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independent, the applications were restricted to situations where the data T = (T1ye-+1Tn)
were split according to 5(z) = (21, Tna) @A 7(Z) = (Zastts-- o) Zpn). The approach taken
in this paper will likely produce better choices of (r, s) for model checking in a number of
situations but the use of the splits used in Evans (1997), perhaps with random splitting, will
likely be the only feasible ones in many contexts. _

The use of the tail probabilities P(T(X) 2 tobs ), for some probability measure P, does not
work well in capturing theidea of 2 surprising observation having occurred when this probability
is small. This is because oy, could be an extreme value in the left tail or, in general be in a
low probability region such as near an anti-mode and P(T(X) > tops) Will not indicate this.
For this reason authors such as Weaver, Good and Box have worked instead with the density of
T' as this corrects for this problem. Using the density, however, destroys the invariance of the
measure. The observed relative surprise, introduced in Evans (1997) corrects for both of these

problems.

DENNIS V. LINDLEY (Minehead, UK)

Objections are often raised to the Bayesian approach because of its dependence on the prior.
It is not so often recognized that the p-value can equally be criticized because of its dependence
on the sample space. One can produce, for a given data set, a range of p-values by varying the
sample space. It follows that since, in most practical cases, the sample space for a given data
set is ill-defined, the p-value is also ambiguous. In particular, it can only be considered as a
measure of surprise when the sample space is unambiguous. My personat view is that p-values
should be relegated to the scrap heap and not considered by those who wish to think and act

coherently.

X1AO-LI MENG (The University of Chicago, USA4) and
ANDREW GELMAN (Columbia University, US4)

A paper containing multiple ideas is always fun to read. The main idea of Section 2, namely
converting a p-value into a lower bound for Bayes factors is quite intriguing, especially con-
sidering that Bayes factors and p-value type measures answer two different statistical questions
_ a model can have a high Bayes factor compared to its stated competitors but still poorly fit
important aspects of observed data. What's unclear to us, in general, is which p-value can be

used to construct a useful lower bound given that a p-value is a functional of test statistics (ot

more generally discrepancies, i.e., T(X,8)), choices of replications (see below), etc. Perhaps
the p-value from the likelihood ratio test (or the conditional likelihood ratio as defined in Meng
(1994))?

Regarding the central theme of Section 3, we view p-value as a measure of discrepancy
between the posited model and the data being analyzed, as we emphasized strongly in Meng
(1994) and Getman, Meng, and Stern (1996). While it might be a semantic matter to some, we
prefer the term discrepancy because it honestly reflects what a small p-value tells us: the data
and the model do not seem to see eye to eye in a specified way, but we cannot tell you which to
blame! The phrase “surprise in the data” seems to carry the impression that the problem is with
the data (e.g., an “unlucky” sample) and the standard practice with hypothesis testing always
emphasizes the rejection of the posited hypothesis, not the data. While it is obviously desirable
to pinpoint the sources of the discrepancy, p-value type measures simpty cannot tell us whether
the problem is with the data, or the modet, or, as is more likely, both! If one’s goal is simply
to fit the data, then of course the source is always the model. But with scientific inferences, the
problem can be far more complicated — Example 2 is a good illustration.

Viewed as discrepancy measure, Example 4 can be readily understood. A large value of
|Z0bs| does not necessarily indicate a large discrepancy between the data and the posited model
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N(0, o2) unless we know for sure the value of o2, which is precisely why the lower bound on
the posterior predictive p-value given in (4.1 ) monotonically decreases to zero asn approaches
infinity. This also suggests that a relative measure such as |Z|/s would be more useful for
detecting the discrepancy in the mean. Indeed, with this choice of discrepancy the posterior
predictive p-value would be identical to that from the classical (two-sided) t test, i.e., the p-value
given in (4.9).

Incidentally, (4.9) can be obtained under the posterior predictive framework even when
using |Z| if we ignore the null value s = 0 when computing the posterior for o2 under the same
model as used in the paper. Note that although Example 4 states that the null is N (0, o?), any
model checking procedure based solely on Z and s cannot check the normality assumption —
indeed, the classical ¢ test and other methods discussed in Example 4 are robust to the normality
assumption (unless 7 is very small). So it would be better to cast this problem as checking
the mean parameter p = 0 verses p # 0, which was the original formulation given in Meng
(1994). With this formulation, the classical answer is obtained if we use the marginal posterior
(02| Zops) instead of the the conditional one p(0?|zess, it = 0); see Meng (1994) for details.
The problem with using p(0?|Tss, # = 0), from the point of view of testing 1 = 0 (not of
checking discrepancy in |Zops — 0]), is that it can grossly overestimate o2 when g # 0 and thus
leads to the very conservative nature of the p-value given in (4.11).

This example makes it cléar that the choice of test/discrepancy is. important and is con-
founded with the choice of replication. Throughout the literature of posterior predictive check-
ing (e.g., Rubin, 1984; Meng, 1994; Gelman, Meng and Stern, 1996), these points are always
emphasized. For example, in Gelman, Meng and Stemn (1996), we explicitly define f(z[6, A)
with A being an auxiliary statistics, as the authors mentioned. What is proposed in Section 4 is
to condition on such an A (or in authors’ notation, U) instead of the full data when finding the
posterior of 8. Such conditioning is in the same spirit as conditioning on the classical ancillary
statistics (for the parameter fixed by the null model, i.e., 1, not o2 in Example 4), which is in the
right direction fora frequentist in the mind of a Bayesian because it is towards full conditioning,
but s in the opposite direction when one is already doirig Bayesian full conditioning. It would be
better to resolve the “power” issue through the choices of discrepancy and the sampling replica-
tion f(z|9, A). Eventhe marginal (e.g., p(o2|zous)) verses conditional (e.g., (02| Tobss pt = 0))
approach is unsatisfactory because once we allow ourselves to not fully condition on the null
model when computing the p value, we would need a principle to decide to what extent the null
should be conditioned upon.

Of course, mathematically speaking, having more flexibility implies possibly better opti-
mality in terms of frequentist operating characteristics of the resulting procedures. We look
forward to seeing more convincing examples of the utility of the conditional predictive ap-
proach (incidentally we think the term partially conditional predictive would be more precise
than conditional predictive because the posterior predictive approach is conditional, in fact, full
conditional predictive approach with the authors’ use of the word “conditional™). Example 4
would be theoretically more revealing if the “perfectly satisfactory™ answer (i.e., the classical ¢
test) could only be obtained under the proposed partial conditioning approach — with the current
example, the answer can be obtained via any predictive approach, from no conditioning (ie,
prior predictive) to full conditioning (i.e., posterior predictive), since }z|/s is pivotal.

MICHEL MOUCHART (Université Catholique de Louvain, Belgium)

(i) That a quantification of “surprise” depends on the prior specification might be desirable
for several reasons among which one should mention : ) in a Bayesian model, i.e. a joint
probability on the observations and the parameters, the “sampling” component is as subjective,
and liable to “doubts™, as the “prior” components, b) as argued in p.316 (remark (ii1)) in Florens



