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 where a = log[OKIOK-l] and K is sufficiently large.
 Thus, the most recent infection rates are estimated by

 extrapolating an exponential function.
 Another choice of the penalty function is

 J= >[1O1- 20j+j + Oi+2]2.

 Then, estimates of recent infection rates are approxi-
 mately

 (4) OK+j = OK + j0,

 where a = [OK - OK-. Thus the most recent infection
 rates are estimated by extrapolating a linear function.

 The piecewise constant step function model for I(s)

 that was used in the early work on backcalculation
 assumes that infection rates are constant over inter-

 vals. Simulation studies of Rosenberg, Gail and Pee

 (1991) suggest choosing a last step of 4 to 4.5 years in
 length. Recent infection rates under this model are
 estimated by

 (5) OK+j = OK.

 Estimates of recent infection rates obtained by back-
 calculation are essentially extrapolations of trends in
 I(s). Equations (3) through (5) are different examples
 of mathematical functions that have been used for
 such extrapolations and result from different choices
 of the roughness penalties or parametric assumptions
 on I(s). Estimates of recent infection rates based on
 backcalculation are highly dependent on the degree of
 smoothing A, the penalty J and the parametric model
 for I(s).

 Appreciable improvements in our ability to recon-
 struct infection rates may come, not from alternative

 smoothing procedures or parametric models but rather
 from obtaining empirical data on recent infection rates.

 4. FUTURE PROSPECTS FOR FORECASTING AND

 RECONSTRUCTING THE AIDS EPIDEMIC

 Early in the AIDS epidemic, the only reliable data

 for monitoring the epidemic was AIDS-incidence data.
 Since the development of the HIV antibody test in the
 mid-1980s, numerous surveys of HIV seroprevalence
 have been conducted. Infection rates have also been

 directly estimated in several cohorts. Our ability to
 reconstruct infection rates may drastically improve by
 incorporating external information about recent infec-
 tion rates and HIV seroprevalence derived from cohort
 studies and cross-sectional surveys.

 There is considerable underreporting of AIDS cases

 to national and regional AIDS surveillance registries in
 developing countries, especially in Africa. Projections

 of the course of the epidemic in developing countries
 must rely more on HIV seroprevalence and seroinci-
 dence surveys than on AIDS-incidence data. While
 U.S. AIDS-incidence data are relatively complete, more

 reliable assessments of the scope of the epidemic may
 be obtained by considering HIV-seroprevalence and
 HIV-seroincidence data as well. For example, exten-
 sive HIV-seroprevalence surveys among childbearing
 women are extraordinarily useful for forecasting the
 future numbers of pediatric AIDS cases. Statistical
 approaches that combine data from multiple sources
 (e.g., AIDS-incidence data, HIV-seroprevalence and
 -seroincidence surveys, incubation distributions) are
 promising and may considerably improve the accuracy
 of assessments of the scope of the epidemic.

 Comment: Assessing Uncertainty
 in Backprojection
 John B. Carlin and Andrew Gelman

 Bacchetti, Segal and Jewell are to be congratulated
 for providing not only a comprehensive review of an
 important problem in applied statistics but also for
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 sity of California, Berkeley, California 94720.

 introducing a number of new ideas that should have a
 practical impact on understanding the course of the
 HIV epidemic. On a semantic detail, we wonder why
 the authors (and others) have adopted the term "back-
 calculation," rather than "backprojection," which seems
 to carry a more appropriate connotation of uncertain
 inference (as well as being shorter!).

 The authors rightly emphasize the sensitivity of
 backprojection estimates to assumptions about the
 incubation distribution, but they seem strangely reluc-
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 tant to exercise any judgement about the choices avail-
 able here. Their comment that attempts to model
 secular changes in the incubation distribution due to

 the effects of treatment and so on "run counter to the
 original spirit of backcalculation" seems a little peculiar
 in the sense that backcalculation has only avoided
 such efforts by making very strong and unverifiable
 assumptions of simple mathematical forms for this

 distribution. We feel that sensitivity analyses (or more

 formal Bayesian analyses) should be guided as far as
 possible by informed judgements involving a synthesis
 of as much of the available evidence as possible. For
 example, some forms for the incubation distribution
 might be judged to be more appropriate than others

 for each of the different subgroups analysed in the

 paper. It would be helpful to see in the rejoinder a
 plot of the four distribution functions they have used

 (especially as three of the four come from yet-to-be
 published work). In analyses of Australian data (Becker
 et al., 1993), similar sensitivity to assumptions about
 incubation is observed, but the range of results is

 interpreted in the framework of a general model that
 allows for nonstationarity in explicitly defined ways,
 related to assumptions about the effect of treatment

 and trends in treatment practice (Becker and Motika,
 1992). As well as allowing for treatment effects, one of
 the underlying models used in these analyses is a

 log-logistic survival function, which has a bounded
 hazard function that rises rapidly and then declines
 slowly over a long period.

 The authors make an important new contribution in

 allowing the incubation distribution and reporting de-
 lay distribution to change over time in a nonparamet-

 ric, data-determined fashion. Their method appears to

 be a useful exploratory tool in searching for patterns
 over time, but it would be attractive to be able to
 relate the results back to an interpretable model that
 might have other support, external to the data. Of

 course, a major difficulty is the lack of identifiability
 of patterns of secular change as distinct from aspects
 of "genuine" (i.e., not treatment-influenced) natural his-
 tory.

 The authors suggest that Bayesian approaches may
 be useful in quantifying uncertainty in'backprojections
 of HIV incidence. In principle such an approach is very
 attractive because of the conceptually simple frame-
 work within which all sources of uncertainty can be
 jointly accommodated. For example, a simple approach
 to the problem of alternative incubation models would
 be to use a discrete prior distribution over a small set

 of reasonable alternatives. Bayesian analysis would
 then allow the data to provide an update to the as-
 sumed distribution of models (although information in
 the data might be rather limited). Similarly, a Bayesian
 approach automatically averages uncertainty with re-
 spect to all unknown parameters including, for exam-

 ple, the authors' A), which determines the degree of
 smoothing in the point estimates of 0. Another advan-
 tage, in principle, is the possibility of modeling sub-
 groups within a consistent overall framework.

 Bayesian analysis requires, however, that all model-
 based input to the analysis be expressed in the form
 of (prior) probability distributions, rather than, for
 example, nonparametric assumptions accompanied by
 more or less ad hoc estimation procedures. Although
 model specifications may end up being almost as

 difficult to justify as the assumptions behind the au-
 thors' approach, the Bayesian framework would seem
 to provide a more satisfying avenue for exploring
 "what-if' sensitivity analyses.

 Putting aside the question of uncertainty due to
 model specifications, we are puzzled by the relatively

 small role apparently played by sampling variability
 in the reported estimates. In particular, estimates of

 Oi for i near n should have large uncertainty (even
 conditional on the model, including the incubation dis-
 tribution), since under all reasonable models, progres-
 sion to AIDS in the first year or two of infection is

 extremely unlikely (in the notation of the article, Di i+d
 is very small for small d), implying that the data
 y contain almost no information about these recent
 infection rates. Put very simply, infection rates could
 jump substantially in the last year or two, but this

 would make little difference to the observed yj's. The
 simulation-based estimates of uncertainty do not seem
 to reflect adequately this source of variability, perhaps
 because when the data are uninformative, smoothing
 takes over. This provides another motivation for a

 Bayesian approach, where the probability calculus
 guarantees that posterior intervals reflect all uncer-
 tainty, both sampling-based and model-dependent,
 given the data.

 We take this opportunity to report briefly on some
 preliminary work on implementing a Bayesian ap-
 proach. The model we have currently programmed as-
 sumes that the incubation distribution is known, which
 is clearly unrealistic, as Bacchetti, Segal and Jewell
 emphasize, but nevertheless provides a useful starting
 point. It also ignores the problems of reporting delay:
 that is, we suppose that n* - n is sufficiently great
 that Rj = 1 for all j. Our approach is closely related
 to the authors' penalized-likelihood approach, except
 that the penalty function is interpreted as a prior
 distribution and we endeavor to compute full posterior
 distributions rather than modes with approximate
 standard errors. It is certainly a point of major
 agreement that the Bayesian or penalized-likelihood
 approaches represent an improvement over the use
 of parametrically specified forms for 0, including the
 convenient but implausible step-function model (e.g.,
 Rosenberg and Gail, 1991).

 We have experimented with Bayesian analysis based
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 on a simple random walk prior for the unknown infec-

 tion rates in the square-root scale. Adapting the au-
 thors' notation (except that we find it more convenient
 to index the observed data from i = 1 rather than

 from i = 0), let yi = N/4 and assume a prior distribution
 such that

 yil I yj:j < i];a2 - N(yi-1, ai2),

 where yo = 0, and a simple but fairly general form is
 allowed for the variances, a2, by putting ai2 = U2S,
 where si is given a fixed form and a2 iS to be estimated.
 In practice, so far, we have let si be constant. The prior
 distribution is then completed by specifying a prior
 density for a2, a convenient and nonrestrictive choice
 being the conjugate inverse-gamma density. The ran-
 dom walk prior is somewhat arbitrary but provides
 a minimal structure that is nonstationary and hence

 noninformative with respect to the level of yi. The
 square-root scale has some appeal within a Poisson
 sampling framework, as we see below.

 Conditioning on the variance hyperparameter a2, and
 assuming a Poisson sampling model for the observed

 yi, one obtains the following joint log-posterior density
 for F = {yi: i = 1, . . ., n} (up to a constant):

 logp (FIy,D, a2) = Ey log( E YkDki) - YkDki
 i=l k=1 k=1

 E (loga + ( Yi-y)_).

 The first term in this expression is the same as the

 authors' log(Lm) in Expression (3), and the contribution
 from the prior is clearly analogous to their penalty
 function, except that they use the log scale instead of
 the square root and have taken second differences
 rather than first. The first choice (the log scale) seems
 eminently reasonable, especially because it ensures
 nonnegativity of the Oi, but it would be interesting to
 know why the authors choose the second difference for

 their penalty function. Including in the above expres-
 sion a term for the prior density of a2 would give an
 unconditional joint posterior density for F and a2, but
 direct computation based on this expression does not
 seem possible.

 Instead, we turn to the very flexible computational
 framework for Bayesian analysis that is provided by
 the Gibbs sampler (e.g., see Gelman, 1992). We have
 implemented a version that uses the same data aug-
 mentation as Bacchetti, Segal and Jewell use for their

 EM algorithm. Let x represent the array {xij = XkXijk}
 (since we are ignoring reporting delays). Then to imple-
 ment the Gibbs sampler we need to draw in turn from
 the conditional distributions of each of the unknown

 quantities, x, F, a2, given currently drawn values of

 each of the other unknowns, as well as the data y (which
 of course remain fixed through the whole process). If
 a discrete prior distribution over alternative incubation
 models were introduced, this could also be readily incor-

 porated into the analysis. Under relatively mild condi-

 tions this procedure converges to produce values from
 the joint posterior distribution, from which the mar-
 ginal distribution of F (or 9) is of primary interest.
 Convergence may be conveniently monitored using the
 methods described by Gelman and Rubin (1992).

 Of the three conditional distributions required, two
 are relatively straightforward to simulate. First, the
 conditional distribution of x, given everything else,
 breaks into a product of n multinomial distributions

 each based on an observed yi. Second, given the normal
 prior density for F, the update for a2 has a conjugate
 form under the inverse-gamma prior.

 The only difficulty arises in simulating from the

 conditional distribution of F or 9 given x and a2 (note
 that, given x, we have conditional independence with
 respect to the data y). For these simulations we have

 employed a two-step procedure, first approximating
 the Poisson (complete data) likelihood given as the
 authors' Expression (4) with a normal distribution for

 Zi = , and then correcting this approximation using
 the generalized Metropolis algorithm (Metropolis et
 al., 1953; Gelman, 1992). With the normal approxima-
 tion and normal prior in the square root, a conjugate
 update of F is possible, either performing the sampling
 one time point at a time (i.e., progressively updating

 Yl, Y2, y3, * *. , etc.) or using time-series methods related
 to the Kalman filter to update the entire F sequence
 at once. The Metropolis correction method involves

 obtaining trial values using the approximate distribu-
 tion and comparing importance ratios between trial
 value and current value to determine whether the up-
 date should be accepted.

 A simple modification of the Gibbs sampler produces

 estimates of posterior modes, which should be essen-
 tially the same as the authors' maximum penalized-
 likelihood estimates, if a2 is held fixed. Our program
 is currently very successful at mode finding, despite
 the Poisson-normal approximation, but there are diffi-
 culties in the sampling of F, apparently because the
 normal approximation is sometimes so poor that Me-
 tropolis updating takes place with very low probability.
 Different computational strategies may be required,
 perhaps working with the authors' (implicit) log-normal
 prior in place of our square-root specification.
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