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The Boxer, the Wrestler, and the Coin Flip: A Paradox of

Robust Bayesian Inference and Belief Functions
Andrew GELMAN

Bayesian inference requires all unknowns to be represented
by probability distributions, which awkwardly implies that the
probability of an event for which we are completely ignorant
(e.g., that the world’s greatest boxer would defeat the world’s
greatest wrestler) must be assigned a particular numerical value
such as 1/2, as if it were known as precisely as the probability
of a truly random event (e.g., a coin flip).

Robust Bayes and belief functions are two methods that have
been proposed to distinguish ignorance and randomness. In ro-
bust Bayes, a parameter can be restricted to a range, but without
a prior distribution, yielding a range of potential posterior infer-
ences. In belief functions (also known as the Dempster-Shafer
theory), probability mass can be assigned to subsets of parameter
space, so that randomness is represented by the probability dis-
tribution and uncertainty is represented by large subsets, within
which the model does not attempt to assign probabilities.

Through a simple example involving a coin flip and a box-
ing/wrestling match, we illustrate difficulties with robust Bayes
and belief functions. In short: robust Bayes allows ignorance to
spread too broadly, and belief functions inappropriately collapse
to simple Bayesian models.
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1. USING PROBABILITY TO MODEL BOTH
RANDOMNESS AND UNCERTAINTY

We define two binary random variables: the outcome X of
a coin flip, and the outcome Y of a hypothetical fight to the
death between the world’s greatest boxer and the world’s greatest
wrestler (Figure 1):

X =
{

1 if the coin lands “heads”
0 if the coin lands “tails”
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Y =
{

1 if the boxer wins
0 if the wrestler wins.

In the Bayesian framework, X and Y must be given probability
distributions. Modeling X is easy: Pr(X = 1) = Pr(X = 0) =
1/2, probabilities that can be justified on physical grounds. [The
outcomes of a coin caught in mid-air can be reasonably modeled
as equiprobable (see, e.g., Jaynes 1996; Gelman and Nolan 2002)
but if this makes you uncomfortable, you can think of X as
being defined based on a more purely random process such as a
radiation counter.]

Modeling Y is more of a challenge, because we have little
information to directly bear on the problem and (let us suppose)
no particular reason for favoring the boxer or the wrestler in the
bout. We shall consider this a problem of ignorance, the model-
ing of which has challenged Bayesians for centuries and, indeed,
has no clearly defined solution (hence the jumble of “noninfor-
mative priors” and “reference priors” in the statistical litera-
ture). The distinction between X and Y is between randomness
and ignorance or, as characterized by O’Hagan (2004), between
aleatory and epistemic uncertainty.

Here we will model Y as a Bernoulli random variable, with
Pr(Y = 1) = π, and assign a uniform prior distribution to π on
the range [0, 1]. That is, we assume complete ignorance about

Figure 1. Wrestler Antonio Inoki delivers a flying kick to Muhammad
Ali during their exhibition on June 26, 1976. Used with permission from
the Stars and Stripes. Copyright 1976, 2006 Stars and Stripes.
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Figure 2. (a) Prior predictive distribution and (b) posterior predictive distribution (after conditioning on X = Y ) for the coin-flip/fighting-match
example, under pure Bayesian inference. X , which we understand completely, and Y , for which we have complete ignorance, are treated symmet-
rically.

the probability that the boxer wins. [As reviewed by Bernardo
and Smith (1994) and Kass and Wasserman (1996), a uniform
distribution on the probability scale is only one of the many ways
to define “ignorance” in this sort of problem. Our key assumption
here is symmetry: that we have no particular reason to believe
either the boxer or the wrestler is superior.]

Finally, the joint distribution of X and Y must be specified.
We shall assume the coin flip is performed apart from and with no
connection to the boxing/wrestling match, so that it is reasonable
to model the two random variables as independent.

2. A SIMPLE EXAMPLE OF CONDITIONAL
INFERENCE, FROM GENERALIZED BAYESIAN

PERSPECTIVES

As in the films Rashomon and The Aristocrats, we shall tell
a single story from several different perspectives. The story is
as follows: X and Y are defined above, and we now learn that
X = Y : either the coin landed heads and the boxer won, or the
coin landed tails and the wrestler won. To clarify the information
available here: we suppose that a friend has observed the fight
and the coin flip and has agreed ahead of time to tell us if X = Y
or X /= Y . It is thus appropriate to condition on the event X = Y
in our inference.

Conditioning on X = Y would seem to tell us nothing
useful—merely the coupling of a purely random event to a purely
uncertain event—but, as we shall see, this conditioning leads to
different implications under different modes of statistical infer-
ence.

In straight Bayesian inference the problem is simple. First
off, we can integrate the parameter π out of the distribution for
Y to obtain Pr(Y = 1) = Pr(Y = 1) = 1/2. Thus, X and
Y —the coin flip and the fight—are treated identically in the
probability model, which we display in Figure 2. In the prior
distribution, all four possibilities of X and Y are equally likely;
after conditioning on X = Y , the two remaining possibilities are
equally likely. (We label the plots in Figures 2 and 3 as predictive

distributions because they show the probabilities of observables
rather than parameters.)

There is nothing wrong with this inference, but we might
feel uncomfortable giving the model for the uncertain Y the
same inferential status as the model for the random X . This is
a fundamental objection to Bayesian inference—that complete
ignorance is treated mathematically the same as an event with
probabilities known from physical principles. The distinction
between randomness and ignorance has been addressed using
robust Bayes and belief functions.

2.1 Robust Bayes

Robust Bayes is a generalization of Bayesian inference in
which certain parameters are allowed to fall in a range but with-
out being specified a prior distribution. Or, to put it another way,
a continuous range of models is considered, yielding a continu-
ous range of possible posterior inferences (Berger 1984, 1990;
Wasserman 1992).

For our example, we can use robust Bayes to model complete
ignorance by allowing π—the probability that Y equals 1, that
the boxer defeats the wrestler—to fall anywhere in the range
[0, 1]. Figure 3(a) displays the prior distribution, and Figure 3(b)
displays the posterior distribution after conditioning on the event
X = Y .

Because we are allowing the parameter π to fall anywhere
between 0 and 1, the robust Bayes inference leaves us with com-
plete uncertainty about the two possibilities X = Y = 0 and
X = Y = 1. This seems wrong in that it has completely de-
graded our inferences about the coin flip, X . Equating it with an
event we know nothing about—the boxing/wrestling match—
has led us to the claim that we can say nothing at all about
the coin flip. It would seem more reasonable to still allow a
50/50 probability for X—but this cannot be done in the robust
Bayes framework in which the entire range of π is being consid-
ered. [More precise inferences would be obtained by restricting
π to a narrower range such as [0.4, 0.6], but in this example we
specifically want to model complete ignorance.] This is an issue
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Figure 3. (a) Prior predictive distribution and (b) posterior predictive distribution (after conditioning on X = Y ) for the coin-flip/fighting-match
example, under robust Bayesian inference in which the parameter π is allowed to fall anywhere in the range [0, 1]. After conditioning on X = Y , we
can now say nothing at all about X , the outcome of the coin flip.

that inevitably arises when considering ranges of estimates (e.g.,
Imbens and Manski 2004), and it is not meant to imply that ro-
bust Bayes is irredeemably flawed, but rather to indicate a coun-
terintuitive outcome of using the range π ∈ [0, 1] to represent
complete ignorance. Seidenfeld and Wasserman (1993) showed
that this “dilation” phenomenon—conditional inferences that
are less precise than marginal inferences—is inevitable in ro-
bust Bayes. By modeling π with complete ignorance, we have
constructed an extreme example of dilation.

2.2 Belief Functions

The method of belief functions (Dempster 1967, 1968) has
been proposed as a generalization of Bayesian inference that
more directly allows the modeling of ignorance (Shafer 1976).
In belief functions, probability mass can be assigned to arbitrary
subsets of the sample space—thus generalizing Bayesian infer-
ence, which assigns probability mass to atomic elements of the
space.

We briefly review belief functions and then apply them to
our example. For a binary variable, the probability mass of a
belief function can be distributed over all nonempty subsets of
the sample space: {0}, {1}, and {0, 1}. For example, a coin flip
would be assigned probability masses p({0}) = 0.5, p({1}) =
0.5, p({0, 1}) = 0; and a random outcome with probability
p of success would be assigned probability masses p({0}) =
1 − p, p({1}) = p, p({0, 1}) = 0. These are simply Bayesian
probability assignments.

Belief functions become more interesting when used to cap-
ture uncertainty. For example, consider a random outcome with
probability p of success, with p itself known to fall some-
where between a lower probability of 0.4 and an upper prob-
ability of 0.9. In belief functions, the lower probability of a
set A is defined as the sum of the probability masses assigned
to subsets of A (including A itself), and the upper probabil-
ity is the sum of the probability masses of all sets that in-
tersect with A. For a binary variable, this definition just re-
duces to: Pr(0) ∈ [p({0}), p({0}) + p({0, 1})] and Pr(1) ∈

[p({1}), p({1})+p({0, 1})]. This can be represented by a belief
function with probability masses p({0}) = 0.1, p({1}) = 0.4,
p({0, 1}) = 0.5. In this model, the probability of the event “0”
is somewhere between 0.1 and 0.6, and the probability of the
event “1” is somewhere between 0.4 and 0.9.

Statistical analysis is performed by expressing each piece of
available information as a belief function over the space of all
unknowns, then combining them using “Dempster’s rule,” a pro-
cedure which we do not present in general here but will illustrate
for our simple problem. Dempster’s rule differs from the robust
Bayes approach described earlier in combining the underlying
probability masses of the belief functions, not the upper and
lower probablities which are computed only at the end of the
analysis.

Belief functions can be applied to the boxer/wrestler problem
in two steps. First, X is given a straight probability distribution,
just as in Bayesian inference, with 50% probability on each
outcome. Second, Y is given a so-called vacuous belief function,
assigning 100% of the probability mass to the set {0,1}, thus
stating our complete ignorance in the outcome of the fight. The
events X and Y would still be independent, and their joint belief
function is shown in Figure 4(a)—it has two components, each
assigned belief 0.5.

Conditioning on X = Y (i.e., combining with the belief
function that assigns 100% of its probability mass to the set
{(0, 0), (1, 1)}) yields the belief function shown in Figure 4(b).
Oddly enough, all the vacuity has disappeared and the resulting
inference is identical to the pure Bayes posterior distribution in
Figure 2(b). This does not seem right at all: coupling the fight
outcome Y to a purely random X has caused the belief function
for Y to collapse from pure ignorance to a simple 50/50 proba-
bility distribution. No information has been added, yet the belief
function has changed dramatically. Once again, we would not
use this example to dismiss belief functions [see Shafer (1990)
for some background on their theory and application], but this
example does suggest that the belief-function modeling of igno-
rance is potentially fragile.
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Figure 4. (a) Prior belief function and (b) posterior belief function (after conditioning on X = Y ) for the coin-flip/fighting-match example, under
Dempster-Shafer inference in which 100% of the prior mass for Y is placed on the set {0, 1}. After combining with the information that X = Y , the
belief function for Y has collapsed to the simple case of equal probabilities.

When shown this example, Arthur Dempster, the inventor of
belief functions (Dempster 1967, 1968), commented that a step
of our analysis is combining the prior information with the in-
formation Y = X . He wrote,

The Dempster-Shafer information fusion rule is a common sense combination
of Bayesian conditioning and Boolean logic. What it depends on crucially, in-
cluding in its two special cases, is independence. Independence can only be
assessed in a realistic situation, preferably a specific real situation, and always
needs careful situation-specific assessment. When I try to create a detailed real-
istic story around your hypothetical example, I come out reasonably comfortable
about the belief-function posterior (0.5, 0.5, 0). There is relevant information in
the observer’s report, and this justifies the change from “don’t know” to precise
probabilities. Hence I feel that the general framework is supported.

In a separate communication, Glenn Shafer, the other key de-
veloper of belief functions (Shafer 1976, 1990), also pointed to
the artificiality of the X = Y setup and wrote,

I am not quite with you when you declare your various results are counterin-
tuitive. Because the example is so artificial, I don’t see a source for intuition.
. . . as always, the question is whether the “independence” holds for the rule to
be appropriate in the particular case.

I recognize these concerns, and I agree that the ultimate test of
a statistical method is in its applications, but I am still disturbed
by this particular automatic application of belief functions.

3. DISCUSSION

Bayesian inference is an extremely powerful tool in applied
statistics (see, e.g., Carlin and Louis 2001; Gelman, Carlin,
Stern, and Rubin 2003), but an ongoing sticking point is the
necessity for prior distributions, which are particularly contro-
versial when used to model ignorance. [Prior probabilities and
Bayesian inference can also be motivated as necessary for co-
herent decision making (Keynes 1921; Cox 1925; von Neumann
and Morgenstern 1944) but this just shifts the problem to a re-
quirement of coherent decision making under ignorance, which
in practice might be no easier than assigning prior probabilities
directly.] Various generalizations of Bayesian inference, includ-
ing robust Bayes and belief functions, have been proposed to
ease this difficulty by mathematically distinguishing between

uncertainty and randomness. Using a simple example coupling a
completely known probability (for a coin flip) with a completely
unknown probability (for the fight), we have shown that robust
Bayes and belief functions can yield counterintuitive results.
We conclude that the challenge of assigning prior distributions
is real, and we do not see any easy way of separating uncer-
tainty from probability. However, we have not considered other
forms of inference such as fuzzy logic (Zadeh 1965), which can
perhaps resolve these problems, at least for some categories of
examples.

Another approach is the frequentist or randomization ap-
proach to inference, under which probability can only be as-
signed to random events (i.e., those defined based on a physical
randomization process with known probabilities) and never to
uncertainties, which must be represented purely by unmodeled
parameters (see, e.g., Cox and Hinkley 1974.) For our exam-
ple, Y will not be assigned a probability distribution at all, and
so the operation of conditioning on X = Y cannot be inter-
preted probabilistically, and no paradox arises. The difficulty of
frequentist inference is its conceptual rigidity—taking its pre-
scriptions literally, one would not be allowed to model business
forecasts, industrial processes, demographic patterns, or for that
matter real-life sample surveys, all of which involve uncertain-
ties that cannot be simply represented by physical randomiza-
tion. [Jaynes (1996) and Gelman et al. (2003, chap. 1) discussed
various examples of probability models that are empirically-
defined but do not directly correspond to long-run frequencies.]
Our point here is not to debate Bayesian versus frequentist no-
tions of probability but rather to note that the difficulty of mod-
eling both uncertainty and randomness is tied to the flexibility
of Bayesian modeling.

Finally, how can the distinction between uncertainty and ran-
domness be understood in Bayesian theory? O’Hagan (2004)
provided a clear explanation, comparing a coin flip to an equiv-
alent of our boxer/wrestler example. In Bayesian inference, our
prior predictive distributions for X and for Y are identical,
which does not seem quite right, since we understand the pro-
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cess generating X so much better than that of Y . The diffi-
culty is that the integral of a probability is a probability: for the
model of Y , integrating out the uncertainty in π simply yields
Pr(Y = 1) = Pr(Y = 0) = 1/2.

As discussed by O’Hagan, the resolution of the paradox is
that probabilities, and decisions, do not take place in a vacuum.
If the only goal were to make a statement, or a bet, about the
outcome of the coin flip or the boxing/wrestling match, then yes,
p = 1/2 is all that can be said. But the events occur within a
context. In particular, the coin flip probability remains at 1/2,
pretty much no matter what information is provided (before the
actual flipping occurs, of course). In the coin-flipping example,
one can reframe the model as the probability of heads having a
point-mass prior at 0.5—in some sense, this is the best-case prior
information about the probability before the coin is flipped.

In contrast, one could imagine gathering lots of information
(e.g., reports of previous fights such as the exhibition between
Antonio Inoki and Muhammad Ali pictured in Figure 1) that
would refine one’s beliefs about π. [Actually, the Ali–Inoki
match was said by many wrestling experts to be a show rather
than a serious competitive fight; see, e.g., Draeger (2000), but for
the purposes of this argument we shall consider it as representa-
tive of the sort of information that could be used in constructing
an informative prior distribution.] Averaging over uncertainty
in π, the probability the boxer wins is Pr(Y = 1) = E(π),
which equals 1/2 for a uniform prior distribution on π but can
change as information is gathered about π. Uncertainty in π (in
O’Hagan’s terms, “epistemic uncertainty”) necessarily maps to
potential information we could learn that would tell us some-
thing about π. So in this larger, potentially hierarchical, context,
Bayesian inference can distinguish between aleatory uncertainty
(randomness) and epistemic uncertainty (ignorance).

Such an approach does not eliminate the difficulties of using
probability to model uncertainty—in particular, “noninforma-
tive” or similarly weak prior distributions still must be chosen
in some way (Kass and Wasserman 1996) but it can limit the
damage resulting from an inappropriate choice of prior.

[Received September 2005. Revised November 2005.]
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