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Summary. Modern Bayesian inference is highly computational but commonly pro-
ceeds without reference to modern developments in statistical graphics. This should
change. Visualization has two important roles to play in Bayesian data analysis:

(1) For model checking, graphs of data or functions of data and estimated model
(for example, residual plots) can be visually compared to corresponding graphs
of replicated data sets. This is the fully-model-based version of exploratory data
analysis. The goal is to use graphical tools to explore aspects of the data not captured
by the fitted model.

(2) For model understanding, graphs of inferences can be used to summarize
estimates and uncertainties about batches of parameters in hierarchical and other
structured models. Traditional tools of summarizing models (such as looking at coef-
ficients and analytical relationships) are too crude to usefully summarize the multiple
levels of variation and uncertainty that arise in Bayesian hierarchical models.

Our discussion is limited to relatively simple static displays. Having set up con-
ceptual structures for model checking and model understanding, we anticipate that
researchers in interactive graphics will develop appropriate tools for these tasks.
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1 Introduction

Modern Bayesian statistical science commonly proceeds without reference to
statistical graphics; both involve computation, but they are rarely considered
connected. The traditional views of the usage of Bayesian statistics and sta-
tistical graphics have a certain clash of attitudes. Bayesians might do some
exploratory data analysis (EDA) to start, but once the model or class of mod-
els is specified, analysis continues with the fitting of the data; graphs are then
typically used to check convergence of simulations, or used as teaching aids
or as presentations – but not as part of the data analysis. Exploratory data
analysis seems to have no formal place in Bayesian statistics once a model has
actually been fit. With this extreme view, some people would see the connec-
tion between Bayesian inference and graphics only through convergence plots
of Markov chain simulations, and histograms and kernel density plots of the
resulting estimates of scalar parameters.

On the other hand, the traditional attitude of users of statistical graphics is
that “all models are wrong”; we are supposed to get as close to data as possible
without reference to a model, which just incorporates undesired components
of subjectivity and parametric assumptions into preliminary analysis. In a true
Tukey tradition, even if a graphical method can be derived from a probability
model (e.g., rootograms from the Poisson distribution), we still don’t mention
the model, because the graph should stand or fall on its own.

Given these seemingly incompatible attitudes, how can we then integrate
the inherently model-based Bayesian inference with the (apparently) inher-
ently model-aversive nature of statistical graphics? Our attitude is a synthe-
sis of ideas adopted from statistical graphics and Bayesian data analysis. The
fundamental idea is that we consider all statistical graphs to be implicit or ex-

plicit comparisons to a reference distribution, that is, to a model. This idea is
introduced in [8]; the article proposes an approach to unify EDA with formal
Bayesian statistical methods. The connection between EDA and goodness-
of-fit testing is discussed in [7]. These two articles formalize the graphical



4 Jouni Kerman, Andrew Gelman, Tian Zheng, and Yuejing Ding

model-checking ideas presented in [5, 4, 3] which have been applied informally
in various applied contexts for a long time (e.g. [6, 15]).

EDA and its role in model understanding and model checking

Exploratory data analysis, aided by graphs, is done to look for patterns in the
data. Here the reference distributions are typically implicit, but are always
there in the mind of the modeler. In an early article on EDA by Tukey [18],
he focused on “graphs intended to let us see what may be happening over
and above what we have already described,” which suggests that these graphs
can be built upon existing models. After all, to look for the unexpected is
to look for something that differs from something that we were expecting –
the reference model. For example, even simple time series plots are viewed
implicitly as comparisons to zero, a horizontal line, linearity, or monotonicity,
and so forth. Looking at two-way scatterplots imply usually a reference to
an assumed model of independence. Before looking at a histogram, we have
certain baselines of comparison (symmetric distribution, bimodal, skewed) in
our minds. In the Bayesian sense, looking at inferences and deciding whether
they “make sense” can be interpreted to be a comparison of the estimates to
our prior knowledge, that is, to a prior model.

The ideas that EDA gives us can be more powerful than before if used with
sophisticated models. Even if one believes that graphical methods should be
model-free, it can still be useful to have provisional models to make EDA more
effective. EDA can be thought of as an implicit comparison to a multilevel
model; in addition, EDA can be applied to inferences as well as to raw data.

In Bayesian probability model understanding and model checking, the ref-
erence distribution can be formally obtained by computing the predictive
distribution of the observables, also called the replication distribution. Draws
from the posterior predictive distribution represent our posterior knowledge
of the (marginal) distribution of the observables. Model fit can be assessed by
comparing the observed values with posterior predictive draws; discrepancies
represent departures from the model. Comparisons are usually best done by
graphs, since the models for the observables are usually complex. However,
depending on the complexity of the model, often very sophisticated graphical
checks need to be devised and tailored to the model. In this article, we review
the principles, show examples on how to apply them to a data analysis, and
discuss potential extensions.

Comparable non-Bayesian approaches

Our Bayesian data visualization tools make use of posterior uncertainty as
summarized by simulation draws of parameters and replicated data. A similar
non-Bayesian analysis might compute a point estimate of parameters and then
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simulate data using a parametric bootstrap. This reduces to (Bayesian) pos-
terior predictive checking if the parameter estimates are estimated precisely
(if the point estimate has no posterior variance).

A confidence interval (point estimate plus minus standard errors) summa-
rizes approximately the posterior uncertainty about a parameter. In a multi-
level model, a common non-Bayesian approach is to compute point estimates
for the hyperparameters and then simulate the modeled parameters.

The visualization tools described in this article should also work in these
non-Bayesian settings.

2 Visualization for Understanding and Checking Models

The key to Bayesian inference is its unified treatment of uncertainty and
variability; we would like to use this in data visualization (e.g., [19], chapter
15) as well as in data analysis in general [13].

Using statistical graphics in model-based data analysis

EDA is the search for unanticipated areas of model misfit. Confirmatory data
analysis (CDA), on the other hand, quantifies the extent to which these dis-
crepancies could be expected to occur by chance. We would like to apply
the same principles to the more complex models that can be fit today using
methods such as Bayesian inference and nonparametric statistics. Complex
modeling makes EDA more effective in the sense of being able to capture
more subtle patterns in data. Conversely, when complex models are being
used, graphical checks are more necessary than ever to detect areas of model
misfit.

We, like other statisticians, do statistical modeling in an iterative fashion,
exploring our modeling options, starting with simple models, and expand-
ing the models into more complex, more realistic models, putting in as much
structure as possible, at each stage trying to find deficiencies in our model,
building new models, and iterating the process until we are satisfied. Then,
we use simulation-based model checks (comparisons of observed data to repli-
cations under the model); to find patterns that represent deviations from the
current model. Moreover, we apply the methods and ideas of EDA to struc-
tures other than raw data, such as plots of parameter inferences, latent data,
completed data [10]; Figure 1 illustrates this.

At a theoretical level, we look at the model, identify different sorts of
graphical displays with different symmetries or invariancies in an explicit or
implicit reference distribution of test variables. This serves two purposes: to
put some theoretical structure on graphics and EDA, so that graphical meth-
ods can be interpreted in terms of implicit models and to give guidelines on
how most effectively to express a model check as a graphical procedure.
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Fig. 1. Summary of pain relief responses over time under different doses from a
clinical trial with nonignorable dropout. In each summary bar, the shadings from
bottom to top indicate “no pain relief” and intermediate levels up to “complete pain
relief.” The graphs in the top row include only the persons who have not dropped
out (with the width of the histogram bars proportional to the number of subjects
remaining at each time point). The graphs in the bottom row include all persons,
with imputed responses for the dropouts. The bottom row of plots—which are based
on completed data sets—are much more directly interpretable than the observed-
data plots on the top row

Bayesian exploratory data analysis

Bayesian inference has the advantage that the reference distribution – the
predictive distribution for data that could have been seen – arises directly
from the posterior simulations (which are typically obtained using iterative
simulation). Consequently, we can draw from this distribution and use these
simulations to produce a graph comparing the predictions to the observed
data. Such graphs can be customized to exploit symmetries in the underlying
model to help interpretation. Inclusion of imputed missing and latent data
can allow more understandable completed-data exploratory plots.

The existence of an explicit underlying model has the benefit of suggest-
ing exploratory plots that address the fit of data to whatever model that is
being fit. Putting EDA within the general theory of model checking allows
the potential for graphical methods to become a more automatic presence in
statistical modeling.

Our approach is to use statistical graphics in all stages of data analysis:
model building, model fitting, model checking and model understanding. In all
stages of data analysis, we need model checking tools so we can see the faults
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and shortcomings in our model. Understanding complex probability models
often requires complex tools. Simple test statistics and p-values just do not
suffice, so we need graphs to aid us. More often than not we need to customize
the graphs to the problem; we are not usually satisfied by looking only at
a standard graph. However, new and better standard methods of graphical
display should be developed.

Considering that graphs are equivalent to model checks, “exploratory”
data analysis is not done only in the beginning of the modeling process; re-
exploring the model is done at each stage after model fitting. Building a new,
complex model may bring unforeseen problems in the fit; in anticipation of
these, we explore the fitted model with standard and customized statistical
graphs that are then used to attempt to falsify the model and to find ways
to improve it, or to discard it completely and start all over again. It is also
standard for our practice not to do model averaging or concentrate on the
predictor selection in regression problems; our models usually evolve to more
and more complex ones.

The key idea in Bayesian statistics – as opposed to simply “statistical mod-
eling” or “estimation” – is working with posterior uncertainty in inferences.
At the theoretical level, with random variables; at a more practical level, with
simulations representing draws from the joint posterior distribution. This is
seen most clearly in hierarchical modeling. Figure 2 shows an example of vi-
sualizing posterior uncertainty in a hierarchical logistic regression model [11].

Hierarchical models and parameter naming conventions

In hierarchical and other structured models, rather than to display individual
coefficients, we wish to compare the values within batches of parameters.
For example, we might want to compare group-level means along with their
uncertainty intervals together. Posterior intervals are easily derived from the
matrix of posterior simulations. Traditional tools of summarizing models (such
as looking at coefficients and analytical relationships) are too crude to usefully
summarize the multiple levels of variation and uncertainty that arise in such
models. These can be thought of as corresponding to the “sources of variation”
in an ANOVA table.

Hierarchical models feature multiple levels of variation, and hence feature
multiple levels of batches of parameters. Hence, the choice of label for the
batches is also important: parameters with similar names can be compared to
each other. In this way, naming can be thought of as a structure analogous to
hierarchical modeling. Instead of using generic θ1, . . . , θk for all scalar param-
eters, we would, for example, name the individual-level regression coefficients
β = (β1, . . . , βn), and the group-level coefficients α = (α1, . . . , αJ), and the
intercept µ. Figure 4 shows an example of why this works: parameters with
similar names can be compared to each other. Rather than plotting posterior
histograms or kernel density estimates of the parameters, we usually summa-
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Fig. 2. Displaying a fitted hierarchical logistic regression model, along with
inferential uncertainty. Eight states are shown from a voting preference model
Pr(yi = 1) = logit−1(αj[i] + Xiβ) including all 50 U.S. states. The solid black
line is the median estimate for the probability of a survey respondent in that state
supporting George Bush for President in 1988. The gray lines represent random
draws from the posterior distribution of the logistic regression coefficients. The dots
shown are the observed data (zeros and ones), vertically jittered to make them more
distinguishable.
This figure demonstrates several principles of Bayesian visualization: (1) small mul-
tiples: parallel plots displaying the hierarchical structure of the data and model;
(2) graphs used to understand the fitted model; (3) fitted model and the data on
the same graph; (4) graphical display of posterior uncertainty. Also a principle of
Bayesian inference is illustrated: in Alaska we have no data but nevertheless we were
able to draw predictions from the model.
General principles of “good graphics” are used: common scale for all graphs with
bounds at 0 and 1; clear axis labeling; jittering (which works for the moderate sam-
ple sizes of this example); thin lines and small dots; ordering of the small plots by
some meaningful criterion (here by decreasing support for Republicans) rather than
alphabetically.
The distribution of the linear predictor is skewed because the most important single
predictor by far was indicator for African-American, which has expected value 0.12.
The common scaling of the axes means that we do not actually need to label the exes
on each graph; however, in this case we find the repeated labels to be convenient.
Labeling only some graphs (as is done with Trellis plots) saves space but, to our
eyes, makes the graph more of a puzzle to read, especially as presentation graphics

rize the parameters (at least, for a first look of the inferences) by plotting
their posterior intervals.

Model checking

As stated earlier, we view statistical graphics as implicit or explicit model
checks. Conversely, we view model checking as comparison of data to repli-
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cated data under the model, including both exploratory graphics and confir-
matory calculations such as p-values. Our goal is not the classical goal of iden-
tifying whether the model fits or not – and certainly not the goal of classifying
models into correct and incorrect, which is the focus of the Neyman-Pearson
theory of Type 1 and Type 2 errors. We rather seek to understand in what
ways the data depart from the fitted model. From this perspective, the two
key components of an exploratory model check are (1) the graphical display
and (2) the reference distribution to which the data are compared.

The appropriate display depends on the aspects of the model being
checked, but in general, graphs of data or functions of data and estimated
models (for example, residual plots) can be visually compared to correspond-
ing graphs of replicated data sets. This is the fully-model-based version of
exploratory data analysis. The goal is to use graphical tools to explore as-
pects of the data not captured by the fitted model.

3 Example: A Hierarchical Model of Structure in Social

Networks

As an example, we take the problem of estimating the size of social networks
[20]. The model uses a negative-binomial model with an overdispersion pa-
rameter:

yik ∼ Negative-binomial(mean = aibk, overdispersion = ωk),

where the groups (subpopulations) are indexed by k (k = 1, . . . ,K) and the
respondents are indexed by i (i = 1, . . . , n). In this study, n = 1370 and
K = 32. Each respondent is asked how many people he or she knows in each
of the K subpopulations. The subpopulations are identified by names (people
called Nicole, Michael, Stephanie, etc.), and by certain characteristics (airline
pilots, people with HIV, in prison, etc.).

Without going into the details, we remark that ai is an individual-level
parameter indicating the propensity of the person i to know persons in other
groups (we call this a “gregariousness” parameter); it is modeled to be ai = eαi

where αi ∼ N(µα, σ
2
α); similarly, bk is a group-level prevalency (or group size)

parameter with a model bk = eβk where βk ∼ N(µβ , σ
2
β). The overdispersion

parameter vector ω = (ω1, . . . , ωK) and the hyperparameters are assigned
noninformative (or, weakly informative) prior distributions.

The model is fit using a combination of Gibbs and Metropolis algorithms,
so our inferences for the modeled parameters (a, b, ω), and the hyperparame-
ters, (µα, σα, µβ , σβ), are obtained as simulated draws from their joint poste-
rior distribution.

Model-informed exploratory data analysis

Figure 3 displays a small portion of an exploratory data analysis, with his-
tograms of responses for two of the survey questions, along with simulations
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of what could appear under three fitted models. The last of the models is the
one we used; as the EDA shows, the fit is still not perfect.

A first look at the estimates

We might summarize the estimated posterior distributions of the scalar pa-
rameters as histograms, but in most cases we find displaying intervals a more
concise way to display the inferences; our goal here is not just the estimates,
but also the comparison of the parameters within each batch.

We display the parameter estimates with their 50% and 95% posterior
intervals as shown in Figure 4. Along with the estimates, the graph summarizes
the convergence statistic graphically. Since there are over 1300 quantities in
the model, all of them cannot be displayed on one sheet. For smaller models,
this graph provides a quick summary of the results – but of course this is just
a starting point.

We are usually satisfied with the convergence of the algorithm if the values
of the R̂ convergence statistic [9] are below 1.1 for all scalar parameters. A
value of R̂ close to 1.0 implies good mixing of the chains; if however R̂ > 1.1
for some of the parameters, we let the sampler iterate more. By using a scalar
summary rather than looking at trace plots, we are able to quickly assess the
mixing of all the parameters in a model.

Distribution of social network sizes ai

We proceed to summarize the estimates of the 1370 parameters ai. A table
of numbers would be useless unless we want to find the numerical posterior
estimates for a certain person in the study; our goal is rather to visualize the
posterior distribution of the ai, so a histogram is a much more appropriate
summary. It is interesting to see how men and women differ in their perceived
“gregariousness”; we therefore display the posterior mean estimates of ai as
two separate histograms by dividing αi into men’s and women’s estimates.
See Figure 5.

A histogram derived from the posterior means of hundreds of parameters is
still but a point estimate; we also want to visualize the posterior uncertainty

in the histogram. In the case of one scalar, we always draw the posterior
intervals that account for the uncertainty in estimation; in the case of a vector
that is shown as a histogram, we similarly want to display the uncertainty in
the histogram estimate. To do this, we sample (say, twenty) vectors from the
matrix of simulations and overlay the new twenty histogram estimates as lines
on the average histograms. This gives us a rough idea how good an estimate
the histogram is. As a rule of thumb, we don’t plot the “theta-hats” (point
estimates), we plot the “thetas” (posterior draws representing the random
variables) themselves.
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Fig. 3. Histograms (on the square-root scale) of responses to “How many persons
do you know named Nicole?” and “How any Jaycees do you know?”from the data
and from random simulations under three fitted models: the Erdős-Renyi model
(completely random links), our null model (some people more gregarious than others,
but uniform relative propensities for people to form ties to all groups), and our
overdispersed model (variation in gregariousness and variation in propensities to
form ties to different groups). Each model shows more dispersion than the one above,
with the overdispersed model fitting the data reasonably well. The propensities to
form ties to Jaycees show much more variation than the propensities to form ties to
Nicoles, and hence the Jaycees counts are much more overdispersed. (The data also
show minor idiosyncrasies such as small peaks at the responses 10, 15, 20, and 25.
All values greater than 30 have been truncated at 30.) We display on square-root
scale to more clearly reveal patterns in the tails

Extending the model by imposing a regression structure

We also fit an extended model, with an individual-level regression model,
log(ai) ∼ N(Xiψ, σ

2
α). The predictors include the indicators of female, non-

white, income>$80000, income<$20000, employment, education (high-school
or more).

Figure 4 shows an example on how to visually compare regression co-
efficients ψik on explanatory variables (characteristic of survey respondent,
i) for different groups (k). Whenever our goal is to compare estimates, we
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Fig. 4. A graphical summary (produced automatically by the R package
R2WinBUGS [16]) of the estimated scalar parameters in the social networks model.
Another alternative is density estimates or histograms of individual scalar parame-
ters; these can be useful, but are difficult to apply to vector parameters. In contrast,
the right side of our display here allows immediate understanding of inferences for
the vectors α, β, ω (another option would be to use parallel coordinate plots for each
vector parameter.)
For the purpose of displaying inferences, this graph is inefficient: given that approxi-
mately convergence has been reached, only the right side of the display is necessary.
However, we include it as an example of quick inferential summary which, for all
its simplicity, is still far more informative than a table of parameter estimates and
standard errors
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Fig. 5. Estimated distributions of the “gregariousness parameters” αi for women
and men. The overlain lines are posterior simulation draws indicating inferential un-
certainty in the histograms. Our primary goal here is to display inferences for the dis-
tribution of gregariousness within each sex, not to compare averages between sexes
(which could be done, for example, using parallel boxplots.) We compare groups
using a regression model as in Figure 6

Coefficient Estimate

−0.2 −0.1 0 0.1 0.2

female
nonwhite
age < 30
age > 65

married
college educated
employed
income < $20,000
income > $80,000

Fig. 6. Coefficients (and ±1 standard error and ±2 standard error intervals) of the
regression of estimated log gregariousness parameters αi on personal characteristics.
Because the regression is on the logarithmic scale, the coefficients (with the exception
of the constant term) can be interpreted as proportional differences: thus, with all
else held constant women have social network sizes 11% smaller than men, persons
over 65 have social network sizes 14% lower than others, and so forth

think of a graph first. Figure 7 could have been equivalently summarized by
the uncertainty interval endpoints and the posterior median estimate, but it
would not have been an efficient tool to visualize the coefficient estimates. For
comparison, draw a graph; for looking up specific numbers, construct a table.
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Characteristics of survey respondent,i

Group,k
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Fig. 7. A graph comparing the estimates from a more complex version of the social
networks model, using individual-level regression predictors: log(ai) ∼ N(Xiψ, σ2

α).
The rows (Nicole, Anthony, etc.) refer to the groups and the columns refer to the var-
ious predictors. Comparison is efficient when coefficients are rearranged into “table
of graphs” like this

Posterior predictive checks

A natural way to assess the fit of a Bayesian model is to look at how well
the predictions from the model are consistent with the observed data [9].
We do this by comparing the posterior predictive simulations with the data.
In our social networks example, we create a set of predictive simulations by
sampling new data independently from the negative binomial distributions
given the parameter vectors a, b, ω drawn from the posterior simulations

already calculated. We draw, say, L simulations, y
(1)
ik , . . . , y

(L)
ik for each i, k.

Each set of simulations {y
(ℓ)
ik }L

ℓ=1 is an approximation of the marginal posterior
distribution of yik, denoted by y

rep
ik , where “rep” stands for the “replication

distribution”; yrep stands for the n×K replicated observation matrix.
It is possible to find a numerical summary (that is, a test statistic) for

some feature of the data (such as standard deviation, mean, etc.) and then
compare it to the corresponding summary of yrep but in addition we prefer to
draw graphical test statistics since a few single numbers rarely can catch the
complexity of the data. In general notation, for some suitable test function T ,
which may thus be a graph, we compare T (y) with T (yrep).

Plots of data compared with replicated data

For the social networks model, we choose to compare the data and the predic-
tions by plotting the observed versus expected proportions of responses yik.
For each subpopulation k, we compute the proportion of the 1370 respondents
for which yik equals 0, 1, 3, 5, 9, 10, and finally those with yik ≥ 13. These
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Fig. 8. Model checking graphs: observed vs. expected proportions of responses yik

of 0, 1, 3, 5, 9, 10, and ≥ 13. Each row of plots compares actual data to the estimate
from one of four fitted models. The bottom row shows our main model, and the
top three rows show models fit censoring the data at 1, 3, and 5. In each plot, each
dot represents a subpopulation, with names in gray, non-names in black, and 95%
posterior intervals indicated by horizontal lines

values are then compared to posterior predictive simulations under the model.
Naturally, we plot the uncertainty intervals of Prk(yik = m) instead of their
point estimates.

The bottom row of Figure 8 shows the plots. On the whole, the model fits
the aggregate counts fairly well, but tends to under-predict the proportion of
respondents who know exactly one person in a category. In addition, the data
and predicted values for y = 9 and y = 10 show the artifact that people are
more likely to answer with round numbers.

The three first rows of Figure 8 shows the plots for three alternative models
[20]. This plot illustrates one of our main principles: whenever we need to
compare a series of graphs, we plot them side by side on the same page so
visual comparison is efficient [1, 17]. There is no advantage in scattering closely
related graphs over several pages.

4 Challenges of Graphical Display of Bayesian Inferences

We expect that the quality of statistical analyses would benefit greatly if
graphs were more routinely used as part of the data analysis. Exploratory
data analysis would be more effective if it could be implemented as a part
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of software for complex modeling. To some extent this is done with residual
plots in regression models, but for complex models there is potential for much
more progress.

As discussed in detail in [8], we anticipate four challenges: (1) Integrating
the automatic generation of replication distributions into the computing en-
vironment; (2) Choosing the replication distribution – it is not an automatic
task since the task requires selecting which parameters to resample and which
to keep constant; (3) Choosing the test variables; (4) Displaying test variables
as graphs. In the near future, automatic features for simulating replication
distributions and performing standard model checks should be possible.

Integrating graphics and Bayesian modeling

We fit Bayesian models routinely with such software as BUGS [2], bringing the
simulations over to R [14] using R2WinBUGS [16]. Summarizing simulations
in R can also be done in a more natural way by converting the simulation
matrices into vectors of random variable objects [13]. BUGS has also its lim-
itations; we also fit complex models in R using the “Universal Markov chain
sampler” Umacs [12].

We are currently investigating how to define an integrated Bayesian com-
puting environment where modeling, fitting, and automatic generation of
replications for model checking is possible. It requires further effort to de-
velop standardized graphical displays for Bayesian model checking and under-
standing. An integrated computing environment is nevertheless the necessary
starting point, since functions that generate such complex graphical displays
should have full access to the models, the data, and predictions.

The environment must also take into account the fact that we fit multiple
models with possibly different sets of observations; without a system that can
distinguish multiple models (and the inferences associated with them) it is
not possible to do comparison across them.

5 Summary

Exploratory data analysis and modeling can work well together: in our applied
research, graphs are used for model understanding and model checking. In the
initial phase we create plots to reveal to us how the models work, and then
plot data as compared to the model to see where more work is needed.

We gain insight to the shortcomings of the model by doing graphical model
checks. Graphs are most often drawn for comparison to an implicit reference
distributions (e.g., Poisson model for rootograms, independence-with-mean-
zero for residual plots, or normality for quantile-quantile plots), but we would
also include more general comparisons; for example, a time series plot is im-
plicitly compared to a constant line. In Bayesian data analysis, the reference
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distribution can be formally obtained by computing the replication distribu-
tion of the observables; the observed quantities can be plotted against draws
from the replication distribution to compare the fit of the model.

We aim to make graphical displays an integrated and an automatic part of
our data analysis. Standardized graphical tests must be developed and these
should be routinely generated by the modeling and model-fitting environment.
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