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We investigate the construction of more precise estimates of a collection of population means using information about a related variable
in the context of repeated sample surveys. The method is illustrated using poll results concerning presidential approval rating (our related
variable is political party identi� cation). We use poststrati� cation to construct these improved estimates, but because we do not have
population level information on the poststratifying variable, we construct a model for the manner in which the poststrati� er develops
over time. In this manner, we obtain more precise estimates without making possibly untenable assumptions about the dynamics of our
variable of interest, the presidential approval rating.
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1. INTRODUCTION

Poststrati� cation is widely recognized as an effective
method for obtaining more accurate estimates of population
quantities in the context of survey sampling (Little, 1993). Not
only does it correct for nonsampling error, but it can lead to
less variable estimates. The basic idea is that if we know our
population is composed of distinct groups (strata) that differ
with regard to the quantity we are interested in estimating and
we know the sizes of these strata in our population, then we
can obtain a more accurate estimate of the quantity of inter-
est by correcting for any imbalance in the representation of
the strata in our sample. This correction is obtained by using
a weighted average (using the known weights from the pop-
ulation) of the averages within strata as our estimate of the
population mean. If we calculate the variance of this estimate
conditional on the observed number of respondents falling
into each of the strata (as is generally recommended; see Holt
and Smith 1979), the variance of this estimate will be a lin-
ear combination of the variance of the strata means. Hence,
the estimate could have zero variance (if group membership
exactly determines the quantity of interest), but in practice our
gains will depend on how strongly our quantity of interest is
related to the variable(s) we use to poststratify. Although post-
strati� cation is not always used in academic studies, it is a
commonplace tool in commercial public opinion polls (Voss,
Gelman, and King 1995).

One of the greatest practical limitations to the use of post-
strati� cation is the need to know the proportion of the pop-
ulation in each strata. We have population level information
only for certain variables, so it appears that poststrati� cation
is useful only if our quantity of interest is related to one of a
handful of characteristics for which we have population level
information. Here, we overcome this dif� culty by constructing
a dynamic model for the variable by which we poststratify,
thereby estimating the strata weights from our sample. The
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dynamic model for the poststrati� er allows for more ef� cient
estimation of the weights for each time period than would be
possible if we analyzed each sample separately. Clearly, if the
method for obtaining the samples does not change over time,
we cannot hope to correct for sampling bias if we estimate
our weights. Hence, here we use poststrati� cation solely to
obtain more ef� cient estimates. Note that we are not required
to propose any dynamic model for the quantity of interest,
only for the poststrati� er. Because we are free to select the
poststrati� er, we try to choose a variable that is related to the
quantity of interest and has dynamic behavior that is relatively
well understood (for example, the variable is basically con-
stant over time).

1.1 Structure of the Data and
Preliminary Considerations

We analyze data from a (self-weighted) sample survey of
U.S. adults, the “WISCON” project, from the Letters and Sci-
ence Survey Center at the University of Wisconsin at Madi-
son. For each respondent, we have his or her rating of the
president on a scale of 1 to 10, the party with which he or she
most closely identi� es (which we group into one of three cat-
egories, Democrat, Republican, or Independent, based on the
respondent’s answer to two questions about party identi� ca-
tion), and the date of the interview. We group each respondent
by the week in which he or she was interviewed so as to have
a sequence of samples of these quantities (i.e., the approval
rating within each party and the size of each party in our
sample) from the week starting 1/19/93 until the week start-
ing 8/13/96 (which constitutes most of Clinton’s � rst term).
We are ultimately interested in estimating the mean approval
rating of the president for each week, Œt for t = 11 : : : 1 T ,
given all of the data up to time T . The weekly samples col-
lect information from about 40–60 respondents (we do not try
to estimate the mean approval rating for weeks with too few
interviews; hence, we exclude several weeks, leaving a total
of 171 weeks of data), and so a natural estimate of Œt (and
a basis for comparison for any other method) is the sample
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Figure 1. Observed Mean Approval Rating and Two Simulations of the Mean Approval Rating Under the Model.

mean with standard error given by the sample standard devi-
ation divided by the square root of the sample size at time t

(moreover, because the sample sizes are large, we can appeal
to the central limit theorem to conclude that the distribution
of the sample mean is approximately normal).

The top plot in Figure 1 displays the mean approval rating
for all of the weeks. We suppose that these sample means are
independent over time because they are based on independent
random samples. Whereas our dynamic model for the weights
is a Bayesian model (as we see subsequently), it is useful
to note that using the sample mean (based on samples large
enough for the central limit theorem to take effect) with the
aforementioned standard error as an estimate of Œt is equiva-
lent in Bayesian terms to assuming a normal distribution for
the sample mean given Œt and ‘t (where ‘t is the standard
deviation of the approval ratings at time t), using a normal
prior for Œt with arbitrarily large variance and using the sam-
ple standard deviation as an estimate for the unknown quantity
‘t .

That is, if we let n1t denote the number of Democrats in
our sample at time t, n2t denote number of Republicans in our
sample at time t, and n3t denote the number of Independents in
our sample at time t, and we set Nt =

P
j njt for t = 11 : : : 1 T ,

then we � nd the posterior distribution of Œt by supposing that
for t = 11 : : : 1 T we have yt

—Œt1‘t1Nt N4Œt1 ‘2
t =Nt5 and

Œt
—‘t N4Œ01‘ 2

0 5, where y t is the mean approval rating for
our sample at time t and we take ‘0 to be arbitrarily large. This
implies Œt

—y t1‘t1Nt N4yt1‘ 2
t =Nt50 We estimate ‘2

t with the
usual unbiased estimate, s2

t , and so we obtain draws from the
posterior distribution of Œt using the normal distribution in
a completely straightforward manner (so we are ignoring the
fact that the sample variance is subject to variability). Later,

we treat the mean approval rating within each party Œjt for j =
1121 3 in the same manner, and we assume that the approval
rating is independent across parties. In this sense we have
no dynamic model for the approval rating within party. Our
intention is to poststratify presidential approval by political
party identi� cation and show that by correcting our estimate
for imbalances in political party representation, we can obtain
a more ef� cient estimate. Although it is dif� cult to propose
a dynamic model for approval, it is reasonable to suppose
that the proportion of a population that holds a given political
attitude is almost constant from week to week.

1.2 A Simple Model and Method

As a simple investigation into the ef� cacy of this method,
we use the average over all time periods of the proportion
of our sample in each party for the strata weights, and treat
these weights as known (Little, 1996). This is equivalent to the
dynamic model, which supposes that the proportion in each
party is constant over time (and we ignore the uncertainty in
the estimation of the weights, an entirely reasonable practice
because these averages of sample proportions are sample aver-
ages based on

P
t Nt = 8,462 observations). If we use these

averages for the weights for all the weeks and treat them as
known, then we can estimate the ef� ciency of our poststrati� -
cation estimate relative to the sample mean for each week by
the ratio of the variance of the estimated sample mean s2

t =Nt

to the estimated variance of the poststrati� cation estimate at
time t. We � nd that these estimated ef� ciencies range from
0.48 to 2.8 with an average of 1.23. The correlation between
approval and party identi� cation is about .35 (treating party
identi� cation as continuous), so we see that even a weak cor-
relation can be useful. These results are in accord with the
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� ndings of others (e.g., Holt and Smith 1979), in particu-
lar yPS often has lower variance (and here, on average, has
lower variance), but sometimes the sample mean is preferable.
Although this simple method indicates that the poststrati� ca-
tion estimator can outperform the sample mean (on average
here), a model that assumes the strata proportions are constant
over time (3.5 years) is not very reasonable (see, for example,
MacKuen 1983). A more plausible model is provided in the
next section, but we note that in some settings this analysis
may be satisfactory.

1.3 Political Polling and the Presidency

Presidential approval has been a central concept in the study
of both presidential power and public opinion in political sci-
ence. With the advent of the “new presidency” in the age of
mass media politics, having high levels of approval is seen as
an important political resource for presidents (Kernell 1986).
Having high levels of approval is thus a central component
of presidential power (Neustadt 1990) and in� uences elec-
toral outcomes and legislative success (Rivers and Rose 1985;
Ostrom and Smith 1993; Brody 1991).

Since the early 1970s, a long list of studies have examined
various presidential approval series, although the series from
the Gallup Organization is most common because it is avail-
able starting with the Truman administration. In general, these
studies have examined how the percentage of the population
that approves of the job of the current president varies with
economic conditions and “rally events,” such as armed con� ict
or political scandal (see, inter alia, Kernell 1978; MacKuen
1983; Norpoth and Yantek 1983; Kiewiet and Rivers 1985;
Ostrom and Simon 1989; Brace and Hincklely 1991; Brody
1991; Beck 1991, 1992; Clarke and Stewart 1994). More
recent work on presidential approval has paid particular atten-
tion to the dynamics of presidential approval. The consensus
is that approval within the population is highly persistent from
month to month, but there has been some debate on how best
to model this persistence (see Smith 1992; Williams 1992;
Box-Steffensmeier and Smith 1998).

2. MODELS AND POSTERIOR SIMULATION

2.1 Parameterization of a Categorical Poststrati cation
Variable as a Multivariate Outcome

Because we do not have population level information on
party identi� cation, to effectively poststratify we � rst posit a
model for the temporal evolution of the party identi� cation
series. Rather than directly model the two series n1t and n2t

(the number of respondents in each party), we � rst transform
our data so that we model a vector with components that are
approximately independent. The approximate independence
thereby induced should make our inference less sensitive to
our model for the covariance structure utilized in our dynamic
model of the proportions. For the political party identi� cation
series, we model the proportion of respondents who identify
with one of the two major parties, and the proportion of those
who identify with the Democrats among those who identify
with one of the major parties. So, if we let nt = n1t + n2t

and de� ne the two-vector yt = 4nt=Nt1 n1t=nt5, then, because
Nt and nt are large, it is reasonable to suppose that yt has a

bivariate normal distribution [for the derivations that follow
we adopt the convention that yt = 40105 if nt = 0]. If we let
ˆ1t denote the proportion of the population that is in one of the
major parties (i.e., Democrat or Republican) and let ˆ2t denote
the proportion of Democrats among those in a major party,
then the measurement covariance (i.e., sampling error) of yt

given ˆ1t , ˆ2t , and Nt under simple random sampling (ignoring
� nite population correction factors) can be expressed as

Vt =

0
B@

ˆ1t41 ƒ ˆ1t5=Nt ˆ1tˆ2t41ƒ ˆ1t5
Nt

ˆ1tˆ2t41 ƒ ˆ1t5
Nt

ˆ2t 41ƒˆ2t 5

Nt

Pˆ
j=0

Œj 4ˆ1t 1Nt 5

N
j
t

+ ˆ2
2t41ƒ ˆ1t5

Nt 41ƒ 41ƒ ˆ1t5
Nt 5

1
CA1

where Œj4ˆ1N 5 =
PN ƒ1

k=0
N

k
kj 41 ƒ ˆ5kˆN ƒk0 We obtain this

expression by noting that, conditional on Nt , ˆ1t , and ˆ2t if we
use 1A to represent the indicator function of the set A, then
[if we use the convention that 18n3t <Nt 9

=4Nt
ƒn3t5 is zero when

Nt = n3t in the second line] if yjt , j = 11 2, is the jth element
of yt ,

Var4y2t5 = E4Var6y2t
—n1t + n2t75 + Var4E6y2t

—n1t + n2t75

= E 18n1t + n2t>09

ˆ2t41 ƒ ˆ2t5

Nt
ƒ n3t

+ Var418n1t + n2t >09ˆ2t5

=
ˆ2t41ƒ ˆ2t5

Nt

X̂
j=0

N ƒj
t E418n1t+ n2t>09n

j

3t5

+ ˆ2
2t41ƒ ˆ1t5

Nt 41ƒ 41 ƒ ˆ1t5
Nt 51

from which we obtain the element on the second diagonal of
Vt and the other elements are straightforward. Although we
could substitute our sample proportions, yjt , for the unknown
population proportions, ˆjt , in this expression and thereby
obtain an estimate of the measurement covariance matrix
(using 20 terms in the in� nite sums is more than suf� cient to
obtain seven digit accuracy, and one or two terms is probably
adequate for most practical purposes), we instead use the sim-
ple approximation to the desired estimate (which is good to
within 1% of the desired estimate of the standard error of y2t

and is obviously good for the off-diagonal element because Nt

is large and ˆ1t is at least .7),

Vt =
y1t41ƒ y1t5=Nt 0

0 y2t41 ƒ y2t5=nt

0

We treat these measurement variances as known in our
analysis.

2.2 Dynamic Model for the Poststratifying Variable

Given Vt and Nt for t = 11 : : : 1 T , and the initial conditions
m0 and C0, we propose a state-space model for t = 11 : : : 1 T ,

yt = ˆt + �t1 where �t N401Vt51

ˆt = ˆtƒ1 + —t1 where —t N401W 51

ˆ0 N4m01 C051

where 8�t9 and 8—t9 are mutually orthogonal sequences of
independent disturbances. We treat the matrix W as a random
variable and estimate it from the data. This model is motivated
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by the fact that political attitudes in the contemporary United
States do not change much over the course of a single week.
For known W , this is a special case of a model for which
the Kalman � lter can be used to obtain the posterior moments
of the state vectors ˆt for t = 01 : : : 1 T (see, e.g., West and
Harrison 1997).

2.3 Analytic Expressions for Posterior Inference

To obtain samples from the posterior distribution of the
weights for our poststrati� cation estimate, we � rst obtain sam-
ples from the posterior distribution of the state process in our
dynamic model given all of the data up to time T , but because
we do not know W , we suppose this is a (matrix-valued) ran-
dom variable and conduct Bayesian inference for this matrix.
Our goal is � rst to simulate W from its marginal posterior dis-
tribution, and then to simulate the state vectors, ˆt , given W ;
that is, we use the fact p4ˆ1 W —y5 = p4ˆ—W 1y5p4W —y5, where
ˆ = 4ˆ01 ˆ11 : : : 1 ˆT 5 and y = 4y11 : : : 1 yT 5. These results can
be given a non-Bayesian interpretation as predictive inference
for ˆ conditional on a marginal likelihood estimate of W .

We � nd the posterior distribution of the state vectors given
the state covariance matrix W by using standard formulas from
the Kalman � lter. Now, under our model, we have (by the
Kalman � lter)

ˆt
—y11 : : : 1 yt1 W N4mt1Ct5

with

mt = Vt4Ctƒ1 + W + Vt5
ƒ1mtƒ1

+ 4Ctƒ1 + W 54Ctƒ1 + W + Vt5
ƒ1yt

and
Ct = Ctƒ1 + W ƒ 4Ctƒ1 + W 5

4Ctƒ1 + W + Vt5
ƒ14Ctƒ1 + W 5

for t = 11 : : : 1 T . Hence it is elementary to show

p4ˆ—W 1y5 = N4ˆT
—mT 1CT 5

TY

t=1

N4ˆtƒ1—htƒ11 Htƒ151

where

ht = W 4Ct + W 5ƒ1mt + Ct4Ct + W 5ƒ1ˆt+ 1

and
Ht = Ct

ƒ Ct4Ct + W 5ƒ1C 0
t

for t = 01 : : : 1 T ƒ 1.
We can obtain the marginal posterior density of the state

covariance matrix by writing the likelihood for y as a function
of W , that is, yt =

Pt
s=1 —s + ˆ0 + �t , and so

p4W —y5 = p4W 5
TY

t=1

N4yt
—m01 tW + C0 + Vt50

In this manner we obtain the posterior distribution of the state
covariance matrix once we determine an appropriate prior. We
take p4W 5 / 1 [so that our posterior mode coincides with the
maximum likelihood estimator (MLE) of W , treating ˆ as a
nuisance].

2.4 Other Modeling Issues

In light of the previous development, simulation is rela-
tively straightforward, but we must attend to some details. For
example, a minor complication is the fact that we have no
(or insuf� cient) data for some weeks and so our time series
has unequal time increments (so in the previous development,
W should have been a function of t). The simple remedy is
to realize that because we assumed that ˆt follows a random
walk, if it has been k weeks since we last obtained survey
results, and the state covariance matrix is W (i.e., the covari-
ance matrix of an increment of the state process based on one
week of data is W ), then the covariance matrix of the state
process over an increment of k weeks is kW . For our dataset
and the way in which we use the Kalman � lter, this correc-
tion has no discernible impact on our results. We also must
specify initial values m0 and C0 for the Kalman � lter. Based
on rough guesses, we set m0 = 4081 055, and to convey our
lack of accurate information on these quantities, we make C0

a diagonal matrix with elements 022. With 171 weeks of data,
the speci� cation of the initial values has little impact on our
estimation of the state process ˆt for t = 11 : : : 1 T and has no
practical impact on our poststrati� cation estimator (this was
veri� ed experimentally by altering m0 and C0).

2.5 Computation

2.5.1 Posterior Simulation of the Poststrati�cation Propor-
tions. We use the Metropolis algorithm to obtain draws from
p4W —y5. Then we draw ˆ from the appropriate sequence of
normal distributions. Our methodology follows that outlined in
Gelman, Carlin, Stern, and Rubin (1995): Our candidate dis-
tribution is a multivariate normal with variance based on the
curvature of the posterior at the mode (and we scale this matrix
so that the proportion of accepted jumps is in the 40% range),
and we use multiple sequences that begin from overdispersed
starting points (which were selected by drawing deviates from
a properly centered and scaled Student’s t distribution with 4
degrees of freedom). We used four sequences of 10,000 iter-
ations, and the resulting values of the convergence diagnostic
statistic,

p
OR, were all less than 1.1.

Given W , it is completely straightforward to simulate ˆ.
Note that we do not require iterative simulation to simulate ˆ.
We simply use draws from the bivariate normal distribution
with mean and covariance matrix given by ht and Ht , because
the joint distribution of the state vectors was found previ-
ously; that is, we use the forward � ltering, backward sampling
algorithm of Carter and Kohn (1994) and Frühwirth-Shnatter
(1994).

2.5.2 Simulation of the Mean Within Each Poststrati�ca-
tion Category and the Poststrati�ed Estimate of the Population
Mean. We estimate the mean within each party in the same
manner that we estimated the mean approval without regard
to party identi� cation; hence, it is trivial to obtain simulations
of Œjt . To obtain draws from the posterior distribution of the
poststrati� cation estimate, we assume that the approval rating
within each party is conditionally independent of the propor-
tion of the population in each of the parties given the sample
means within parties and the number of respondents in each
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party. Therefore, we simulate a draw from the posterior dis-
tribution of ŒPS

t by simply combining simulations from both
parts of the foregoing model in the obvious fashion, namely, if
we let � 1t = ˆ1tˆ2t , � 2t = ˆ1t41ƒ ˆ2t5, and � 3t = 1ƒ ˆ1t , then
we obtain ŒPS

t =
P3

j=1 Œjt� jt .

2.5.3 Comments on Computations. This method for
obtaining draws from the posterior distribution of ˆ by averag-
ing over our uncertainty in the estimation of the state covari-
ance matrix can be generalized to deal with any unknown
parameters in the usual Gaussian linear Kalman � lter, such as
unknown autoregressive coef� cients in state-space autoregres-
sions or unknown variance components in dynamic regression
models. For example, we tried � tting � rst order state-space
autoregressions with unknown state variances and unknown
autoregressive coef� cients to the two series y1t and y2t sepa-
rately using this methodology (with only two parameters, we
were able to obtain simulations for the autoregressive coef� -
cient and the state-space variance by discretizing the bivariate
posterior distribution and using the inverse cdf method; see,
for example, Gelman et al. 1995). Whereas the autoregressive
coef� cients were de� nitely very close to 1 (as we expect with
such low values of the state variances), we ignored the com-
plication that the autoregressive coef� cient matrix might be
different from the identity matrix in our model for yt (because
this would augment the dimension of the state space of our
Markov chain by 3 in the implementation of the Metropolis
algorithm). In any event, we see how simple our approach
to unknown model parameters can be. Indeed, no iterative
simulation is required at all for these low dimensional prob-
lems. The advantage of this technique for averaging over our
uncertainty in the model parameters compared to simply using
the Gibbs sampler to simulate the state process given the
model parameters and then simulate the model parameters
given the state process (as is frequently done; see, e.g., West
and Harrison 1997) is that no iterative simulation is required
for the state vectors in our method. This is a great simpli-
� cation, because adjacent state vectors are highly correlated
in their joint posterior distribution; hence convergence of the
chain can be dif� cult to obtain if we must use an iterative
simulation method to simulate the state vectors. This posterior
correlation is especially troubling for typical � ltering applica-
tions, because hundreds (or even thousands) of state vectors
may be involved. For our application, this means that we need
to obtain draws only from the equilibrium distribution of a
3-dimensional Markov chain, rather than a 345-dimensional
Markov chain.

In the sample survey literature, dif� culty using the MLE
of the state variance has been reported when the series is
short (see, e.g., Pfeffermann 1991). In such cases, averaging
over the uncertainty in the estimation of the state variance
in the preceding manner should eliminate these problems. In
particular, with short series, the MLE of the state variance
occasionally will be zero (even if the data were produced by
a mechanism with a nonzero state variance), but because this
point estimate is subject to uncertainty, if we average over
the uncertainty of the estimated state variance, we will � nd
that the Kalman � lter can still lead to more accurate infer-
ence without implying that the level of the process is constant.
Moreover, if we have information about the state covariance

matrix (or any parameters in the more general linear Gaussian
model), we can incorporate this information through a prior
on W (rather than taking the � at prior p4W5 / 1 as we have
here). With short series, the judicious use of such prior infor-
mation can lead to more reliable inference, because the poste-
riors of the model parameters may be quite diffuse if we use
� at priors.

2.6 An Alternative Model for the Time Series of
Poststrati cation Proportions

The model described in the previous sections was not the
� rst model we � t to these data. The � rst model we � t fol-
lows the approach to multinomial time series developed in
Cargnoni, Müller, and West (1997). We did not end up using
this model because we found that it did not � t our data (see
Section 3.2.2); however, we present it here for completeness
and because it might be useful in other settings. Using the
same notation as before, if we let � t = 4� 1t1 � 2t1� 3t5, then we
� rst assume that for t = 11 : : : 1 T ,

n1t 1 n2t1 n3t
—Nt1 � t Mult4Nt1� t50

Next, let ‡jt = logit4ˆjt5 for j = 11 20 These transformations
separate partisan changes from changes in af� liation within
the two largest parties and change scale in such a way that
additive models are more reasonable (they also yield diagonal
measurement covariance matrices, as we saw before). Now
we de� ne the vector ‡t = 4‡1t1 ‡2t5 and we suppose that for
t = 11 : : : 1 T ,

‡t = �t + …t1 where …t N401 V 51

�t = �tƒ1 + „t1 where „t N401 W 51

where 8…t9 and 8„t9 are mutually orthogonal sequences of
independent disturbances. We � nish our speci� cation of the
dynamics of � t by supposing �0

—m01C0 N4m01C0 50 In addi-
tion, we suppose that V and W are random variables (matri-
ces) and we specify inverse Wishart priors with scale equal
to the identity matrix and 2 degrees of freedom in the hope
of obtaining a prior that has little impact on our inference
(a hope that is realized, as we see by experimentation). This
model implies that the dynamics of the vector ‡t are basi-
cally equivalent to a vector process that follows an autore-
gressive integrated moving average (ARIMA) (0, 1, 1) model.
The values of the moving average parameters in the equiv-
alent ARIMA(0, 1, 1) model are determined by V and W
(for more on this equivalence, see West and Harrison 1997).
Although we may be tempted to set V = 0 in the hope of
obtaining an ef� cient algorithm for simulating draws from a
model that speci� es that the transformed proportions follow
a vector random walk, this will not work because, if we use
the sampling algorithm of Cargnoni et al. (1997), we itera-
tively sample from two conditional distributions that degener-
ate into point masses as V approaches zero (thus no mixing
takes place for the parameters of interest). We then can draw
samples from the posterior distribution of all parameters in our
model for the party identi� cation series using the Metropolis–
Hastings algorithm as explained in Cargnoni et al. (1997).
To assess convergence, we used four independent sequences
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that began from overdispersed starting points (and the gen-
eral methodology presented in Gelman et al. 1995). To obtain
overdispersed starting points for our example, we conducted
a preliminary run of 1,000 iterations and then used two times
the medians for the variance parameters as our starting values
for these parameters, whereas for the ‡jt’s, we used the medi-
ans of the values obtained from this trial run as our starting
values. By specifying unrealistically large values for the vari-
ance parameters, we got the sampler to spread out the values
of �t and ‡t in the � rst iteration in a way that would be very
dif� cult to do “by hand,” because there are over 370 initial
values that we must supply. The convergence of the chains
was rapid: after a burn-in of 2,000 iterations, the next 1,000
were saved and all of the values of the

p
OR statistic were less

than 1.02.

2.7 Model Criticism

Our models do not attempt to represent every conceivable
facet of the phenomenon under investigation, and so it is
essential to understand the shortcomings of our models. A
simple, yet sensitive, method for detecting model weaknesses
is to use the model to simulate another dataset and then com-
pare the simulated data to the observed data (posterior predic-
tive checks; see, e.g., Gelman et al. 1995). The � rst step is
to examine several of the simulated datasets graphically. After
this, one can design test statistics and compare the distribu-
tion of these test statistics under the posterior predictive dis-
tribution to their distribution under the posterior distribution
(if a test statistic does not depend on any of the model param-
eters, it is constant under the posterior distribution). In the
time series modeling context, several natural test statistics can
be proposed on general grounds. First, if our series is xt for
t = 11 : : : 1 T , then the average absolute value of the change in
the level of the series T14x11 : : : 1 xT 5 = 41=4T ƒ 155

PT
t=2

—xt
ƒ

xtƒ1
— is a simple measure of the volatility of the series (if our

� tting method smoothes the data too much, then T1 will be too
large under the posterior predictive distribution). If ”t is the
forecast of xt conditional on the observed data, another natural
diagnostic is the average of the absolute value of the predic-
tion error, T24x11 : : : 1 xT 1 ”11 : : : 1”T 5 = 41=T5

PT
t=1

—xt
ƒ”t

—.
If the � tting method smooths too much, the prediction errors
will be too large on average. Although obtaining analytic
expressions for these quantities is a daunting task, it is simple
to draw simulations of these quantities from the appropriate
distributions.

3. RESULTS FOR OUR EXAMPLE

3.1 Fitting the Normal Theory Model

Figure 2 shows the marginal posterior distribution of the
components of W and the correlation between the elements of
the state vectors, based on 40,000 simulation draws from the
Metropolis algorithm. Figure 3 displays 95% probability inter-
vals for the proportion in each party obtained by the model
(these intervals are laid over the sample proportions), and
Figure 4 shows posterior predictive draws of the sample pro-
portions. In Figure 5, we show the 95% con� dence intervals
for the average approval rating within each party, and Figure 6

displays the 95% probability intervals given by our poststrat-
i� cation estimate and 95% con� dence intervals based on the
sample mean (whose construction was given in the Introduc-
tion, but, of course, no simulation was used here). From the
last graph, we see that our poststrati� cation estimator is more
precise than the sample mean.

To more fully understand how the poststrati� cation esti-
mator works, it is instructive to see if our estimator really
does respond to imbalances in the representation of the parties
within our samples. To examine this consider Figure 7. From
these graphs, we easily see that if the proportion of Democrats
relative to the proportion of Republicans in our sample is too
large (relative to the estimate based on our dynamic model),
then our poststrati� cation estimator will have a tendency to
make the estimated approval rating smaller than the raw esti-
mate (based on the sample mean). The same correction is
made if there are too many Democrats in our sample (but the
relative proportion of Democrats to Republicans is seen to be
more important in determining the correction), and the oppo-
site correction is made if there are too many Republicans.
This is exactly the sort of behavior we expect, because Clinton
is a Democrat. From Figure 8, we see that the poststrati� ca-
tion estimate performs best for moderate sized samples (again,
each dot represents one week of data in all of the plots). We
also see that the largest corrections are for the smaller sam-
ples (as we would expect) and that the size of the correction
does not have much to do with the estimated ef� ciency. Last,
the fact that our state-space model for the party identi� cation
series is actually a hierarchical model for the increments of
the state-space process is manifested in the shrinkage of the
increments of our poststrati� cation estimate (as witnessed in
the lower right hand corner of Fig. 8).

3.2 Model Checking

3.2.1 Checking the Fit of Our Basic Model. The normal
theory Kalman � lter model presented herein seems acceptable
for our purposes. Figure 4, shows a draw from the posterior
predictive distribution for the number of respondents falling
into each of the parties, and the lower two panels of Figure 1
displays two draws from the posterior predictive distribution
for the average approval rating for each week. We obtain a
draw from the posterior predictive distribution of the aver-
age approval rating by using a weighted mean of draws from
approval within party, with weights given by the simulated
sample proportions in each party under the posterior predic-
tive distribution for these proportions. We � nd the observed
value of T1, where

T14n11 11 : : : 1 n11 T 5 =
1

T ƒ 1

TX

t=2

n11 t

nt

ƒ n11 tƒ1

ntƒ1

is .089, and the 95% probability interval for T2, where

T24n11 21 : : : 1 n11 T 1 ˆ21 11 : : : 1 ˆ21 T ƒ15 =
1

T ƒ 1

TX

t=2

n11t

nt

ƒ ˆ21 tƒ1

under the posterior distribution is (.065, .072). We � nd that
95% probability intervals for these two quantities based on
1,000 simulation draws from their posterior predictive dis-
tributions under the normal theory model are (.076, .099)
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Figure 2. The Marginal Posterior Distribution of Each Element of the State Covariance Matrix Assuming a Flat Prior. The lower left plot shows
the marginal posterior distribution of the correlation of the states.

Figure 3. The Proportion in Each Party for All Weeks With 95% Probability Intervals Given by the Model.
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Figure 4. Simulated Sample Proportions for Each Week Under the Model. Compare to Figure 3.

Figure 5. 95% Con dence Intervals for the Mean Approval Rating Within Party.
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Figure 6. 95% Probability Intervals for the Mean Approval Rating for Each Week Based on the Poststrati cation Estimate (solid line) and Based
on the Sample Mean (dotted line). The series is broken up to t on one page.

Figure 7. The Difference in the Observed Proportions and the Posterior Means by the Difference in the Observed Ratings and the Posterior
Means for Subsets of the Samples. The poststrati cation estimate corrects for unequal representation of the parties in our samples. Each dot
represents one week.
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Figure 8. The Poststrati cation Estimate Performs Best for Moderate Sized Samples. The line in the plot that illustrates the shrinkage of the
increments is a y = x line. Each dot represents one week.

and (.056, .069), and we � nd a 95% probability inter-
val for the difference T24n

k
11 21 : : : 1 nk

11 T 1 ˆk
21 11 : : : 1 ˆk

21 T ƒ15 ƒ
T24n11 21 : : : 1 n11 T 1 ˆk

21 11 : : : 1 ˆk
21 T ƒ15 (where nk

11t is the draw
from the posterior predictive distribution corresponding to
ˆk

t from the posterior distribution for t = 11 : : : 1 T and k =
11 : : : 11000), is 4ƒ00141 00025. These posterior predictive
checks indicate our normal theory model � ts these aspects of
the data.

3.2.2 Checking the Fit of Our Alternative Model. Once
we examine our simulations for the proportion in a major
party and the proportion of those in a major party who are
Democrats based on the multinomial model, it appears that
the posterior medians of these variables are too variable.
The normal theory model for the party identi� cation series
is actually based only on a subset of the data we used to
� t the multinomial model (our multinomial model was � t to
data that included a portion of Bush’s presidency), and so
our observed value of T1 is not the same as before (and we
do not expect T2 under the posterior distribution to be the
same as before). Based on 1,000 posterior predictive sam-
ples, we found that a 95% probability interval for T1 under
the multinomial model is (.115, .147), whereas our observed
value is .097. For our other test statistic, T2, we � nd a 95%
probability interval based on the posterior predictive distri-
bution is (.102, .129), whereas a 95% probability interval
for T2 based on the posterior distribution is (.089, .107). We
also � nd that a 95% probability interval for the difference,
T24n

k
11 21 : : : 1 nk

11 T 1 ˆk
21 11 : : : 1 ˆk

21 T ƒ15 ƒ T24n11 21 : : : 1 n11 T 1
ˆk

21 11 : : : 1 ˆk
21 T ƒ15 is (.005, .028). These shortcomings indicate

that the model is over� tting (i.e., this model does not smooth

the series of proportions enough). It is dif� cult to construct
a simpler model for the party identi� cation series within the
context of the model proposed by Cargnoni et al.(1997), and
so we chose to use the model based on the normal theory
Kalman � lter for the sample proportions.

4. CONCLUSIONS

The resulting estimates are more precise than the weekly
sample means (the estimated ef� ciencies ranging from .66 to
2.3 with a mean of 1.19). If we consider the cost of obtain-
ing survey data (because many questions are asked of each
respondent, it can take 30 minutes to complete an interview),
this is a great savings (with 8,462 observations, it is like get-
ting over 1,600 more observations for free). If one has a long
series for the quantity of interest, it may be feasible to identify
an appropriate time series model for the quantity of interest.
In such a case, one could base estimates on this model and
obtain substantially more precise estimates (for example, one
may be able to conclude that a random walk plus error model
describes the movement of the series of interest over time).
One advantage of this poststrati� cation estimate is that we are
not required to propose a dynamic model for the quantity of
interest: we need only a dynamic model for some quantity that
is related to our quantity of interest. This is a great help here
because speci� cation of a dynamic model for a volatile vari-
able (like approval rating) is controversial, whereas the slowly
changing nature of political attitudes implies that models that
allow for almost constant levels are suitable for separating
measurement error from shifts in attitudes. Also, the results
from our model for the party identi� cation series can be used
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to construct poststrati� ed estimates for other variables. In this
manner, a short series can be poststrati� ed by using simula-
tions based on a more extensive dataset, and thereby more
precise estimates are obtained.

The failure of the multinomial model led us to consider other
sorts of state-space models for discrete variables. The fact that
state-space models are hierarchical models for the increments
of the state process suggests that one can treat discrete variable
� ltering problems (by � ltering, we also refer to the associ-
ated problems of smoothing and prediction) exactly like ran-
dom effects generalized linear models (on which there is an
extensive literature, ranging from analytic approximations to
several methods of posterior simulation); see the comments
by Meyer in West, Harrison and Mignon (1985). Because
adjacent states will have high posterior correlation, it seems
sensible to parameterize the state process in terms of the incre-
ments of the state process rather than the levels of the process
(this should yield a sampling algorithm that converges faster
than one that samples the levels of the state process). This
reparameterization is quite natural when the � ltering problem
is treated as a random effects generalized linear model.

There are also many approximations for � ltering and
smoothing in the time series literature (see, for example, West
et al. 1985). These approximations provide reasonable initial
values for iterative methods or, of course, can be used as esti-
mates themselves. If we are going to use approximate smooth-
ing methods, a convenient way to obtain an approximation to
the marginal likelihood of any model parameters, ” (e.g., state
variances or autoregressive coef� cients), is to use a formula
common in the random effects literature (see, for example,
Rubin 1981 or Besag 1989), namely

p4”—y5 / p4y—ˆ1 ”5p4ˆ1”5

p4ˆ—”1 y5
0

However, if the state space is Markovian,

p4ˆ1 ”5 = p4”5p4ˆ05
TY

t=1

p4ˆt
—ˆtƒ11 : : : 1 ˆ01”53

thus, it is typically straightforward to write the numerator in
the marginal likelihood. For the denominator, we can use a
multivariate normal with moments given by our approximate
method. We also note that this expression is the easiest way
to obtain the posterior distribution of the model parameters in
the context of the extended Kalman � lter.

In conclusion, we � nd that the poststrati� cation estimator
gives more precise results than the sample mean and it does
this by correcting our estimate for imbalances in the represen-
tation of the political parties in our sample. Moreover, these
gains are achieved without recourse to an explicit dynamic
model for the quantity of interest.

[Received June 1999. Revised July 2000]
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