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1 Introduction

The authors discuss conditionally-specified models in probability theory and for modeling joint
distributions in various applications. This theoretical structure is useful, considering that conditional
models are becoming standard in many spatial applications, following Besag (1974). (Rather than
attempting an exhaustive or ever representative list, we shall just refer to Besag and Higdon (1999)
as a recent example with discussion.) In addition, there has been occasional discussion in the
literature as to the relative merits of conditionally or jointly-specified models (for example, Besag,
1974, Haslett, 1985, and Ripley, 1988).

Here, however, we would like to address a different topic: the use of conditional distributions,
not to model an underlying joint distribution, but for the purpose of imputing missing data. At first
this might seem like an unimportant distinction—after all, imputation requires modeling (if only
implicitly). However, when the fraction of missing data is not large, imputations can be reasonable
even if they are not based on the correct complete-data model (see Meng, 1994, and Rubin, 1996).
Thus, it makes sense to consider modeling for imputation separately from modeling of underlying
phenomena.

We shall refer to the example of the New York City Social Indicators Survey (Garfinkel and
Meyers, 1997), where we had to impute missing responses for family income conditional on demo-
graphics and information such as whether or not anyone in the family received government welfare
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benefits. Conversely, if the “welfare benefits” indicator is missing, then family income is clearly a
useful predictor. The whole situation was actually more complicated because the survey asked about

several different sources of income, and these questions had different patterns of nonresponse.
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2 Inconsistent conditional distributions

As discussed by the authors, a multivariate normal distribution has conditionals that are normal
linear regressions, in which case the conditional distributions are automatically compatible. However,
when any of these conditions is relaxed—that is, if data are bounded or discrete (and thus cannot be
modeled as normal), or regression relationships are nonlinear or have interactions—then, in general,
reasonable-seeming conditional models will not be compatible with any single joint distribution.

Nonetheless, imputations can be performed using conditional models: that is, one can start with
guesses of all the missing data, then impute z; |22, 23, . . ., 2k, impute z2|z1, T3, . .., Tk, and so forth,
looping indefinitely through all the variables. If the imputations are stochastic, this is just the
notorious “inconsistent Gibbs” algorithm, for which the simulation draws never converge to a single
joint distribution; rather, the distribution depends upon the order of the updating and on when the
updating is stopped.

With the inconsistent Gibbs sampler, one is always afraid of reasonable-seeming conditional
distributions that produce a diverging random walk—for example, if z1|z2 ~ N(z2,1), and z2|z; ~
N(z1,1), then the distribution of the simulations simply diffuses out to infinity. However, in practice,
with the distributions estimated from data (and using constraints or proper prior distributions when
dimensions are high and data sparse), this should not happen.

A big advantage of conditional (rather than joint) modeling is that it splits a k-dimensional
problem into k one-dimensional problems, each of which can be attacked flexibly. Thus, conditional
imputation using k separate regression models is a popular approach, and it has recently been for-
malized by Raghunathan et al. (2001) and implemented in SAS-compatible software (Raghunathan
et al., 1997). This particular program allows continuous variables to be modeled using normal dis-
tributions, binary variables with logistic regression, with other options for ordered and unordered
discrete variables and for continuous variables with constraints. The corresponding joint posterior
distribution may not exist, of course, which means that the Bayesian inference used to get uncertain-
ties for the imputations is only uncertain. (It could, however, possibly be formalized as a Bayesian
counterpart to the pseudolikelihood (Besag, 1975), in which the likelihood function is replaced by
the product of conditional densities.)

Performing imputation is awkward without a joint model, and it also results in difficulties in
inference for the imputation model itself (for example, how do you correctly adjust for truncation
in a bounded-variable model when there is no joint distribution over which to integrate). However,
the separate regressions often make more sense than joint models which either assume normality
and hope for the best (Gelman et al., 1998) or mix normality with completely unstructured discrete

distributions (Schafer, 1997) or mix normality (with random effects) and log-linear structures for



discrete distributions (Raghunathan and Grizzle, 1995) or generalize with the ¢ distribution (Liu,
1995). From a practical perspective, all these approaches provide useful tools, and some of the time
it will make sense to go with the inconsistent, but flexible, conditional models such as described by
Raghunathan et al. (2001).

One may argue that having a joint distribution in the imputation is less important than incor-
porating information from other variables and unique features of the data set (such as zero/nonzero
features in income components, bounds, skip patterns, nonlinearity, interactions, and so forth).
Conditional modeling allows enormous flexibility in dealing with practical problems. We have never
been able to apply the joint models to a real data set without making drastic simplifications.

But, if one is modeling some aspect of the nature, then the joint distribution has to be the end
point. Specifying just the conditionals without a coherent joint distribution will not be acceptable.
Having said that, many of our applied collaborators, are just as happy with conditionals such as
p(Hypertension | Body Mass Index) or p(Body Mass Index | Hypertension, Socioeconomic Status),

rather than p(Hypertension, Body Mass Index, Socioeconomic Status).

3 Choices in setting up the imputation models

We conclude with a discussion of an awkward (or perhaps promising) issue: structural features of
the conditional models can affect the distributions of the imputations in ways that are not always
obvious. To return to the example introduced at the end of Section 1 of this discussion, suppose
we are imputing a continuous income variable y;, and a binary indicator y» for welfare benefits,
conditional on a set X of fully-observed covariates.

We can consider two natural approaches. Perhaps simplest is a direct model where, for example
P(y1|y2, X) is a normal distribution (perhaps a regression model on y,, X, and the interactions of
y2 and X) and p(y2|y1,X) is a logistic regression on y;, X, and the interactions of y; and X. (For
simplicity, we ignore the issues of nonnegativity and possible zero values of y;.)

A more elaborate, and perhaps more appealing model uses hidden variables: let z; be a latent
continuous variable, defined so that

{1 ifz>0
yZ_{o if 25 < 0. 1)

We can then model p(y1, 22/X) as a joint normal distribution (that is, a multivariate regression).
Compared to the direct model, this latent-variable approach has the advantage of a consistent joint
distribution. And, once inference for (y1, 22) has been obtained, we can directly infer about y» using
(1). In addition, this model has the conceptual appeal that zo can be interpreted as some sort of

continuous “proclivity” for welfare, that is only activated if it exceeds a certain threshold. In fact,



the relation between z5 and y» can be made stochastic if such a model would appear more realistic.

So the latent-variable model is better (except for possible computational difficulties), right?
Not necessarily. A perhaps-disagreeable byproduct of the latent model is that, because of the
joint normality, the distributions of income among the welfare and non-welfare groups—that is,
the distributions p(y1|y2 =1,X) and p(y:1|y2 =0, X )—must necessarily overlap. In contrast, the
direct model allows there to be overlap or non-overlap, depending on the data. Thus, although the

latent-variable model seems to be a generalization, it is not.

4 Conclusions

Where does this leave us in practice? Must we just choose a model and hope for the best? For-
tunately, we are not completely without tools—in particular, we can use a procedure to impute
missing data and then check the fit of the model to the completed dataset (Gelman et al., 1998,
2001). Serious problems (such as overlapping distributions for imputed data amidst nonoverlapping
distributions of observed data) should show up. With checking, we should be able to notice major
flaws in an imputation model. But we do not have a good sense of how general the models have
to be in order to work well, and it is not clear when incompatibility of conditional distributions
presents a practical problem.

As with so much of statistics, the study of conditional distributions is an area where theory has

not caught up with practice.
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