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SUMMARY

The algorithm of Metropolis er al. ({953) and its generalizations have been increasingly popular in
computational physics and, more recently, statistics, for sampling from intractable rultivariate diserd:
butions, Much recent research has been devoted to increasing the efficiency of simulaton algorithms
by altering the jumping niles for Matropolis-like algorithims. We study a very specific question: What
are the most efficient symmetric jumping kernels for simulating a normal target c!istribution using thc
Metropolis algorithm? We provide a general theoretical result as the diménision of a tlass of canoriical
problems goes t0 oo and numerical approximations and simulations for iow-dimensional GGaussian target
distributions that show that the limiting results provide extrémely accurate approximations it six and
higher dimensions. For a d-dimensional spherical multivariaie normal problem, the optimal symmetric
jumping kernel has the following properties: (1) its scale is approximately 2.4/ +/d tiines the scale of the
target distribution; (2) the acceptance rate of the associated Metropolis algorithm is approximately 44%
for d = 1 and declines to 23% as d — co; and (3) the efficiency of the Metropolis algetithm, compared
to independent samples from the target distribution, is approximately 0.3/d.
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1. INTRODUCTION

Tterative simulation methods have recenily becorme popillar tools i statistival analysls, espe-
cially in the calculation of posterior distributions arisitig in Bayesian inference. For réviews of
« the theory and its applications, see Besag and Green (1993), Gilks et al. (1993}, and Smith and
Roberts (1993). The goal of Markov cliain Monte Carlo is to estimate a (typically multivariate)
target distribution, w(8), by generating 4 Markov chain 61,6, .. whose stationary distribu-
tonis 7. A particularly important algorithm, on which we shall focus is that of Metropolis eral.

{1953). This is characterized by a symmettic jumping density, J(8,6')(= J(¢', 8)), the density
of proposing a candidate ¢’ when the current iteration () takes the valve §. The candidate is
accepted or rejected according to ait acceptance probability,

a(#,6") = min (:—(({;:)-)-, 1) .

If the cahdidate is accepted the next iteration 6(t+1) takes the value of the candidate §'; if rejected
6++1) takes the oid value 8: that is, the chain stands still.

Practical implementations of the Metropolis algorithm often suffer from slow mixing and
therefore inefficient estimation, for at least two reasons: (1) theé jumps are so short that the
simulation moves very slowly through the target distribution; or (2) the juips are nearly all
into low-probability areas of the target density, causing the Markov chiin to stand still most
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of the time. When simulations are slow, it is often possible to improve mixing by properly
adjusting the jumping distribution. Various heuristic rules have been suggested for fixing these
problems during a simulation, either by monitoring the distance of each jump or the frequency
of acceptances in the simulation.

In this paper, we explore the efficiency of Metropolis’s algorithm and the way in which
it depends on the chosen jumping kernel. We mainly confine our attention to the commeonly
used spherically symmetric random walk Metropolis algorithm, where J(#, &) takes the special
form, J(}6' — 9)-

Our most important theoretical result appears in Section 3. This considers a sequence ]
of canonical algorithms, for which the asymptotic limit provides considerable insight into the i
behavior of approximately optimal Metropolis algorithms in high dimensional problems. In :
practice, the result gives rise to the following heuristic strategy, which is extremely easy to
implement: Choose the scaling of J(-,-) so that the average acceptance rate of the algorithm
is roughly 1/4.

In Section 2 we consider one-dimensional examples where various measures of efficiency
can be calculated. These examples provide some motivation for the asymptotic results of
Section 3. In Section 3.3 we present a simulation study to show that even for relatively small
dimensional problems (6-8 were enough in our study), the asymptotic result is accurate, and
the above heuristic produces efficient results. '

¥

e

2. UNIVARIATE EXAMPLES
2.1. Notation and Measures of Efficiency

Assume for the time being that & is one-dimensional. We shall consider two measures of
efficiency of the Markov chain, The first measure is based on the asymptotic variance of the
sample mean, 0 = & 37, 89). Under independent sampling of 6, var(8) = 72/N, where 2
is the variance of the target density. The asymptotic efficiency of the Markov chain sampling
for 8 is thus, R
r

eff; =
Ve

=+2n+m+m+. 7Y (1)
where V5 = limy_,co Nvar(§) is the limiting scaled sample variance from the Markov chain
output, and p; is the autocorrelation of the Markov chain at lag . In other words, effy is the
reciprocal of the integrated autocorrelation time for measuring the mean of 6.

An alternative measure of efficiency is given by a bound of eff;; derived from the eigenvalue
decomposition of the algorithm. If 1 = A, Az, ... denote the eigenvalues of the transition
kernel of the algorithm (at least so that Ag is the second largest), a well known inequality for <
eﬂ'; (see, for example, Besag and Green, 1993) is the following:

-1
b 14 2 1- Az
= E a()— o 2T 2
oflg {Sml a(z)l—a\i T 14+ @
which we define as the efficiency based on the second eigenvalue:
1- Ay
effeiy = T)\z .

Here a(-) is a probability measure on the positive integers. Unfortunately, it is rarely possible
to easily estimate eff;y. In the next subsection, we shall begin to consider how measures of
efficiency can be related to more easily monitored quantities.
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One of the easiest characteristics of a Metropolis algerithm to monitor is the frequency of
“acceptance” in the Metropolis step—which we label pjump. It has been claimed that, for a
wide variety of problems, optimal rules have acceptance probabilities near 0.5 (see, forexample,
Muller, 1993).

2.2, Numerical Results

For our one-dimensional exampies, we compute the measures of efficiency of Metropolis’s
algorithm for a unit normal target distribution under a variety of symmetric jumping kemels,
For this we use a discrete approximation to 7, replacing the sample space of 4 by a discrete
array of 100 points spread evenly between —6 and 6; we compute the normal density at these
points and then renormalize. We compute eff;, directly from the transition matrix and effy
using an asymptotic formula (Peskun, 1973; Kemeny and Snell, 1969). After performing
all our computations, we check the effects of the discrete approximation by repeating some

# computations on the grid of 200 points spread evenly between —8 and 8, obtaining the same

results to two decimal places.

]
o
=]
-]
-
&
g J
o
o
= T
0 1 2 3 4 5
Standard deviation of fumping kemel
b
8 |
(-]
w
<
k4 =]
F 3
B o]
o
=3
o T T T T T T
2.0 a2 04 08 (2.} 10
Probabiity of jumping

Figure 1. Dnivariate normal targel disiribution, rormal jumping kernel.
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2.2.1. Normal jumping kernels

We start by considering symmetric jumping rules based on a normal kernel with standard
deviation ¢: that is, the jumping, or candidate, distribution is

J(8,8) x exp (-—%(6—_312) .

T

If ¢ is too low, the Metropolis steps are too short and move too slowly through the target
distribution; if ¢ is too high, the algorithm almost always rejects and stays in the same place.

The optimal & is somewhere in between. In a general context, Tierney (1991) suggests setting -

the scale of the jumping kernel at 0.5 or 1 times the scale of the target distzribution, and Muller
(1993) suggesis o = 1 in general. We compute the two efficiency measures, effyi; and effy,

for normal jumping kernels with different choices of &, in all cases simulating the unit normat .

target distribution.,

Figure 1a displays eff,;g and eff; as a function of o, the standard deviation of the jumping
rule. The optimal valye of ¢ under either efficiency criterion is about 2.4, a surprisingly high
value. However, this is consistent with the recommendations of Besag and Green (1993) in the
rejoinder to the discussion of their paper.

The optimal efficiency, using either measure, is just below 0.25. (The “corner” at the
maximum of the effeiy line occurs when the second and third largest eigenvalues are equal.)
Interestingly, if one cannot be optimal, it seems better to use too high a value of ¢ than too low;
o = 5 is better than & = 1.

For the normal kernel and normal target distribution, the acceptance rate, oraverage jumping
probability, can be determined analytically:

2 2
pjump=;a:ctan ; .

Figure 1b plots the efficiency measure eff; as a function of acceptance rate; the leftmost point on
the curve corresponds to ¢ — 0o, and the rightmost point to ¢ = 0. At least for this example,

the folklore seems correct; an acceptance rate near (but slightly below) 0.5 is optimal.

2.2.2. Other kernels

To broaden our znderstanding, we repeated the above procedure with other symmetric jumping
rules. The simplest alternative is the symmetric uniform kernel, which we parameterize as
having width +/12¢ and thus a variance of o%. We determine the efficiency measures by matrix
computations on a discrete grid, as before, and estimate the probability of jumping for each o
by simulation. The results (not shown) are nearly identical to Figures la-b.

We also tried a bimodal kernel—a mixture of two normal densities, each with standard
deviation &/+/2, set a distance ¢+/2 apart. As with the previous jumping rules, this kernel has
a variance of o2, The idea was to reduce the number of very small jumps that detract from the
efficiency of the Metropolis simulations. Once again, the results were remarkably close to the
efficiencies of the other kernels, whether parameterized by kernel variance or acceptance rate.

A
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3. MULTIVARIATE TARGET DISTRIBUTIONS
3.1. Limiting Diffusion Process Approximation
We now consider multivariate . We state an asymptotic result motivated by the investigations
above, a special case of a slightly more general result proved in Roberts, Gelman, and Gilks
(1994). We drap the assumption of normality of «r, and merely assume that 7 is d-dimensional,
and has the product form,

d
=(6) = [T 762, (3)

i=1
for some one-dimensional density f. We shall assume various regularity conditions on the
form of 7 which are not mentioned explicitly here but are detailed in Roberts, Gelman, and
Gilks (1994). Seppose we use a multivariate normal Metropolis proposal kernel centered about
the current point, but with variance-covariance matrix 03I; = (¢%/d}l;. Let ¥4 = Hfd] be
a speeded up, continuous time version of the d-dimensional Metropolis algorithm. Here [£]
denotes the integer part of ¢d. In other words, Y; is a process in continuous time which remains
constant for a time interval 1/, before making a jump according to the Metropolis algorithm
with proposal variance ¢31;. We are only considering the first component of 8, which is in
general not a Markov process in its own right. Remarkably, however, the limit of Y% as d — o
is Markov. More precisely, we have the following

Theerem 3.1. As d - co, assuming the starting values for the components of 8, 81, 6, . ...
are all distributed independently according 1o f, then the process Y9 converges weakly to
the limiting Langevin diffusion, which satisfies the stochastic differential equation,

dY, = %dﬁ + h(¢)/%dB;, 4
where
h(9) = 26° (:?5—1/3) = ®
and = ()’
F=|_ T (6)

is a Fisher's information measure for f (F = 1 for standard normal f). The Hmiting value
Of Diump for this sequence of problems is h(¢) /92

The speed of the diffusion h($) is maximized by the choice ¢ = ¢ = 2.38/F¥/2, There-
fore the asymptotically optimal jumping kernel has variance-covariance matrix (2 /d) 1,
with jumping probability approximately 0.234.

For the diffusion process limit, all measures of efficiency are equivaient (up to a multi-
plicative constant). Thus optimizing (1) for any functional of 6 is equivalent to optimizing
h(¢). However, it is natural to ask what relevance this has to finite dimensional problems. The
simulation study below demonstrates that the asymptotic optimality of accepting approximately
1/4 of proposed moves is approximately true for dimension as low as 6.

All the distributional assumptions made in the statement of Theorem 3.1, that is the form
given in (3} and the condilions on the starting values of the algorithms, can be weakened
congsiderably. In fact, a modified version of the result (in which the optimal acceptance rate
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remains 0.234) remains true as long as a technical phase transition-free condition on 7 holds.
See Roberts, Gelman, and Gilks (1994) for details.

In practice, the resultcan be used by monitoring the acceptance rate of iterations as suggested
in the introduction and discussed in more detail in Section 4. Figure 2 shows how h varies with
the jumping kernel scale factor ¢ = 4+/d, and with the acceptance rate Pjump, assuming F == 1.
Here we see clearly that efficiency is maximised by setting ¢ = 2.38 (Figure 2a) or by setting
Piump = 0.234 (Figure 2b).
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Figure 2. Diffision speed h($) related to jumping kernel scale factor (¢ = ¢/+/d) and acceptance rate Pjumps

3.2. Simulation Results for Finite d

In the previous sections we have presented calculations for d = 1 and d — oo dimensions,
In this section we present the results of sirnulations for d = 1,...,10 dimensions for the
multivariate standard normal target distribution, 7(#) = Ny(0,I;), and multivariate normal
jumping kernel, J (8, &) = Ny(0, a314).

For cach d, and for each of 21 values of g between 2/+/d and 3/+/d, we simulated one
million iterations of the Metropolis algorithm with starting values drawn from (). For each
runand fori = 1...4d, effgi was estimated using the method of batching (see, for example,

For
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Hastings, 1970, or Ripley, 1987), where §; denotes the sample mean for the ith coordinate of
6. With batch size 100, first-order antocorrelations in batch means were always less than 0.085,
Essentially the same results were obtained with batch size 1000,

In Table 1 we have reported for each d the value of oy giving largest average efficiency
efiz , together with the corresponding empirical proportion of accepted jumps pjymp. To reduce
the impact of random variation in determining the optimal &4, we averaged over the efficiency
E,-effai fori=1,...,dand smoothed over the 21 values of og4.

Table 1. Optimal scale factor o4 and optimal efficiency for normal jumping kernel and standard normal
target distribution in low dimensions, compared to theoretical values based on Theorem 3.1.

Dimension,d  Optimaloy  effy  Pump 238/Vd 0.331/d

2.40 0233 0.441 2.3 0331
1,70 0.136 0.352 1.68 0.166
1.39 0.098 0316 1.37 0.110
i.25 0076 0.279 I.19 0.083
.80 0062 0275 .06 0.066
1.00 0053 0266 0.97 0.053
0.93 0047 0261 0.90 0.047
0.87 0.041 0255 0.84 0.041
0.80 0037 0261 0.79 0.037
0.74 0.034  0.267 0.75 0.033

SNSRI

The results show that the asymptotically optimal g = 2.38/+/d (from Section 3.1) applies
for d as low as 1, and the asymptotic acceptance rate of (.234 and efficiency of 0.331/+/d are
attained approximately by d = 6. Thus Theorem 3.1 accurately predicts the behavior of the
optimal sphericaily symmetric multivariate normal jumping kernel in low dimensions.

The theory and the simulation stdy both support the use of an over-dispersed proposal
distribation, as recommended by Besag and Green (1993) for one-dimensional sampling in
multivariate problems, However for higher dimensional problems, it is advisable o have pro-
posals with smaller variances in relation to those of the target density.

4. PRACTICAL IMPLICATIONS

Our results for the normal distribution suggest some heuristics for adaptive Metropolis sim-
ulation of more complicated distributions. In general, we can imagine a muliivariate target
distribution for which we have constructed a starting distribution and an iterative simulation

- procedure such as the Metropolis-Hastings algorithm (Hastings, 1970). After running the sim-

ulations for a while, we can monitor the convergence of the simulated sequences, perhaps using

= the method of Gelman and Rubin (1992), Liu, Liv, and Rubin (1992), or Roberts (1995). If the

convergence is slow, it may be worthwhile to try to increase the efficiency of the simulations
using whatever information is available from the simulations that have been produced so far.
This idea of adaptive simulation has been suggested by many researchers. For example, Hills
and Smith (1992) use a rough estimate of the target density to reparameterize in the Gibbs sam-
pler; Liu and Rubin (1993} estimate the time series behavior of multiple simulated sequences
in order to create a new starting distribution for an improved iterative simulation; and Muller
(1993) suggests adaptively altering 2 Metropolis jumping rule. Incidentally, the simulations
produced by an adaptive “Markov chain” simulation are not, in general, themseives a Markov
chain, because the transition probabilities can depend on the results of earlier iterations (ses,
for example, Gelfand and Sahu, 1993).
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To fix ideas, consider the following adaptive scheme for a problem with continuous parame-
ter space: run several parallel sequences of a Metropolis algorithm, starting with samples from
some approximate starting distribution, and, at some point, stop and estimate the (multivariate)
target distribution and monitor the convergence of the simulations. If the simulations are still far
from convergence (in the terminology of Gelman and Rubin (1992), if the potential scale reduc-
tion is much greater than 1), use the estimated target distribution to alter the Metropolis jumping
rule in two ways: first, by reparameterizing, so that the target distribution is approximatel
spherical; and second, by setting the scale of the jumping kernel to approximately 2.38/ ﬁ
times the conditional standard deviation of the target distribution along the jumping direction,
This is approximately the procedure suggested by Muller (1993) (see also Tierney, 1991), but
with a different variance for the jamping kernel. -

While the Metropolis algorithm is running, it can be fine-tuned: Muller (1993) monitors
the frequency of acceptances of the Metropolis algorithm, if the acceptance rate is much less
or much more than (1.5, altering the jumping kernel by decreasing or increasing its variance,
respectively. Care has to be taken when adopting this approach, since adaptation to information
from previous iterations can compromise the stationarity of the target density. However, such
an approach is acceptable as part of a pilot sample analysis, where adaptation stops after a fixed
number of exploratory iterations.

Our computations provide some justification for such an adaptive approach. For higher
dimensional jumping rules, however, a lower acceptance rate near (.25 is preferable. Morcover,
Theorem 3.1 implies that an average acceptance rate of between (.15 and 0.4 yields at least 80%
of the maximum efficiency obtainable (see Figure 2). In practice therefore, adaptation cannot
be recommended when acceptance rates are within this range. Even the folklore figure of 0.5
produces reasonable results (approximately 75% of maximum possible efficiency).

The application of Theorem 3.1 is not restricted to Metropolis sampling in the full dimen-
sional space, It remains relevant when the Metropolis step forms part of a larger dimensional
(perhaps Gibbs style) algorithm, This enables the ideas to be used, for example, for posterior
distributions in many hierarchical models.

Finally, we emphasize that an acceptance rate of around 0.25 does not guarantee efficiency
of the algorithm. In particular, a different approach may be required to sample efficiently from
highly multimodai distributions, However, when an efficient scaling does exist, it is often
sufficient to only loosely tune the proposal distribution in order to obtain satisfactory results.
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