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SUMMARY

Maps are frequently used to display spatial distributions of parameters of interest, such as cancer rates or
average pollutant concentrations by county. It is well known that plotting observed rates can have serious
drawbacks when sample sizes vary by area, since very high (and low) observed rates are found dispropor-
tionately in poorly-sampled areas. Unfortunately, adjusting the observed rates to account for the e�ects of
small-sample noise can introduce an opposite e�ect, in which the highest adjusted rates tend to be found
disproportionately in well-sampled areas. In either case, the maps can be di�cult to interpret because the
display of spatial variation in the underlying parameters of interest is confounded with spatial variation in
sample sizes. As a result, spatial patterns occur in adjusted rates even if there is no spatial structure in the
underlying parameters of interest, and adjusted rates tend to look too uniform in areas with little data. We
introduce two models (normal and Poisson) in which parameters of interest have no spatial patterns, and
demonstrate the existence of spatial artefacts in inference from these models. We also discuss spatial models
and the extent to which they are subject to the same artefacts. We present examples from Bayesian modelling,
but, as we explain, the artefacts occur generally. Copyright ? 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

1.1. Background

When a spatially-varying parameter of interest is subject to substantial uncertainty, maps of
predicted values can di�er in important and systematic ways from the spatial distribution of
true values. A standard method for correcting for these artefacts – Bayes shrinkage estimation
– introduces new and opposite artefacts of its own.
We will illustrate this point with generic statistical models, but it is helpful to keep a speci�c

example in mind. Consider the mapping of cancer mortality rates by county in the United States.
Much of the variation in observed cancer death rates by county is attributable to statistical noise due
to the small number of (observed and expected) cancer deaths in low-population counties. Because
of this stochastic noise, a disproportionate fraction of low-population counties are observed to have
extremely high (or low) cancer rates when compared to typical counties in the United States. Thus
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when counties with very high observed rates are highlighted on a map of the U.S., almost all
of the highlighted counties are low-population counties.1; 2 Since the Central and Western U.S.
contain a great many such counties, a much higher fraction of counties in the Central and Western
U.S. is highlighted than in the rest of the country.
Manton et al.1 and Riggan et al.3 use a Bayesian procedure to estimate underlying cancer rates

by county. This procedure is now common, with minor variations, for U.S. cancer maps.4; 5 The
posterior mean estimate for each county is a compromise between the observed county cancer
mortality rate and the mean cancer mortality rate for the entire U.S. (or for a region of the U.S.5),
with the relative weighting of these rates being dependent on the county population. The estimated
underlying cancer death rate for a high-population county with a given observed rate is close to
the observed value, and this estimate has a small standard error. A low-population county with
the same observed rate has a posterior mean somewhere between the observed rate and the U.S.
mean rate, with a larger standard error.
Manton et al.1 quite reasonably suggest that the posterior mean estimates are more appropriate

for mapping than are the observed death rates, since the observed rates are subject to systematic
e�ects related to county population, and since Bayes and empirical Bayes methods tend to yield
more accurate predictions than do raw rates.6–8 Unfortunately, the posterior means are subject to
a similar type of systematic artefact related to county population, but in the opposite direction,
as we will show. (Similar problems with the ensemble of posterior mean estimates are noted by
Louis.9) We also show that most other mapping methods have artefacts associated with populations
or sample sizes.
We quantify these artefacts in this paper, using the examples of standard models for continuous

and discrete data to demonstrate that maps of point estimates can introduce spurious spatial patterns.
This occurs even when the model being �t is appropriate, and even when there is no underlying
spatial structure in the parameter of interest. In Section 2 we consider an example with normally-
distributed parameters and measurements. In Section 3, we examine a Poisson=gamma model with
parameters taken from cancer data. In Section 4, we discuss the occurrence of artefacts in �tting
spatial models to data that do have underlying spatial structure.

1.2. Theoretical approach to examining statistical artefacts

If one �ts a statistical model that is inappropriate to the data being analysed, then inferences will
be incorrect and maps of predictions might well show spurious spatial patterns. This is not what
we mean by ‘spatial artefacts’ in this paper. Instead, we consider a spurious spatial pattern to be
an ‘artefact’ if it occurs even when inferences are based on the correct statistical model.
We analyse mapping artefacts in the context of a theoretical model with no spatial e�ects. This

approach allows us to illustrate our points with simple and easily interpreted statistical models,
and makes it easy to see the e�ects of the artefacts in our sample maps since any apparent spatial
pattern is an artefact. As we discuss in Section 4, the same sorts of artefacts occur when the
parameter of interest varies spatially, even if the correct spatial model is �t.
Under our model, each of J counties, j=1; : : : ; J , has an unknown parameter �j. The ensemble

of parameters, {�1; : : : ; �J}, follows some distribution, p(�j), assumed known. In each county
j, we have nj independent measurements yij; i=1; : : : ; nj, with a known sampling distribution:
yij|�j ∼ p(yij|�j). We further assume, in this theoretical model, that the sample sizes nj are
statistically independent of the true parameter values �j (so that the values of nj do not convey
information about the �j’s), and that the parameters �j are spatially uncorrelated.

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 3221–3234 (1999)
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We now suppose that a statistical analysis is performed and then a map is drawn to indicate the
estimated value of �j in each county. Although this paper applies to parameter mapping in general,
we will focus on maps that highlight only the counties with the highest point estimates, so that
we can use black and white maps as illustrations. Colour or greyscale maps would manifest the
same artefacts – for example, using a colour map to search for ‘hot spots’ of a parameter would
be equivalent to looking at the highlighted counties in our black and white maps.
In our analysis, we ignore the di�erence between (a) highlighting the top x per cent of counties

and (b) highlighting the counties that exceed a threshold that, in expectation, exceeds all but
x per cent of the counties. In practice, both procedures are used.1; 10 The two procedures give
essentially the same result. For example, there is little di�erence between highlighting 27 out of
274 counties or using a �xed threshold so that the expected number of counties highlighted is
27·4. For mathematical simplicity, we consider procedure (b) in this paper.
If the map of extreme values is simply based on point estimates �̂j, this means that some

threshold c is set so that the counties j for which �̂j¿c are highlighted. More generally, if one
attempts to adjust for sample size then a function h(·; ·) is chosen and a threshold c is set so that
the counties for which h(yj; nj)¿c are highlighted. The main point of this paper is that, for most
mapping methods – that is, for most choices of h(·; ·) – the probability that a county is highlighted,
Pr(h(yj; nj)¿c|nj), depends on the sample size nj, so that the map of highlighted counties will
display patterns based on the sample sizes.

2. CONTINUOUS MEASUREMENTS

We �rst work out the basic results for the relatively simple problem of continuous measurements
with normally-distributed errors. For counties j=1; : : : ; J , let �j be the true value of a parameter in
county j. We assume that the true values of the county parameters, �j, follow a normal distribution:

�j ∼ N(�; �2): (1)

By assuming the county parameters follow a common distribution, we are not assuming that the
counties are identical – that would correspond to �=0. The data from each county constitute nj
independent, identically distributed measurements

yij|�j ∼ N(�j; �2): (2)

2.1. Problems with mapping the sample means

The direct estimate of each �j is the observed county mean, which we label yj. It is well known
that, if the nj’s vary, the procedure of selecting the counties with the highest observed means
tends to yield counties with few observations; we will quantify this artefact. An observed county
mean yj based on nj observations is distributed as

yj ∼ N(�; �2 + �2=nj): (3)

Under our model, the probability that the observed mean yj exceeds a threshold c, for a county
with sample size nj, is

Pr(yj ¿ c|nj)=�
[
� − c
�

(
1 +

�2

nj�2

)−1=2]
: (4)
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Fig. 1. Solid line: probability that an observed county mean, yj , will exceed a speci�ed cut-o� point, c1. Dotted line:
probability that the posterior mean estimate for a county, E(�j|yj), will exceed a speci�ed cut-o� point, c2. Both lines are
plotted as a function of the log (base 10) of nj , the number of observations in the county. Each cut-o� point is set to
catch an average of 10 per cent of the counties. Curves are derived from the values of nj in the radon data structure and
from the variance ratio �2=�2 = 0·49 estimated from the radon data. The points at the bottom of the �gure show the 274

values of log10 nj ; they are jittered (see Chambers et al.
12) so that duplicate values are visible

For any given threshold c, one can compute the expected number of counties that will be shaded
under the model by summing the probabilities (4), for a given set of nj’s.
If the threshold c is to be set so that some small fraction of counties (for example, 5, 10, or 20

per cent) is expected to exceed it, then c will almost certainly be larger than the grand mean, �,
and the probability of exceeding it is a decreasing function of nj. The variation of this probability
with nj depends on both the variance ratio �2=�2 and the value of c, which itself depends on the
distribution of the J values of nj.
To illustrate, we use the example of home radon levels in the mid-Atlantic region of the U.S.,

which comprises 277 counties, including some independent cities in Virginia. In this region,
the Environmental Protection Agency and the state health departments randomly sampled 5677
homes;11 three of the counties had no homes surveyed, and of the remaining counties, the number
nj of homes surveyed ranged from 1 to 261. The measurements yij are the natural logarithms of
the measured radon levels, and the parameter �j is the average log radon level in county j (that is,
the log geometric mean radon measurement that would be obtained if every home in the county
were to be measured). We �t a hierarchical normal model13; 14 to these data and obtained estimates
of 1·0 and 0·7 for the within- and between-county standard deviations, � and �, respectively.
We study the artefacts created by the mapping procedure for the radon example by working out

what would happen if the hierarchical normal-normal model were true, with hyperparameter values
�=1·0 and �=0·7. That is, we construct a model in which the statistical distribution of county
radon levels is similar to that from the actual data, but in which (unlike the actual radon data)
the county parameters are distributed randomly, with no spatial correlation. Under this model and
the given set of 274 values of nj, the cut-o� value to highlight the top 10 per cent of counties is
c1 = � + 1·468�.
The solid line on Figure 1 shows the probability that any given county mean yj will exceed

c1, as a function of log10 nj. The points at the bottom of the �gure show the values of log10 nj
in the data set. (Ignore the dotted line on the �gure for now.) Counties with fewer than about
six measurements are much more likely to exceed the threshold than are more heavily sampled

Copyright ? 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 3221–3234 (1999)
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counties. This statistical artefact manifests itself as a spatial artefact in a map of county means,
because the sample sizes themselves vary spatially.

2.2. Problems with mapping the posterior point estimates

It has been suggested1 that one should map the county posterior mean estimates, E(�j|yj; nj), to
avoid the artefact discussed above. Unfortunately, mapping county posterior means or highlighting
the counties with highest posterior means leads to new problems. Under the normal model above,
the posterior mean (and mode) estimate for a county is

E(�j|yj; nj)=
1
�2
� +

nj
�2
yj

1
�2
+
nj
�2

: (5)

Averaging over the marginal distribution of yj, we �nd that, for a county with sample size nj, the
probability that E(�|yj; nj) exceeds a �xed value c is

Pr(E(�j|yj; nj)¿c|nj) = Pr
(
yj ¿

�2

nj

[(
1
�2
+
nj
�2

)
c − 1

�2
�
]∣∣∣∣ nj

)

= �

[
� − c
�

(
1 +

�2

nj�2

)1=2]
(6)

an expression which is similar to (4) but is now an increasing, rather than decreasing, function of
nj (assuming c¿�, which will be the case if the cut-o� is set so that a small fraction of counties
will be highlighted).
Mapping county posterior mean estimates (5) still leads to artefacts related to sample sizes, since

E(�j|yj; nj) depends on nj. For example, in the radon data much of West Virginia was sparsely
sampled (values of nj were low), so that a map of the posterior estimates of county means in
West Virginia will appear quite uniform even if the true county levels �j are highly variable.
Under the assumed model, the threshold c that leads to an expected 10 per cent of the counties

being highlighted is c2 = �+ 1·132�, a lower value than the cut-o� c1 for the raw county means,
which makes sense since the posterior mean estimates are shrunken towards the grand mean. (We
computed c2 by iteratively trying di�erent values of c until the average value of (6), averaging over
the counties j, was 10 per cent.) The dotted line in Figure 1 displays the probability of a county’s
posterior mean estimate exceeding c2, as a function of log10 nj. Clearly, a map highlighting the
posterior means has a strong artefact in the opposite direction to the map of the observed means;
the counties with fewer than six observations are disproportionately unlikely to have notably high
posterior means.

2.3. Problems with maps based on statistical signi�cance

Other natural methods of mapping extreme counties also su�er from artefacts so that the probability
of a county being highlighted depends on the number of observations in the county. For example,
one could highlight the counties with the highest posterior probability of exceeding some speci�ed
level, �+ x�. Under the normal model, this is equivalent to choosing the counties with the highest
‘posterior z-scores’, zj =(E(�j|yj; nj) − (� + x�))=sd(�j|yj; nj). The resulting probability that a
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Fig. 2. Probability that a county will be in the top 10 per cent of counties as ranked by Pr(�j¿�+ x�|yj). Curves shown
for x=0; 0·25; 0·5; : : : ; 2·0; each curve is plotted as a function of the log (base 10) of nj , the number of observations in
the county. Curves are derived from the values of nj in the radon data structure and from the variance ratio �2=�2 = 0·49

estimated from the radon data. The points at the bottom of the �gure show the 274 values of log10 nj

county with sample size nj is highlighted is

Pr(zj ¿ zc|nj)=�
[
− zc�

n1=2j �
− x

(
1 +

�2

nj�2

)1=2]
(7)

where zc is the cut-o� z-score level set so that 10 per cent (say) of counties are highlighted.
Expression (7) is dependent on nj in a relatively complicated manner; note that zc can be either
positive or negative, depending on x and the data structure.
To illustrate, Figure 2 displays the probability that a county is highlighted, as a function of

log10 nj, for each of several values of x, from x=0 (corresponding to selecting the 10 per cent of
counties with the highest posterior probability of �j¿�) to x=2 (corresponding to selecting the
10 per cent of counties with the highest posterior probability of �j¿� + 2�), for the radon data
structure. None of these curves is a constant function of nj, but for x=1·5 the curve is close to

at, corresponding to a mapping procedure that is relatively free of artefacts due to sample sizes.
Should we, then, construct a map based on the rankings of the counties in terms of Pr(�j¿�+

1·5�|yj; nj)? We think not, because this is not a natural measure or ranking. In fact, the ‘1·5’
depends on the structure of the data and would change if �=� or the set of nj’s were changed, so
maps of di�erent data (death rates from di�erent cancer types, for instance) would require disparate
ranking methods to avoid spatial artefacts. In addition, it is not clear what relevance such a measure
as Pr(�j¿� + 1·5�|yj; nj) would have to any questions of inherent scienti�c interest. Using such
a measure would reduce artefacts due to sample sizes, but only at the expense of the ease of
interpretability that is one of the reasons for producing maps in the �rst place.
A related approach to weeding out the highly variable small counties is to highlight the counties

that are statistically signi�cantly greater than the overall mean – in the normally-distributed case,
this would mean yj¿� + 2�=n

1=2
j . This method can be an improvement on merely mapping yj

(see, for example, Tufte,15 pp. 16–19, who displays maps from Mason et al.16 indicating both
extreme values of yj and statistical signi�cance, and Schlattmann et al.17, who map Bayes estimates
indexed by statistical signi�cance). However, as with all the other methods we have considered
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so far, maps highlighting statistical signi�cance do not eliminate artefacts based on sample size;
if the sample size in a county is extremely large, even a small di�erence between the county’s
observed rate yj and the mean rate � will be statistically signi�cant, so again this method is more
likely to include a high population county than a low-population one with the same true parameter
value.18

In the normal model, artefacts based on sample size can be eliminated by highlighting the
counties for which the quantity zmarg = (yj − �)=(�2 + �2=nj)1=2, is highest. We label this the
marginal z-score, because it measures the discrepancy of the county mean yj with respect to its
marginal distribution, averaging over the unknown county parameter �j. Under the assumed model,
Pr(zmarg¿c|nj) is just the cumulative standard normal distribution evaluated at c and does not
depend on nj – thus, no artefacts due to sample size. (Incidentally, this works only for continuous
data; any discreteness in the distribution of yj causes the probabilities to vary with nj.) A map of
the extreme values of zmarg could be a useful kind of ‘standardized residuals’ plot. However, such
a map still has the same problem as the other proposals mentioned in this section; the mapped
values have no direct interpretation as estimates of �j. For example, the low-sample-size counties
highlighted on such a map will have lower values of �j, on average, than the highlighted counties
with high sample size.

2.4. Multiple imputation of posterior parameters

An alternative method of producing maps is to multiply impute the vector of posterior parame-
ters. Multiple imputation19; 20 is a method of accounting for the posterior uncertainty in a vector,
�=(�1; : : : ; �J ) by drawing L simulations of the vector, �l; l=1; 2; : : : ; L. This means drawing
each vector � from the posterior distribution p(�|y). A map based on one simulated vector of
county parameters �l=(�l1; : : : ; �

l
J ) represents just one ‘possible’ reality. A multiple imputation

yields several such maps, each based on a di�erent draw of the vector of county parameters.
For example, if the highest counties were of interest, one could highlight on each map the

10 per cent of counties with highest values of �j in that simulation draw. Variation from map to
map would show posterior uncertainty. Thus, a county for which no information is available would
be highlighted on 1=10 of the maps (after all, it could be in the top 10 per cent of true county
means); a county with many observations and a very high observed value would be highlighted
in nearly all the maps; a county with few observations and a very high observed value would be
highlighted on more than 1=10, but perhaps not most, of the maps; and so forth.
A multiply-imputed map does not su�er from the artefacts described in the previous sections.

More precisely, if the model being applied is correct, and a map is made highlighting all counties
with imputed �j values higher than some cut-o� c, then the probability that a county is highlighted
in any given imputation does not vary with the sample size, nj. To see why this is so, notice
that the probability that county j is highlighted in a single randomly-produced map, given the
data yj from that county, is just the posterior probability Pr(�j¿c|yj; nj). The probability that
a particular county with sample size nj is highlighted in a map, obtained by averaging over the
marginal distribution of yj, is∫

Pr(�j¿c|yj; nj)p(yj|nj) dyj =Pr(�j¿c|nj) (8)

which depends only on the distribution of true county parameters, p(�j), and not on the number
of observations nj. (Recall that we have assumed that �j and nj are statistically independent.)
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Of course, use of multiple imputation requires the production of multiple maps if one wishes to
examine the spatial distribution and uncertainties of quantities of interest; any single map based
on multiple imputation gives no indication of which spatial features are due to chance and which
are strongly supported by the data, as we will discuss below in the context of multiple imputation
of cancer maps.

3. COUNTED DATA

The occurrence of artefacts related to the amount of information in each map unit is a general
result, but the details vary with the model and data structure. We illustrate the case of counted data
with the Poisson=gamma model, which is commonly used in small area estimation with data such
as cancer incidences; similar results would be obtained, with somewhat more computational e�ort,
under the other standard family of models,8 the Poisson=log-normal. For counties j=1; : : : ; J , let
�j be the underlying rate parameter, nj be the population in county j, and

yij =

{
1 if individual i is a�ected

0 otherwise:

Finally, we label the observed number of incidences in county j as yj =
∑nj

i= 1 yij, so that the
observed rate for the county is yj=nj. It is then standard to model yj as a Poisson random variable
with parameter nj�j. We further assume that the county parameters �j follow a gamma(�; �)
distribution.
We illustrate with the data structure of the Manton et al.1 example of ten-year kidney=ureter

cancer rates in counties of the United States, with nj equal to county populations, and with
�=20 and �=20=(4·65× 10−5). We chose these parameters so that the mean and variance of
the gamma(�; �) distribution would approximately match the mean and variance of the county
parameters in the Manton et al. paper. From this distribution, we draw a ‘true’ cancer rate for
each county. We also assign an ‘observed’ rate, drawn from the Poisson (nj�j) distribution for
each county. As before, we do not use the data yj from Manton et al.; rather, we model what
would happen if the true values county parameters were drawn from a gamma distribution with
the (approximately) correct scale and shape but independently of any spatial or other variables.
We consider the e�ects of highlighting counties based on the raw means, yj=nj, or the posterior

means, which are given by

E(�j|yj; nj)= �+ yj� + nj
: (9)

As with the normal model, the mapping artefacts depend on the sample sizes (in this case, the
populations), nj, and the distribution of county rates, �j.
Figure 3 is the analogy, under the Poisson-gamma model, to Figure 1. The solid line in Figure 3

shows the probability that any given county mean, yj=nj, will exceed c1, as a function of log10 nj,
where c1 = 11·2× 10−5 is the cut-o� set so that one expects 10 per cent of the counties to be
highlighted. (For any given threshold c, one can compute the expected number of counties that will
be shaded under the model by simulation from the gamma and Poisson distributions. We arrived
at the value 11·2 by iteratively altering c until the expected proportion of shaded counties was 10
per cent.) The dotted line shows the probability that any given posterior mean, (�+ yj)=(�+ nj),
will exceed c2 = 5·0× 10−5, the cut-o� set so that one would expect 10 per cent of the counties
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Fig. 3. Solid line: probability that an observed county cancer death rate, yj , will exceed a speci�ed cut-o� point, c1. Dotted
line: probability that the posterior mean estimate for a county, E(�j|yj), will exceed a speci�ed cut-o� point, c2. Both
lines are plotted as a function of the log (base 10) of nj , the population in the county. Each cut-o� point is set to catch
an average of 10 per cent of the counties. Curves are derived from the values of nj in U.S. counties and from the gamma
(20; 4·3× 105) distribution �t to the Manton et al.1 data. The points at the bottom of the �gure show the 3082 values of

log10 nj

to be highlighted under this method. (Recall that the grand mean of the �j’s is assumed to be
4·65×10−5.) Given the cut-o�s c1 and c2, we computed probabilities for the solid and dotted lines
based on the marginal distribution for yj, which is negative binomial. The points at the bottom of
the �gure show the 3082 values of log10 nj for U.S. counties.
The sawtooth pattern of Figure 3 arises from the discrete nature of the data; for example for a

map based on observed rates, a county with nj in the range [0; 1=c1) will be highlighted if yj¿1,
whereas if nj is in the range [1=c2; 2=c1), at least two occurrences of cancer are required, and so
forth. In addition to the sawtooth pattern, Figures 1 and 3 show di�erent behaviours at the limits
of small and large n.
Maps based on observed rates overemphasize the counties with small populations, but maps

based on posterior mean have the reverse problem that the more populous counties are more
likely to be highlighted. For the model discussed above, the average county population is 80; 000,
but the expected average population of the highlighted counties is 16; 000 if highlighting is based
on raw means or 190; 000 if highlighting is based on posterior means.
Figure 4 displays the top 10 per cent of counties according to �j, for our simulated data; this

is equivalent to a random sample of 10 per cent of U.S. counties. Figures 5(a) and (b) display
the top 10 per cent of counties according to the observed rates and posterior means, respectively.
The patterns – most notably, the presence of many counties from the Mountain and Plains states
in the highest 10 per cent based on the observed rates, and the very small fraction of counties in
those states in the maps of posterior means – are similar to Figures 1 and 2 of Manton et al.,1

which plot the counties with highest observed rates and posterior means for kidney=ureter cancer
death rates. This similarity suggests that many of the spatial patterns in that paper, and in maps
of Bayes-smoothed cancer rates in general, are artefactual.
As in the previous example, we can avoid mapping artefacts by creating multiply imputed maps

from the posterior distribution. Under the assumptions of the model, equation (8) holds – that is,
the probability that a county is highlighted is independent of its population. We illustrate with the
simulated-data example above; we sample from the posterior distribution of the vector of county
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Fig. 4. Shaded counties are those in which the true county parameters �j are in the top 10 per cent of U.S. counties.
Values of �j are drawn independently from a common distribution; this is thus equivalent to a selection of U.S. counties

chosen at random. This map is the ‘truth’ that is estimated in Figures 5 and 6

Fig. 5. (a) Shaded counties are those in which the observed rates, yj=nj , are in the top 10 per cent of U.S. counties.
(b) Shaded counties are those in which the posterior means, E(�j|yj)= (� + yj)=(� + nj), are in the top 10 per cent.
Compare these maps to the map of the highest true county parameters in Figure 4. The map of the observed rates highlights
too many low-population rural counties, whereas the map of the posterior means includes to many high-population urban

counties. These e�ects are perhaps most easily seen in the generally low-population counties of the Plains states

parameters – which, for the Poisson-gamma model described above, happens to be a gamma(�′; �′)
distribution for each county with �′ and �′ given by the numerator and denominator of equation
(9), respectively. Figure 6 displays four maps of independent multiple imputations of the vector
�, each displaying the counties with highest imputed values of �j. These maps di�er from each
other, and from Figure 4, because of the Poisson variability in the data.
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Fig. 6. Four multiple imputations. For each map, the shaded counties are those in which the imputed rates, �j , drawn from
their posterior distribution, are in the top 10 per cent of U.S. counties, for that imputation. Compare these maps to the
map of the highest true county parameters in Figure 4. These maps have no systematic artefacts due to variation in the

county populations

The variation among the four maps gives some indication of the posterior uncertainty in the
county parameter estimates. For example, in the map on the upper right, the western state of
Wyoming has no highlighted counties, whereas in the other maps several Wyoming counties are
highlighted. This implies that, given the model and the data, the true rates in those counties could
be mostly low, or mostly high, or a mixture, and the maps show various of these possible real-
ities. No strong conclusions can be drawn from any single map – in the presence of statistical
uncertainties there is no way to map reality, just possible realities given the model and the data.
Instead, one must look for spatial patterns that persist over most of the maps. We have no hard
and fast rule for how many maps to make; in this case it seems unnecessary to display more
than six or seven (or fewer than three). We suggest starting by making as many as can com-
fortably �t on a page while allowing su�cient resolution to discern spatial patterns if they are
present.

4. MORE COMPLICATED MODELS

The basic cause of the mapping artefacts is that the posterior uncertainties in the counties are
unequal, and this inequality can lead to spatial patterns in maps of point estimates. More
sophisticated modelling will tend to reduce the variation of uncertainties among counties but will
not, in general, equalize the uncertainties altogether. Thus the artefacts described in this paper
should remain, in qualitatively similar form. Here, we brie
y consider the e�ects of three forms of
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added model sophistication: accounting for uncertainty in the hyperparameters; adding regression
predictors, and spatial modelling.
Our examples would gain realism by considering the hyperparameters – (�; �; �) in the normal

model and (�; �) in the Poisson-gamma model – as unknown and estimated from the data rather
than �xed. In general we agree with Clayton and Bernardinelli10 that it is best to average over
posterior uncertainty. This would not change the essential pattern of the �gures or our main results,
but it would cause the lines in Figure 3 to lose sharpness in their sawtooth pattern. The multiply
imputed maps would still have no sample size artefacts.
It is standard practice to include explanatory variables (such as demographics in the analysis of

cancer rates,1 or geologic indicators in the analysis of radon levels14) and to explicitly model spatial
correlation, typically to account for missing or poorly measured spatially-correlated covariates (see,
for example, Clayton and Kaldor18 and Mollie and Richardson21 for Bayesian examples in disease
mapping, and Cressie22 for a general review). Unfortunately, spatial modelling does not remove the
artefacts discussed in this paper, although it can sometimes reduce them by diminishing parameter
uncertainties. Rather than choose speci�c spatial models to illustrate this point, we merely point
out two extreme cases for which the presence of artefacts is readily apparent.
First, the non-spatial examples in the previous sections can be thought of as spatial models in

the limit of zero spatial correlation, so if there is some small amount of spatial correlation, the
artefacts will be nearly the same as those described above.
Second, consider an opposite extreme; suppose correlation is fairly high at small spatial scales

but decreases with distance. For simplicity of exposition, suppose we are interested in a large
region and that some areas around the perimeter of the region are very heavily sampled, but
a large interior portion has no measurements at all. Any spatial estimation or modelling procedure
we are aware of (including interpolation, splines, kriging and hierarchical Bayesian methods) will
tend to generate predictions for the interior that are too smooth – subunits in the interior will have
predictions that are very close to one another, since there is no information that allows them to
be distinguished (see Nobre and De Macedo23 for an example with contour maps).
Details of the artefacts in more elaborate models will obviously depend on the exact nature of

the models and the data. Our point is that mapping artefacts due to spatial variation in parameter
uncertainties are nearly ubiquitous, whether the mapped quantities are measured values, predictions
from conventional regressions, Bayesian posterior predictions, or whatever, and whether the models
are spatial or not.

5. DISCUSSION

Mapping raw data can lead to spurious spatial features. For example, regions can appear highly
variable because of small sample sizes in spatial sub-units (as in the radon example) or small
populations (as in the cancer example), and these apparently variable regions contain a dispropor-
tionate number of very high (or low) observed parameter values. Mapping posterior means leads to
the reverse problems: areas that appear too uniform because of small sample sizes or populations.
Moulton et al.24 discuss some other problems with maps of posterior means. Similar problems
occur with mapping counties based on statistical signi�cance, as discussed in this article.
One way to avoid these artefacts is to produce multiple maps based on imputations from the

posterior distribution (of county means, for example); spatial correlation in these maps must come
from some other source. In a typical application, one might make maps of imputations from
the posterior distribution of residuals from predictions based on covariates. Substantial spatial
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correlation in the residuals that occurs in all or most of the imputed maps would indicate the
presence of un-included covariates that are themselves spatially correlated, such as geologic or
house construction features in the radon example. When used in this manner, multiply imputed
maps can be thought of as posterior predictive checks.25; 26

Unfortunately, multiply imputed maps are not suitable for presenting �nal results (estimated
cancer rates, mean radon concentrations, etc.) to most audiences, who would likely just be confused
by them. Furthermore, maps really do make convenient look-up tables (what is the cancer rate, or
mean radon level, in my county?). Unfortunately, even maps that are intended to be used only as
look-up tables are almost sure to be used for identifying spatial features – we �nd it very hard to
suppress this instinct ourselves. For example, a state Department of Health might map posterior
estimates of county mean radon concentrations and choose to focus public education e�orts on
the areas of the state that appear to have high radon levels. If some contiguous group of counties
is sparsely sampled – a common occurrence in practice – then these counties are likely to have
near-average posterior estimated levels even if some of the counties have quite high radon levels.
Therefore the group of counties will appear both average and uniform on the map, which may
lead to seriously incorrect inference if the visual appearance of a large, uniform area on the map
is interpreted as evidence of spatial smoothness of county mean radon levels in the area.
To the extent that some of the features identi�ed by conventional mapping methods may be (in

some cases are likely to be) artefacts, the natural tendency to associate uniformity on the map
with uniformity in reality is unfortunate. Perhaps hatching or shading can be used to indicate not
only the point estimates of the quantities of interest but also their uncertainties (for example, see
Carlin and Louis27); or two maps can be presented, one of posterior means and one of posterior
standard deviations; but this is a graphical design issue rather than a statistical one.
Our main goal in this paper has been to illustrate and quantify the extent to which statistical

artefacts lead to misleading maps. It is clear that there are serious drawbacks to using spatial
distributions of mapped point estimates to gauge the spatial distribution of quantities of interest.
Multiple imputation can help avoid this problem in exploratory analysis and model checking, but
we know of no satisfactory solution to the problem of generating maps for general use.
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