeds in three steps:



Multiple Imputation for Model Checking 77

1. Perform inference jointly for the parameters θ (and, if
necessary, φ) and the missing and latent data ymis, ylat,
thus obtaining a set of L imputed datasets ycom. Infer-
ence for the model parameters can be represented by a
point estimate or, more generally, by L draws from the
posterior distribution.

2. Construct a test variable—in the context of this arti-
cle, often a graph—that is a function of the completed
data, ycom and possibly the inclusion indicators I and
the parameters θ. The L imputations induce L possibil-
ities for the test variable, and these can be displayed as
multiple imputations (as in the second or third row of
Figure 6).

3. Construct the reference distribution of the test variable,
which can be done analytically (as with some χ2 tests),
or using the complete-data model given a point esti-
mate of the parameters, or given posterior simulations of
the parameters, or using other approaches such as cross-
validation or bootstrapping to summarize inferential un-
certainties. In any case, the result is a distribution, or
a set of simulated replications, of the test variable as-
suming the fitted model. Depending on the details of
the problem, the replications can be displayed graphi-
cally, for example as in the overlain lines in Figures 2
and 3.

For the observed-data model checks—or more generally, for
any test variables that depend on I as well as ycom—the third
step requires replication of the inclusion indicators as well as
the complete data, as discussed in Section 2.1.3.

In practice, it is often convenient to simplify step 2 above.
Datasets typically have internal replication, and often a single
random imputation conveys the look of a graphical test vari-
able, without the need for displaying several random draws.
The bottom row of plots in Figure 4, for example, displays a
single completed dataset. For simplicity, we often work with a
single imputation if the data have enough structure. A related
strategy is to create the diagnostic plot several times and, if
the multiply imputed completed datasets look similar, to dis-
play just one of them. When summarizing with a numerical
test statistic, one can use the entire distribution to compute
p-values, as we illustrate in Section 4.1.

We can often simplify step 3—the computation and dis-
play of the reference distribution—by comparing the graphical
test variable to an implicit reference distribution. For exam-
ple, residual plots are compared to the null hypothesis of zero
mean and independence. (In a latent-data posterior predictive
framework, unlike with point estimation, residuals are inde-
pendent in their reference distribution.) We shall illustrate
less structured implicit comparisons in Figures 4 and 6.

3. Applications with Missing Data
3.1 Randomized Experiments with an Ignorable

Dropout Model
A common problem in studies of persons or animals is that
subjects drop out in the middle of the experiment, creating
a problem of missing data. After imputation, we can use the
completed-data methods to check model fit, as we illustrate
here.

Table 1
Summary of the number of observations taken at each occasion

for the rat example, for each group separately and in total

Number of observations

Age (days) Control Low dose High dose Total

50 15 18 17 50
60 13 17 16 46
70 13 15 15 43
80 10 15 13 38
90 7 12 10 29
100 4 10 10 24
110 4 8 10 22

Verbeke and Lesaffre (1999) analyzed the longitudinal data
from a randomized experiment, the aim of which was to study
the effect of inhibiting testosterone production on the cran-
iofacial growth of male Wistar rats. A total of 50 rats were
randomly assigned to either a control group or one of the two
treatment groups where treatment consisted of a low or high
dose of the drug Decapeptyl, which is an inhibitor for testos-
terone production in rats. The treatment started at the age of
45 days, and measurements were taken at 50 days and every
10 days thereafter. The responses of interest are distances (in
pixels) between well-defined points on X-ray pictures of the
skull of each rat, taken after the rat has been anesthetized.
See Verdonck et al. (1998) for a detailed description of the
experiment.

For the purpose of this article, we consider one of the mea-
surements that can be used to characterize the height of the
skull. The individual profiles are shown in Figure 1 and show
a high degree of dropout. Indeed, many rats do not survive
anaesthesia and therefore drop out before the end of the ex-
periment. Table 1 shows the number of rats observed at each
occasion. Of the 50 rats randomized at the start of the exper-
iment, only 22 survived all seven measurements. Verbeke and
Lesaffre (1999) studied the effect of the dropout on the effi-
ciency of the final testing procedures, and derived alternative
designs with less risk of huge losses of efficiency when dropout
would occur. They modeled the jth measurement yij for the
ith rat, j = 1, . . . ,ni , i = 1, . . . ,N , as

yij =



β0 + β1tij + bi + εij , if low dose

β0 + β2tij + bi + εij , if high dose

β0 + β3tij + bi + εij , if control dose,

(1)

where the transformation tij = log(1 + (Ageij − 45)/10) is
used to linearize the subject-specific profiles. The parameter
β0 then represents the average response at the time of treat-
ment, and β1, β2, and β3 represent the average slopes for the
low dose, high dose, and control groups. The assumption of
a common average intercept is justified by the randomization
of the rats. For each subject i, the parameter bi fits the devia-
tion of its intercept from the average value in the population,
and the εij ’s denote the residual components; it is assumed
that they all are independently and normally distributed with
mean 0 and standard deviations σb and σε, respectively.
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Figure 1. Individual profiles for rats in each of the three treatment groups separately, for the ignorable dropout example
in Section 3.1.

Inspection of Figure 1 suggests a specific model violation:
in the high-dose condition, the residual variance seems to be
smaller than in the two other conditions, at least before age
75 days. Such a result could be interesting in understanding
the effects of the treatment. However, it is hard to interpret
this graph because, even under an ignorable model, dropout
can depend on previous measurements. For example, a lack of
extreme measurements at high-time values could be explained
by dropout rather than by underlying data.

The assumption of ignorability can, by definition, never be
formally checked without making strong assumptions about
possible associations between dropout and the missing out-
comes, and it is important to study the sensitivity of the con-
clusions to the underlying assumptions. This dataset has pre-
viously been extensively analyzed (see Verbeke et al., 2001),
and based on conversations with the clinicians involved in
this experiment, there seems to be no clinical evidence that
missingness might depend on unobserved outcomes.

In this example, we can safely assume ignorability of the
inclusion mechanism; we therefore use (1) to impute the miss-
ing data (based on mixed-model estimates for the parame-
ters bi ). Next we calculate, for each age, the standard devi-
ation across rats of the ycom values. This standard deviation
captures both the between-rat variance in intercept bi and
the residual variance σε. (Because we calculate the test sum-
mary separately for each simulation draw, this standard devi-
ation is not inflated by estimation uncertainty in the posterior
distribution.)

The results of a single randomly imputed completed
dataset—the observed data supplemented with a random
draw of the missing data from the posterior distribution—
appear in Figure 2, along with the standard deviations of

20 replicated datasets (again based on the mixed-model esti-
mates). This figure supports the impression that the residual
variance in the high-dose condition is somewhat smaller than
assumed under the model whereas the reverse seems to hold
for the low-dose condition. The pattern is suggestive but not
statistically significant, in that the replications show that such
a pattern is possible under the model.

This finding inspired us to try out a model expansion
with the condition-dependent residual variances σε1 , σε2 , and
σε3 . Such a model expansion can be justified on substan-
tive grounds as it formalizes dose-dependent irregularities in
growth speed. A likelihood ratio statistic revealed that the ex-
panded model tends to be preferable over the original model
(1), LR = 5.4, df = 2, p = 0.067, whereas for the expanded
model AIC = 943.0 and for model (1) AIC = 944.4.

Figure 3 checks the expanded model for the replication of
the 20 datasets as well as for the imputation of the missing
outcomes. When compared to Figure 2, the completed stan-
dard deviation lines are clearly more in the center of the refer-
ence distribution of replicated data, especially toward the end
of the study (where most of the missingness occurs). Note also
the much smaller completed standard deviation at 60 days in
the control group (compared to Figure 2), even though an
imputation is needed at that time point for two rats only.
However, one of these rats had an exceptionally small initial
value (at 50 days). The imputation is now based on a smaller
residual variance, hence a larger within-subject correlation,
implying that the imputed value at age 60 days for this rat
will tend to be smaller as well. Finally, the control group is
also the smallest, containing only 15 rats.

These results show that our graphical approach to checking
fit is useful in that it helps in finding out relevant directions
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Figure 2. Standard deviations from completed dataset (in bold) compared to the standard deviations from 20 replicated
datasets (assuming equal variances for the three groups), plotted for each treatment group separately, for the ignorable dropout
example in Section 3.1.

for specifying alternative models. If desired, candidate mod-
els that are generated in this way can be compared using nu-
merical criteria (e.g., AIC). In the rat example, in this way,
a potentially meaningful model improvement was obtained,
suggested by the results of the graphical check.

3.2 Clinical Trials with Nonignorable Dropout
The previous example illustrated the common setting in which
missing data are imputed using an ignorable model. In other
settings, however, dropout is affected by outcomes under
study that have not been fully recorded, and so it often makes
sense to use nonignorable models (for example, in a study of
pain-relief drugs, a subject may drop out if he or she contin-
ues to feel the pain). As a result, the analysis cannot simply
be done on the observed data alone (Diggle and Kenward,
1994). Methods based on the Bayesian modeling of dropouts
can be thought of as multiple imputation approaches in which
(a) the measurements that would have occurred are imputed,
and then (b) a completed-data analysis is performed. A key
intermediate stage here is the completed dataset, which we
can plot to see whether any strange patterns appear. We
illustrate with an example from Sheiner, Beal, and Dunne
(1997).

The top row of Figure 4 shows the distribution of recorded
pain measurements over time for patients who were randomly
assigned to be given one of three doses of a new pain-relief
drug immediately following a dental operation. In this top
row of plots, the width of the bar at each time represents

the proportion of participants still in the trial. Patients were
allowed to drop out at any time by requesting to be switched
to a pain reliever that is known to be effective. The data show
heavy dropout, especially among the controls. In addition,
there seems to be a pattern of decreasing pain over time at all
doses—but it is not clear how this is affected by the dropout
process.

Sheiner et al. (1997) fit to these data a model with three
parts. Internally for each subject is a pharmacokinetic differ-
ential equation model of the time course of the concentration
of the drug in different compartments of the body. This model
implicitly includes an impulse–response function of internal
concentrations to administered doses of the drug. At the next
level, the pain-relief data were fit by an ordered multinomial
logistic model with probabilities determined by a nonlinear
function of the internal concentration of the drug. Finally,
missingness was modeled nonignorably, with the probability
of dropping out depending on the pain level at the time (which
is unobserved under dropout).

Once this model has been fit to data, it can be used to make
predictions under alternative input conditions, as demon-
strated by Sheiner et al. (1997), who determined a more ef-
fective dosing regimen that is estimated to give a consistently
high level of pain relief with a low total dose. In addition,
the model yields estimated uncertainty distributions for the
underlying full time series of pain scores that would have oc-
curred for each patient in the absence of dropout. We show
here (following Gelman and Bois, 1997) how these imputed
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Figure 3. Predictive checks for the expanded model with group-specific residual variances. Compare to the checks for the
simpler model in Figure 2.

pain scores can be used to summarize the estimated underly-
ing patterns in the data.

The bottom row of Figure 4 shows the graphs similar to
the top row, but of the completed dataset with imputations
for the dropouts. (Here, a simple deterministic scheme was
used for the imputations, but the method could be used with
multiple imputations, leading to several sets of graphs cor-
responding to the different imputations.) For all doses, the
completed data show immediate pain relief followed by some
increasing pain. These plots show the dose–response relation
far more clearly than did the observed-data plots in the top
row.

Plotting the completed dataset is interesting here even if it
does not reveal model flaws: the completed dataset is much
easier to understand and interpret than the plot of observed
data alone, and substantive hypotheses are more directly in-
terpretable in terms of the completed data. These plots can be
seen as a model check, not compared to a posterior predictive
distribution but rather to whatever substantive knowledge is
available about pain relief.

4. Applications with Latent Data
4.1 Latent Psychiatric Classifications
Psychiatric symptom judgments of patients by psychiatrists
and clinical psychologists may be based on implicit classi-
fications of the patients by the clinicians in some implicit
syndrome taxonomy that is shared by the clinicians (Van
Mechelen and De Boeck, 1989). According to a clinician, a

symptom then will be present in some patient if there is at
least one implicit syndrome that applies to that patient and
that implies the symptom in question. Maris, De Boeck, and
Van Mechelen (1996) have formalized this idea in a model
that includes probabilistic links between symptoms and la-
tent syndromes on the one hand, and between patients and
latent syndromes on the other hand. In particular, let (yobs)ijk

equal 1 if patient i has symptom j according to clinician k, and
(yobs)ijk equal 0 otherwise. The assumed model then implies
latent variables for the patients (ylat,p)ijkl and latent variables
for the symptoms (ylat,s)ijkl , each pertaining to l = 1, . . . ,L
latent syndromes

(ylat,p)ijkl =




1 if, when patient i is judged on symptom
j by clinician k, this patient is considered
to suffer from latent syndrome l

0 otherwise,

(ylat,s)ijkl =




1 if, when patient i is judged on symptom
j by clinician k, this symptom is considered
to be implied by latent syndrome l

0 otherwise.

The model further assumes that

(ylat,p)ijkl ∼ Bern(θp,il), (ylat,s)ijkl ∼ Bern(θs,jl),

all latent variables being independent. As stated above, clin-
ician k will then judge symptom j to be present in patient i
if there is at least one syndrome l for which (a) patient i is
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Figure 4. Summary of pain-relief responses over time under different doses from the clinical trial with nonignorable dropout
discussed in Section 3.2. In each summary bar, the shadings from bottom to top indicate “no pain relief” and intermediate
levels up to “complete pain relief.” The graphs in the top row include only the persons who have not dropped out (with the
width of the histogram bars proportional to the number of subjects remaining at each time point). The graphs in the bottom
row include all persons, with imputed responses for the dropouts. As discussed in Section 3.2, the bottom row of plots—which
are based on completed datasets—are much more directly interpretable than the observed-data plots on the top row. From
Sheiner, Beal, and Dunne (1997) and Gelman and Bois (1997).

judged by clinician k to suffer from it, and (b) symptom j is
judged by clinician k to be implied by it. Stated formally

(yobs)ijk = 1 if there exists an l for which

(ylat,p)ijkl = 1 and (ylat,s)ijkl = 1.

When fitting the model to symptom judgments of patients by
several clinicians, the model assumptions could be violated
if there are systematic differences between clinicians in the
links between symptoms and latent syndromes. Natural test
variables to check this assumption can be defined making use
of the latent Bernoulli variables ylat,s.

We illustrate with data from Van Mechelen and De Boeck
(1990) on 23 psychiatric symptom judgments for 30 patients
by 15 clinicians. As test variables we calculate, for each symp-
tom j and for each latent syndrome l, the variance across
clinicians of the summed realizations of the corresponding
symptom–syndrome link variable:

Tjl =
1

K

∑
k

[∑
i

(ylat,s)ijkl

]2

−

[
1

K

∑
k

∑
i

(ylat,s)ijkl

]2

.

We further summarize the fit for each syndrome and symptom
by posterior predictive p-values; for any test variable Tjl (ylat,s),
the p-value is Pr(T jl(y

rep
lat,s) > T jl(ylat,s)), and can be computed

using the set of M multiple imputations of the parameters
and completed dataset (Meng, 1994b; Gelman et al., 1996).
Figure 5a shows the histogram of the posterior predictive p-
values for the between-clinician variance for the link between
the first syndrome and each of 23 symptoms, and Figure 5b
shows the corresponding histogram for the third latent syn-
drome (which could be identified as an implicit schizophrenia
syndrome). For the third, unlike for the first, latent syndrome,
the variation in several symptom–syndrome links across clin-
icians is greater in the data than assumed under the model.
This can be further clarified by plots such as Figure 5c, which
shows a plot of 2000 pairwise comparisons of Tjl (y

rep
lat,s) and

Tjl (ylat,s) for the symptom “inappropriate affect” and the la-
tent schizophrenia diagnosis. This example illustrates how
model checks can be formed using latent data only.

4.2 Rounded and Heaped Data
We next illustrate with an example of imputed continuous la-
tent data. Heitjan and Rubin (1990) analyzed a survey of
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Figure 5. (a, b) Histograms of 23 posterior predictive p-values for (a) first and (b) third latent syndrome in the latent
psychiatric classification example. The relevant test variables are the variance across clinicians of the summed symptom–latent
syndrome links. The extreme p-values in the histogram on the right correspond to symptoms for which there is significantly
more variation than expected by the data, based on the completed-data classification into the third latent syndrome. (c) Plot
of 2000 comparisons of T(yrep

lat ) versus T(ylat) for the symptom “inappropriate affect” and the latent schizophrenia diagnosis
in this example. Data from Van Mechelen and De Boeck (1990).

children’s health in Africa in which the exact ages of the
children are not known—only “reported ages” given by the
parents were available, along with the anthropometric data
including height and weight. The original purpose of the sur-
vey was to combine height and weight with recorded age to
produce tables classifying the children by nutritional status:
Being thin for one’s height suggests current malnutrition, and
being short for one’s age suggests a history of malnutrition.
Standard curves for these variables are based on data from
the United States, where children’s ages are typically known
with great accuracy.

The top histogram in Figure 6 shows the reported ages
for the children in the sample. A striking feature of the data
is that many of the ages were evidently reported as trun-
cated or rounded (to the nearest 12 months, for example).
Thus there is serious concern that many, perhaps most, of
the ages are imprecise, and that using reported ages as the
truth may lead to wholesale misclassification of the nutritional
status.

Because the level of coarsening evidently depends on the
unobserved true age, Heitjan and Rubin modeled the age
reporting using nonignorable models, considering two ap-
proaches identified with implicit and explicit models of the
age-reporting process. The implicit model took ages divisible
by 12 months and randomly imputed them uniformly in the
interval of the reported age ±6 months; and took ages divisi-
ble by 6 but not by 12, randomly imputing them ±3 months.
The notion is that if reported age equals a full year, it is be-
cause the subject rounded to the nearest year, and if reported
age equals a half year, it is because the subject rounded to the
nearest half year. (Such a model would not be valid for coars-
ened age data from the United States, where the practice is
generally to truncate age to the next lowest year or half year;
in Africa, rounding is thought to be a more plausible model.)
In a second class of explicit models, the authors predicted
age from available anthropometric variables, assuming con-
straints on the age consistent with a process of rounding to
either the nearest year, half year, or month, with the prob-

ability of each of these rounding procedures estimated from
data (see Heitjan and Rubin, 1990, for details). In these mod-
els it was judged that a linear model for age on the square
root scale was reasonable.

To assess fit, one can examine the histograms of imputed
ages. A model that inappropriately corrects for the reporting
process will yield implausible histograms of exact ages. For
example, the top histogram in Figure 6, the reported data,
can be viewed as an imputation of the set of exact ages under
a very simple model of zero-reporting error. The middle row
of histograms in Figure 6 shows three draws of the imputed
exact ages under the implicit uniform model, and the bottom
row in Figure 6 displays the histograms of the imputed ages
under the linear prediction model.

Because the problem with these data is judged to be
“heaping” at years and half years, one might wish to base
diagnostics on the fractions of subjects whose ages are di-
visible by 6. If the age distribution is roughly uniform, this
fraction should be around 1/6. In the original data, the frac-
tion of subjects with reported ages divisible by 6 is 83%, with
95% confidence interval [79%, 88%]; clearly these data do not
fit such a model. There was concern that with the uniform
model (the middle row of Figure 6), and perhaps to a lesser
extent with the linear model (the bottom row of Figure 6),
there could be a tendency to smooth too many subjects away
from multiples of 6 months. A certain amount of this behav-
ior is evident in the histograms. Nevertheless the effect is not
strong, as confidence intervals for the fraction of ages divisi-
ble by 6 (based on five imputations) are [8.3%, 23.4%] for the
uniform model and [9.0%, 21.0%] for the linear model, both
comfortably covering the null value of 16.7%.

The actual modeling and imputation procedures used to
fit the linear prediction models are quite complex, involving
a nonignorable selection model for determining the level of
coarseness used in rounding the data and accounting for the
fact that a subject with reported age divisible by 12 may
have rounded to the nearest year, or half year, or even to
the nearest month. Despite the rather arduous modeling that
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Figure 6. Top row: Histogram of the distribution of recorded ages for a sample of children, from the heaped-data example
of Section 4.2. The uneven look of the histogram is presumably due to rounding of reported ages. Middle and bottom rows:
Histograms of three draws from the posterior distribution of estimated true ages under each of two candidate imputation
methods. The comparison to the posterior predictive distribution (a sample from a smooth distribution of ages) is implicit.
Adapted from Heitjan and Rubin (1990).

was done in this example, we were able to check the fit of the
models quite easily using completed-data replications.

5. Discussion
5.1 Potential for Integrating Missing-Data Imputation

and Diagnostics into Fully Model-Based Inference
Statistics is moving toward more elaborate analyses of more
complicated data structures, which inevitably feature missing
and latent data. As our models become more complicated, it is
important to develop methods to check their fit. A general fea-
ture of our approach is the separation of the data analysis into
two steps: (1) model fitting (including the creation of imputa-
tions for the missing and latent data), and (2) model checking
using the complete data (and possibly also the observed inclu-

sion pattern). The test summaries used as model checks need
not refer to the missing-data structure at all. This is similar
to the multiple imputation context in which the data analyst
need not be knowledgeable about the missing-data model (see
Rubin, 1987; Meng, 1994a).

The main idea of this article—defining reference distribu-
tions based on multiply imputed completed datasets—is ap-
plicable not only to posterior predictive tests but also to other
methods of Bayesian model checking and sensitivity analy-
sis, such as model averaging, model expansion, and crossval-
idation (see Gelfand, Dey, and Chang, 1992; Draper, 1995;
Kass and Raftery, 1995). We also recall the distinctions be-
tween “practical” and “statistical” significance: A model may
be useful even if it clearly does not fit some aspect of the
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data (as indicated, for example, by a posterior predictive
p-value) and, conversely, fit of the model in one aspect does
not guarantee that it is acceptable for other purposes.

5.2 Distinct Advantages of the Proposed Approach
The benefits from the approach described in this article show
up in three ways. First, the proposed approach yields diag-
nostics that are easily interpretable. For example, Figure 4
shows how a simple summary display of completed data (bot-
tom row of plots) is much easier to interpret than the raw
data (top row of plots) for the purpose of understanding of
the time patterns of pain relief and, of comparing to any im-
plicit hypotheses about these patterns. For another example,
the time plots in Figures 2 and 3 would be more difficult to
interpret outside the completed-data imputation framework.

Second, the proposed approach enables one to account for
uncertainty in a way that allows important model checks to
be performed visually. For example, in the plots in Figures 2
and 3, each of the thin lines summarizes inference for a single
random imputation of the completed data, with the spread
among the lines indicating inferential uncertainty. Predic-
tive uncertainty can also be summarized using p-values, as in
Figure 5.

Third, the proposed completed-data diagnostics give us a
better theoretical understanding of the potential and limi-
tations of our modeling assumptions. For example, Figure 6
compares completed data to implicit assumptions of smooth-
ness of the underlying age distribution. In the spirit of ex-
ploratory data analysis, this test can be performed visually
without requiring an explicit model for the smoothness.

We conclude by noting that, once a model has been fit-
ted and multiple imputations have been created, the com-
putations of completed-data model checking are typically
straightforward—requiring direct simulation and graphical
display but not heavy computations such as integrations or
Markov chain simulations. Completed-data diagnostic dis-
plays avoid the data-collection artifacts that are common with
observed-data plots (see, for example, Figure 4), and we have
found them helpful in understanding models and data in a
variety of examples.
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Résumé

Dans les problèmes avec données manquantes ou latentes, une
approche standard consiste à imputer les données non ob-
servées, puis à effectuer toutes les analyses statistiques sur
le jeu de données complétées—correspondant aux données
observées et aux données non observées imputées—en util-
isant les procédures standard pour l’inférence sur données
complètes. Ici nous étendons cette approche à la vérification
de modèle en montrant les avantages qu’il y a à utiliser des

diagnostics de modèles à données complétées sur des jeux de
données complétées par imputation. Cette approche se place
dans le cadre théorique de vérification bayésienne prédictive
a posteriori (mais, de même qu’avec l’attribution des données
manquantes, nos méthodes de vérification de modèles pour
données manquantes peuvent aussi être interprétées comme
de l’inférence prédictive dans un contexte non bayésien). Nous
envisageons des diagnostics graphiques dans ce cadre.

On peut citer pour l’approche par données complétées les
avantages suivants : 1) On peut souvent vérifier l’ajustement
au modèle en considérant de manière naturelle des quantités-
clé qui ont un intérêt de fond, ce qui n’est pas toujours possible
avec les données observées seules. 2) Dans les problèmes avec
données manquantes, on peut imaginer des vérifications qui
ne supposent pas de modéliser le manque ou le mécanisme
d’inclusion; ce dernier aspect est utile pour l’analyse des
mécanismes de collecte de données ignorables mais inconnus,
tels qu’on les suppose souvent dans l’analyse des enquêtes
par échantillonnage ou des études observationnelles. 3) Dans
de nombreux problèmes avec données latentes, il est possi-
ble de vérifier des aspects qualitatifs du modèle (par exemple
l’indépendance de deux variables) qui peuvent être formalisés
de façon naturelle à l’aide de variables latentes. Nous illus-
trons cela au moyen de plusieurs exemples d’application.
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