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ABSTRACT

In the linear model with unknown variances, one can often model the
heteroscedasticity as var(y;) = o f(w;,6), where f is a fixed function, w; are
the “weights” for the problem and # is an unknown parameter (f(w;, ) = w; "’
is a traditional choice).

We show how to do a fully Bayesian computation in this simple linear
setting and also for a hierarchical model. The full Bayesian computation has
the advantage that we are able to average over our uncertainty in # instead of
using a point estimate. We carry out the computations for a problem involving
forecasting U.S. Presidential elections, looking at different choices for f and
the effects on both estimation and prediction.



1 Introduction

In both the econometrics and statistics literature, a standard way to model
heteroscedasticity in regression is through a parametric model for the unequal
variances, as described in many places, e.g. Amemiya (1985), Greene (1990),
Judge et al. (1985), Carroll & Ruppert (1988). Modeling heteroscedasticity
should improve the efficiency of estimates of regression coefficients, but the
most important effect is in prediction, allowing predictive inferences to be
more precise for some units and less precise for others.

Previous approaches have tended to focus on obtaining a point estimate for
the heteroscedasticity parameter, 6 (possibly vector-valued). Unfortunately,
in many applications, the parameter governing the heteroscedasticity is not
well-identified by the data, so any point estimate may be quite unreliable.
Furthermore, there is no consensus on which point estimate to use (Carroll &
Ruppert, 1988).

To avoid these problems, we use a fully Bayesian approach, which automat-
ically averages over our uncertainty in the model parameters. One potential
pitfall of Bayesian analysis is its sensitivity to the choice of a prior distribution,
but, for the example that we consider, our inference and prediction are quite
robust to reasonable choices of prior distributions on 6.

In this paper, we will develop a computational framework for parame-
ter estimation and prediction in both non-hierarchical (NH) and hierarchical
(HIER) linear models. The computation is quite straightforward for the NH
models and harder for the HIER models. We will illustrate our methods with
the example of forecasting U.S. Presidential elections.

2 Models

2.1 Heteroscedasticity in the linear regression

We use the following regression model for the n independent units on the
k covariates:

yilB.0*, 0 ~ N((XB);. 0* f (w;, 0)). (1)

For later reference the log-likelihood function is

n 1
0(B,0%0) = logp(y|B,0%0) = —3 log(2mo?) — 3 Zlog f(w;, 0)



b (y; — (X8):)*/ f(w;, ). (2)

202
We consider the special case in which the unequal variances are governed by
known “weights” w;, and we wish to define a continuum between the extreme
cases of no weighting and having variance proportional to 1/w;, i.e., weighted
least squares. We consider two different forms for f :

HET1:  f(w;,0) = w;”’ (3)

where 6 € [0, 1], and

HET2:  f(w:,0) = (1 —6) + wie (4)
(2
where 6 € [0, 1]. For either model, the extremes of # = 0 and 1 correspond to
equal variances and variances proportional to 1/wj;, respectively.

The first model is standard in the literature; see Greene (1990), for exam-
ple. The second model has a natural interpretation as two independent sources
of variation, with one term having variance inversely proportional to w; and
the other term having constant variance (e.g., sampling and modeling errors).

We also consider, as a comparison, the equal variance (EV) or homoscedastic
model, i.e. f(w;,0) = 1.

2.2 Parametrization of the weights

In each case we normalize the n values f(w;,#) to have product equal to
1 as suggested by Box & Cox (1964). This is done to provide a consistent
meaning for o between models with different values of § and to simplify the
expression for the likelihood (see equation 2). In the specification of equation
3, this just amounts to dividing the w; by their geometric mean, so, without
loss of generality, we can take the w; to have product equal to one. For the form
in equation 4, the normalization actually implies a slightly different functional
form of HE'T2:

(1-6)+ -0

HET2: f(w;,0) =
M (1 0) +20))

For HET2, there is no trick that will let us avoid the issue of the normalization.



2.3 Prior distributions on the variance parameters

We consider various non-informative prior distributions to the variance
components. For the EV model, the improper uniform prior density on logo
is standard from many perspectives (e.g., Box and Tiao, 1973). For the het-
eroscedastic models, there does not seem to be any clear choice for a noninfor-
mative prior density on 6, but p(f) = 1 on the unit interval seems reasonable.
We cannot use a uniform density on logit(f) as it would lead to an improper
posterior density under either model. Another school of thought suggests cal-
culating the Jeffreys prior density (e.g., Box and Tiao, 1973). The conditional
Fisher information for  is calculated as

0 1 fl(wi,0)?
002 2 El: f(w;, 0)%° (6)

For HET1, this turns out to be a function of the w,;’s only, and thus the
information is constant, suggesting a uniform prior density on 6. For HET2,
the Jeffreys prior density has a particularly unattractive form, and we did not
pursue this any further.

In our main analysis here, we use a uniform prior density on (logo, ) for
both models. For each model, we assess the sensitivity to the choice of prior
distribution by comparing to inferences obtained using the Beta(Z,

5, 5) density
for #, which is another standard noninformative density for a parameter on
[0, 1].

2.4 Models for the regression coefficients

When computing regressions in the nonhierarchical model (NH) using least
squares, we are implicitly assigning a uniform prior density on the regression
parameters 3 in the model (1).

In the hierarchical model (HIER), we let 3 have an informative prior dis-
tribution which depends on unknown parameters. In this paper, we restrict to
the case:

Bl72 ~ N(0,3). (7)

where X5 is a diagonal matrix whose entries come from 72 = (72,...,77).

(Lindley and Smith, 1972, discuss more general forms of the hierarchical
normal model.) If we want to keep a non-hierarchical structure on some
of the (3’s (“fixed” effects), we can set the corresponding entries of Egl to



zero. Having done this, there are now k, (’s with an informative prior dis-
tribution (“random” effects). Of these, k; have variance sz,j =1,...,J and
ki+---+k; =k, < k. The hierarchical model is not necessary for our study of
heteroscedasticity, but in all our experiences, including the example of election
forecasting discussed below, the hierarchical part of the model has been im-
portant, both for parameter estimation and prediction. We will elaborate on
this importance in the example. We assign a noninformative prior density to
the variance components 77. As is well known in the statistics literature (e.g.,
Hill, 1965 and Box & Tiao, 1973), we cannot assign a uniform prior density on
the parameters log 7; as that would lead to an improper posterior distribution.
Instead we consider two alternative noninformative distributions: uniform in
2

7; and in T

3 Computation

Our general goal in Bayesian computation is to draw simulations from the
posterior distribution of the unknown parameters and then to sample from
the predictive distribution of future data by using these simulated parameter
draws. The computational procedure is easier for the non-hierarchical case
since there are only two unknown variance parameters, and we are able to
draw independent realizations of the posterior by factoring it in an appropriate
way. In the hierarchical case, we need to use a Gibbs-type sampler, and the
computation is more elaborate.

3.1 Non-hierarchical regression

First consider the NHHET models. Conditional on 6, we can use the
standard results for Bayesian linear weighted regression (e.g. Box & Tiao,
1973; Zellner, 1971):

SQ

(0?10,y) £ = (8)
ank

(Blo?,0,y) ~ N(B,0*Vp), (9)

where

Wt = diag(f(un,0),..., f(w,,0)), (10)
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B = (X"TWX)'X"Wy, (11)
Vs = (XTwx)h (12)
and R )
S*=(y—XB)"'W(y—XB) (13)
is the sum of the squared weighted residuals.
We can determine the marginal posterior density of # using the identity,

p(B,0°,0ly)
p(B,0%0,y)

p(y|B, 0% 0)p(B,0°,0)
p(Blo?,0.y)p(o?|0,y)

Substituting the likelihood (equation 2), and equations 8 and 9, we find that
o "II; f(wi, §) "% exp(=5?/(20%))a *p(6)

p(0ly) =

X

p(0ly) o

oK V5|12 exp(o2(B — B)TV; (B — B))(S2) (120 (nk+2) exp( 52/ (20%))

Since the left side of this expression is a function of 6 and y only, the right
side of this can not depend on 3. We can therefore set 3 to any value we wish,
and we set 3 = B for both numerical stability and algebraic simplicity. Also,
recall that the product of the f’s is equal to one as discussed earlier, so we
now have:

p(Oly) o< [Vs|'12(8%) 0 2p(0). (14)

This is not a recognizable distribution, but we can certainly compute the value
of the unnormalized posterior density for any value of # by doing the weighted
least-squares regression and computing the quantity in Equation 14. We do
this over a fine mesh of # values and then use the inverse-cdf method to simulate
many draws from this arbitrarily good approximation to p(f]y). Given each of
our simulated 6 values, we can compute W and then use weighted least squares
to get B and S, draw o2 from its posterior distribution, compute V3, and draw
a sample of B from its posterior distribution. Once we have a set of posterior
simulations of (3, 02, 0), we can simulate from the predictive distribution of y
given a new set of covariates, Xeq.

The procedure for NHEV is much simpler. By letting W = [ and sup-
pressing the conditioning on #, Equations 8 13 give a full factorization of the
posterior distribution of (3, 0?), and so the computations for this special case
are trivial to carry out.



3.2 Hierarchical regression

The hierarchical regression model can be interpreted as a non-hierarchical
regression with additional “data” corresponding to the prior distribution (e.g.,
Dempster, Rubin, and Tsutakawa, 1981):

y*|/372* ~ N(X*,B,E*)
p(BIX,) o 1, (15)

where y,, X, and Y, are derived by combining the likelihood for y and the
prior distribution on 3 :

(y (X (2, 0 (oW o0

(W is defined in Equation 10) with the prior distribution of the variance pa-
rameters, p(3,), determined by the prior distribution of (o2, 72, 0).

Even though we have reduced the problem to a non-hierarchical regression,
we can not just proceed as in Section 3.1, in which we were able to analytically
integrate out o2 to find an expression for p(f]y). Here, there are too many
variance parameters (02 and (72,...,77)), so we need a different method. We
use the following general paradigm not just for this problem, but for other
problems in our work. First, we attempt to find the mode of p(c?, 72, 0|y)
by an EM-type algorithm, as in Dempster, Rubin, and Tsutakawa (1981).
We then run a Gibbs sampler (e.g., Gelfand and Smith, 1990) to sample from
p(B,0%, 12,0|y). If a particular conditional is not easy to sample from, then we
use a step of Metropolis’ algorithm instead of a Gibbs step for that parameter.
This Markov chain simulation has the posterior distribution as its equilibrium
distribution (see, e.g., Smith and Roberts, 1993). To help monitor convergence,
we run multiple parallel sequences from overdispersed starting points simulated
from a t4 distribution centered at the mode of (02,72,0) found by the EM
procedure (Gelman & Rubin, 1992).

In this particular problem, the Gibbs-Metropolis sampler works as follows;
for clarity, we demonstrate the calculations with the uniform prior distribution
on (logo, 7¢,...,77,6). At the t-th iteration for a particular sequence, we have
(B, (02), (12)!,0"). We then sample

BT (o), (12), 6,y ~ N(B, V),



where B and Vg come from the weighted least-squares procedure applied to
Ys, X, and weights 1. Then, given B! and €', the conditional posterior
distribution of the variance components ()" and (72)"*! can be determined

from the weighted residuals r, = *I/Z(y* — X*,BHI), where

W:<V0V?> (17)

Each variance component is simulated as the sum of the squares of the corre-
sponding elements of r, divided by a x? random variate. For o v = n — k,
and for each 7'j2, v==k;j—2.

We now need to draw from p(f|8'h, (02)1+1, (72)H, ). Algebraically, we
have

p(O1B™ . (o) (T2) L y) o p(BT (0%) T (72) ", Oly)
x p(e) (O_f(n+2))t+1 H(Tj*kj)t+1 H f(wia 9)71/2
J i

xexp (g — X.8)"3 (. — X.B)) . (18)

We use a Metropolis step here because the density has no standard form but
is numerically computable for any set of coefficients and variance parameters.
The Metropolis algorithm is easiest to describe in the special case of a sym-
metric random walk chain (see, e.g., Tierney, 1994 for other possibilities). We
generate a candidate #* by taking a random step away from our current value
0" according to a jumping density, J(6*|6"). The jumping density is symmetric;
that is, J(6*]0") = J(6'|6*) for any €', 6*. We then accept this candidate with
probability

0,5 0* :m.n p(9*|,8t+1,(02)t+1,(72)t+1,y) 1) 19
o0, 67) = mi <p<9tat+l,<02>t+l,<r2>t+l,y>’ (19)

For this problem, we use a symmetric normal jumping kernel, J(6*0") =
N(6*|6;,v?), with v? set to 2.38% times the estimated variance of § based on the
normal approximation at the EM estimate, as suggested in Gelman, Roberts
and Gilks (1994). To maintain symmetry, we reflect the random walk at the
boundaries of the space of #, 0 and 1.

Once we have a set of simulations from p(3, 0%, 72, 0]y), we can use these
to make predictions of y for a new set of predictive covariates, X,,.q. The



procedure is not completely straight forward, so we describe it briefly. We
use each 72 simulation to generate realizations of the k, “random” 3’s. We
combine these with the “fixed” (’s and o? simulation to get yp..q. We then
repeat this process for the rest of the simulations in out set. The resulting set
of Ypreq’s is a sample from the posterior predictive distribution, p(ypred|y)-

4 Numerical Illustration

Judge et al. (1982), Example 9.3.7, give a simulated data set based on the
following heteroscedastic linear model:

y2|/37 «, 02 ~ N((XIB)’LJ eXp(al + aniQ))J

where the ith row of X is (1,2, 243), 8 = (61,02, 33)7 = (10,1,1)7, and
a = (a,a)" =(-3,03)T.

We can transform this to the form of HET1 by taking w; = exp(—(z;» —
T3)), = o, and 02 = exp(a; + auTy). Our posterior inference for e and 3
is summarized in Table 1. Given our posterior simulations of § and o2, we
just transform back to the a parametrization to get posterior simulations of
a (ay = 0,01 = logo? — 0T,). The inference is quite similar to the general-
ized least squares estimates obtained in the reference (by first estimating ).
Our posterior means are slightly closer than the GLS estimates to the true
parameter values in each case.

TABLE 1 ABOUT HERE

5 Example: Forecasting U.S. Presidential Elec-
tions

5.1 Background

Most political scientists are now aware that the U.S. Presidential election
can be predicted quite well with information available several months before
the actual election. In contrast, the Gallup poll taken several months before
the election can predict a landslide victory for the eventual loser, as when
Dukakis lost to Bush in 1988. The methods used by Rosenstone (1983, 1990),



Fair (1978, 1982, 1988), Campbell (1992) and others use standard regression
methods and are remarkably successful. We became interested in this problem
to see if we could do better by using more refined statistical techniques.

We begin by using a model described by Gelman and King (1993) that is
similar to the forecasting model of Campbell (1992). The method is to run
a simple linear regression of Democratic share of the two-party vote by state
for each election year, beginning with 1948, on several covariates. These co-
variates can be divided into three groups: national variables, state variables
and regional variables. First define the variable INC to be 1 if a Democrat is
President and —1 if not. The national variables that we use are the Demo-
cratic share in the September Gallup poll (TRIHEAT), the change in GNP in
the previous quarter times INC (7TECxINC), a dummy to say if the current
president is seeking reelection times INC (PRESINC), and the latest approval
rating times INC (APPRxINC). The state variables are the Democratic share
in the last 2 Presidential elections (DEV2 and DEV3), home-state advantage
for the President and the Vice-President times INC (HOME4 and VP4), state
economic growth in the past year times INC (EC11xINC), legislature parti-
sanship (LEGIS), an index of state liberalism (ADAACA), and a measure of
the proportion of Catholic voters in each state for the year in which there
was a Catholic candidate (CATHG60). The regional variables, mostly used to
“patch up” problems in “abnormal” years, are a —1/0 dummy for the South
in 64 (—S64B), and similar dummies for the Deep South in '64 (—DEEPS64),
New England in 64 (NEWENG64), the West in '76 (—W76), and the North
Central in '72 (NCENT72). There is also a true regional variable (S4) which is
1 for every southern state in the years for which the Democratic candidate had
a Southern home state. The variables are signed so that they are all expected
to have positive coefficients. Finally we have a column of 1’s (CONSTANT),
to give a total of k = 19 covariates for the NH models. We exclude all cases
in which a third-party candidate for President won the plurality of the votes
in a state, leaving us with 511 observations.

There are a few issues that need to be addressed in connection with our
modeling choices (see Judge et al., 1982, Chapter 19). First, the parameter
space is actually discrete and different for each state because we are looking
at the Democratic share of a finite number of votes. This is not really a prob-
lem, though, because of the enormous population sizes involved (no less than
twenty thousand in any particular instance). Second, proportions for count
data typically are heteroscedastic, which usually precludes a standard regres-



sion analysis, but our models are taking this into account. Finally, in many
problems that occur on the unit interval, there is highly non linear behavior
near the end points which necessitates a logit or probit transformation. Here,
though, 99% of the data points are between 0.24 and 0.77. So while we could
model a transformation of the data, this would probably not make much of a
difference.

Models NHEV, NHHET1 and NHHET?2

Homoscedastic models are standard in empirical studies of elections, and
so our first model (NHEV) is that the variance in each state for each election
year is a constant o2.

Of course, we do not really think that the states are equally variable.
In fact, we might expect that the bigger states are less variable than the
smaller states. A naive model which says that votes are binomially distributed
implies that the variance of the Democratic vote share should be proportional
to % where n is the number of voters. This motivates using the models of
heteroscedasticity discussed in Section 2, and we tried both forms for f with
corresponding models NHHET1 and NHHET?2, with w; being the number of
voters for the Democrats and Republicans in the corresponding state and year.
For predictions of 1992, we set w; to the voter turnout in the state in 1988,
scaled by the increase in the voting-age population of the state from 1988 to
1992.

Models HIEREV, HIERHET1 and HIERHET?2

We can immediately notice some potential problems with the NH models.
First, most of the regional variables, while they certainly allow the models to
fit better (we calculated a multiple R? of better than 0.99 for NHEV!), will
not help at all for doing predictions. Also, this model ignores the year-by-year
structure completely and treats the data as 511 independent observations.

These problems are handled with a hierarchical model. We include all
the original covariates except for the regional “patch-up” variables: —S64B,
—DEEPS64, NEWENG64, —W76, and NCENT72. We leave a flat prior den-
sity on the original 4’s. We then include a covariate for election year which
has 11 levels corresponding to the 11 elections from 1948 to 1988, and a co-
variate for region by year. The regions we used were East, Midwest, West,



and South. Thus, there were 44 levels of this factor. We call the 11 (’s as-
sociated with the year factor the year effects, and the other 44 (3’s the region
x year effects. The year effects are given independent normal prior distribu-
tions with mean zero and variance 7¢. Similarly, the region x year effects are
N(0,72) except for the South x year effects which are N(0, 73), reflecting the
prior belief that the South is a special region that is not exchangeable with
the other three, politically. To match some of the earlier definitions, there are
k=19 — 5+ 11 4 44 = 69 covariates of which kx = 55 have informative prior
distributions with ky = 11, ks = 33, and k3 = 11.

This setup is quite arbitrary. We could specify more than four regions, we
could give each region a separate variance, and so on. This model represents
a simple, first-pass solution, which we hope should address the most serious
problems of the NH models. We would want to try more carefully specified
models, and check the robustness of our inference to changing the specification.

We fit this hierarchical model with the equal variance assumption (HI-
EREV) and the two heteroscedastic models (HIERHET1 and HIERHET?2)
from Section 2.

5.2 Results with non-hierarchical models

Table 2 contains a summary of the posterior simulations for the parameters.
Table 3 shows quantiles of the state by state, electoral college and popular vote
predictions for the 1992 elections. Figure 1 plots the prediction standard errors
as versus the w; (on a log scale).

TABLE 2 ABOUT HERE
TABLE 3 ABOUT HERE
FIGURE 1 ABOUT HERE

The posterior distribution of the coefficients is comparable across models.
The posterior medians of the coefficients all have the expected positive sign,
except for APPRXINC which is essentially zero. Both of the HET models
find evidence for a small amount of heteroscedasticity. This can be seen in
Figures 1b and ¢ and also from the 95% posterior intervals for 6 in Table 2.
For the predictions, there is nearly exact agreement in the medians as can be
seen in Table 2, so we do not show a comparison plot. The standard errors of
prediction for NHEV bear no relation to turnout and are centered around 3.8%.



The standard errors for NHHET1 decrease linearly with log turnout whereas
those for NHHET?2 decrease linearly at first, but then level out following the
parametric model. Predictive standard errors range from 3.2% to 4.2% for
NHHET1 and from 3.4% to 4.7% for NHHET?2.

To confirm our suspicion that the year by year structure of the data is
not being dealt with effectively by the NH models, we compute the average
residuals by election year. This gives us a list of 11 numbers for each of the
three models. For NHEV, we expect these 11 numbers 7; to be approximately
independently normally distributed with variances o /n; where n; is the num-
ber of observations we used in election year ¢, i.e. that ni/Qﬂ ~ N(0,0%).
The posterior 95% interval for o from Table 2 is roughly (3.5%,4.0%), but
empirically the eleven values of nt1/2ft have a standard deviation of nearly
8%; i.e., the year by year swings are about twice as variable as the model
would predict. Similarly, for NHHET1 and NHHET?2, the model predicts that
ny (S0, fw;, 0))7/27, &~ N(0, 0%). The results are roughly the same: despite a
95% posterior interval for o of (3.5%,4.0%) in each of the models, the empiri-
cal variation of the eleven quantities is nearly 8% in each case. We perform a
more formal check of the model in Section 5.4.

5.3 Results with hierarchical models

For each of the hierarchical models, we computed the mode of the variance
components using the EM algorithm and then ran 10 parallel simulation se-
quences of the Gibbs-type sampler, each of length 500. As described in Gelman
and Rubin (1992), we can use the multiple sequences to help decide whether
the sampler has run for a long enough time. We calculated the potential scale
reductions for all the parameters, R, based on discarding the first half of each
sequence (to allow “burn-in” to occur), and they were all less than 1.1. Since
running the sampler for an infinitely long time would only bring these num-
bers down to 1.0, we are satisfied with the convergence of the sampler. Table 4
summarizes the posterior distribution of the parameters, Table 5 the quantiles
of the 1992 predictions, and Figure 2 the prediction standard errors.

The coefficient estimates appear to be relatively similar. They are posi-
tively signed as expected. If anything, the HET estimates are more efficient
(have narrower 95% intervals) than the EV estimates in most of the cases. The
hierarchical standard deviations 71, 7o, 73 are not determined with very much



precision. This points out one great advantage of doing Bayesian computa-
tions; if we had simply made point estimates of these variance components, we
would have been ignoring a wide range of possible values for all the parameters.
Also, there is more evidence for heteroscedasticity than in the NH models. In-
tuitively, this makes sense; because we are accounting for the year and the
region by year variability, it should be easier to detect unequal variances in
the state by state errors.

TABLE 4 ABOUT HERE
TABLE 5 ABOUT HERE
FIGURE 2 ABOUT HERE

Again, the median predictions are virtually identical for both the HIER
and NH models, and we do not show a plot. The prediction SE’s split nicely
into southern and non-southern states, with the southern states about one
percent higher. Within each of the groups, we see the same behavior as a
function of turnout as we saw in the NH models. The prediction standard
errors are much larger than the ones for the NH models (they range from 6%
to 8.5%), perhaps too large, because of our simplistic model of the regions of
the country. To develop a model with narrower prediction intervals requires
including more information about the elections.

To check that idea, we fit HIERHET1 again, but this time including the five
regional covariates (HIERHETALL). Although this is not a well-defined model
for prediction, as explained earlier, we certainly get better results by doing this.
Now the posterior distributions of the 7’s have both smaller medians and lower
variance. Also, the prediction standard errors are more reasonable, ranging
between 5% and 6%. Tables 6 and 7 and Figure 3 display some of these results.

TABLE 6 ABOUT HERE
TABLE 7 ABOUT HERE
FIGURE 3 ABOUT HERE

5.4 Model Checking

For each of our simulated parameter vectors ® = (83,0% 72,0), we can
generate a replicated data set, y,.,. Then to check whether the model fits
well in some way, we can calculate an appropriate test variable, T', which is a



function of both data and parameters. For example, if we are concerned about
the yearly swings as discussed at the end of Section 5.2, we could calculate the
mean square national prediction error:

T(y,®) = 1 > [ ! > wir (Yir — (Xﬁ)it)}

1 t€(1948,1952,...,1988) [Zi Wit je(AL,...WY)

(recall that w; is the turnout in state i and election year t). Then, we can
look at a scatter plot of T'(yyep, ®) vs T'(y, ®) for our entire set of simulations
of ®. If the model fits well, the points should cluster around the 45 degree line.
We can regard the percentage below the line as a p-value (Gelman, Meng and
Stern, 1994 and Rubin, 1984) for formally testing the fit of the model.

We carried out this computation for the three NH models and three HIER
models that were originally introduced in this paper. The scatter plots appear
in Figure 4. The p-value is essentially 0 for the three NH models, and is
acceptable for the HIER models, telling us that the year to year variability
has been captured well by the HIER models.

FIGURE 4 ABOUT HERE

5.5 Sensitivity analysis

Given our set of simulations from the posterior distribution of the pa-
rameters for an original model, it is not difficult to get approximate posterior
simulations from a perturbed model (i.e. with different likelihood or prior
assumptions). To do this, we use the importance resampling (SIR) algorithm
(Rubin, 1987; see also Gelman, 1992, and Smith and Roberts, 1993). For
each of the original simulations we calculate its importance weight; i.e. the
ratio of the (unnormalized) perturbed and original posterior densities. We
then choose a subsample without replacement from the original set of sim-
ulations with sampling probabilities proportional to the importance weights.
This subsample is approximately from the perturbed posterior distribution.

We began by changing the prior distribution assumption on # from uniform
on the unit interval to Beta(1/2,1/2). A summary of the changes appears in
Tables 8 and 10 Since we already know that the models favor 6 values of less
than 1/2, changing to this new prior model will tend to favor even smaller
values of . Indeed for all five models, the posterior quantiles of 6 are shifted



down slightly, and the predictions became slightly more like the EV results
(Tables 9 and 11).

TABLE 8 ABOUT HERE
TABLE 9 ABOUT HERE
TABLE 10 ABOUT HERE
TABLE 11 ABOUT HERE

Next we changed the prior distribution on the 7; from uniform on Tj2 to uni-
form on 7;. This will lead us to favor lower values for these variance parameters
as can be seen in Table 10. The new predictions are in Table 11.

The most important thing to notice is that the predictions are quite robust
to either change in the prior density. A more complete robustness analysis
would perturb either the normal likelihood or normal prior density on the
(’s. We examined the residuals from the regression and found no outliers,
suggesting that the normal likelihood model is acceptable.

6 Discussion

Heteroscedasticity was an easy thing to add in the Bayesian context, with
little added computational effort, once we decided on the weights and specified
the priors. Putting in the hierarchical model is the most important thing,
but the heteroscedastic model adds some model fit and makes the predictions
more trustworthy. The Bayesian model allows us to fit a parametric model
for unequal variances even in situations in which the parameter is not well
identified, thus allowing us to use information encoded in the weights w; in a
more general and flexible setting than weighted least squares.

NOTE: The code and data used to do the computations in this paper are
available from the authors upon request.
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BAYES GLS True Parameter

E(-ly) SD(-ly) Estimate SE Value
B 1.689 6.836 1.010 7.090 10
By 1.641 0.415 1.657 0.417 1
B3 0.902 0.365 0.896 0.375 1
o -2.338 2.202 -4.376 -3
ag  0.275 0.104 0.366 0.3

Table 1: Comparison of Posterior Distribution with GLS Estimates for the
simulated data example of Judge et al. (1982).



NHEV NHHET1 NHHET2
2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

Constant 22.08 24.67 27.24 22.30 24.99 27.49 22.25 24.88 27.56
TRIHEAT 0.42 0.48 0.563 0.42 0.47 0.53 0.42 0.47 0.53
TECxINC 2.02 2.36 2.69 2.03 2.37 2.69 2.05 2.38 2.72
PRESINC 1.34 2.20 3.05 1.23 2.09 2.98 1.20 2.11 2.97
APPRxINC -0.02 -0.01 0.00 -0.02 -0.01 0.00 -0.02 -0.01 0.00
DEV3 0.27 0.35 0.41 0.28 0.34 0.41 0.26 0.33 0.40
DEV2 0.20 0.26 0.32 0.20 0.25 0.31 0.20 0.25 0.31
HOME4 2.30 3.92 5.72 2.02 3.57 5.13 2.20 3.78 5.37
VP4 0.39 1.88 3.54 0.41 1.82 3.35 0.36 1.90 3.48
LEGIS 0.03 0.05 0.07 0.03 0.05 0.07 0.03 0.05 0.07
EC11xINC 0.01 0.10 0.18 0.01 0.10 0.19 0.01 0.10 0.19
ADAACA 0.02 0.03 0.04 0.02 0.03 0.05 0.02 0.04 0.05
CATHG60 0.05 0.14 0.22 0.06 0.14 0.23 0.05 0.14 0.22
S4 5.63 7.58 9.29 5.73 7.48 9.28 5.68 7.51 9.29
-S64B 4.65 7.81 11.10 4.44 7.50 10.82 4.34 7.57 10.73
-DEMS64 12.70 18.11 23.23 13.22 18.28 23.33 12.85 18.03 22.96
NEWENG64 4.30 6.73 9.16 4.18 6.58 9.02 4.09 6.54 8.87
-W76 4.95 6.74 8.63 4.76 6.66 8.54 4.77 6.76 8.55
NCENT72 4.01 6.31 8.82 3.71 6.26 8.81 3.90 6.28 8.81
SIG 3.48 3.70 3.95 3.47 3.68 3.93 3.46 3.68 3.94
THETA 0.02 0.13 0.24 0.02 0.10 0.22

Table 2: 2.5%, median and 97.5% quantiles of the posterior distributions of the
parameters for the NH models. All values are obtained by posterior simulation.
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NV 52.1
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ND 42.1
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uT 36.1
vT 59.7
VA 47.7
WA 58.7
\VAY 57.6
WS 52.6
WY 45.9
ELECCOLL 370.0
POPVOTE 53.6

2.5%

46.
37.
36.
51.
44.
39.
43.
40.
44.
46.
49.
32.
44.
38.
47.
37.

41

47.
43.

46

48.

42
46
45

43.

43
32

36.

37
42
42
46
45

38.

40

37.
46.

45
51

44.

40

49.

43
31

42,
44.
45.
47.
45.
34.

L ON U UN ON N U WO WWWO RO WNNR DD = OO

7
4
3
3
9
8
9
3
4
0
0
6

—

7
4
9
4
4
8

227.0

49.

8

NHEV

50%
53.
44
43.
60.
52

R = RS

'S
J

51.
47.
51.
53.
56
40.
51.
45.
54.
44.
48
55.
50.
54.
55.
49.
53
52.
50.
50
40.
43.
43
49.
49.
53
53.
45.
48
45.
53.
52
59.
51.
47.
56.
51
39
50.
52.
53
54.
53.
42.
336.0
51.7

N

v~ o Lo

o N o s e

W Ol 0 WO W DW= N 00 0NGNA DD N

o

55

59.
61.
64.
47.
58.

53

61.
51.
55.
63.
58.
62,
62,
56.

61

61.
57.
58.
47.
51.

51

57.
56.
60.
61.
52.

56

53.
60.
59.
66.
58.
54.
64.
59.
46.
57.
59.
60.
61.
60.
49.

NN NODOONONODDRON NN O RN ND O WO OO~ 0N RN =000 =

97.5%
62.
51.
51.
67.
59.
54.
58.

2

5
4
8
2
9
6
5
4
4
5

423.0

53.

5

2.5%
46.8
37.1
36.9
52.3
46.1
40.3
44.3
39.6
45.4
47.4
49.3
33.1
44.8
38.5
47.3
37.
41.
49.
43.
47.
48.
43.
46.
45.
43.
43.
32.
36.
36.
43.
42.
47.
46.
38.
42
38.
46.
46.
51.
44.
40.
49.
45.
31
43.
45.
46.
47.
46.
34.2

252.0
50.2

%)

B0 O D00 O OO wWh WONDO RN ONWA DWW o O O;

NHHET1

50%
54.
45
43.
60.
52

'S
J

51.
48
52.
54.

S
3

RS OIS RS N o R C R NV SR R N = S = i N = S = Je Mo = I i P S (S S N TS I IS )

40.
51.
45
54.
44.
48
56.
50.
54
55.
50.
54
53.
51.
51
40.
44.
44
50.
49.
54
53.
46.
48
45.

<3
¥
WO N~ O

42.
362.0
51.9

>

97.5%

61.
53.

51

68.

59
55

58.

55

59.

61
64

49.
58.

52
62
52
56

63.

58
62
62

56.

61

60.
57.

58

48.

52
51

56.
57.

61
61

53.

55

53.
61.
59.
66.
59.
56.
65.
60.
47.
59.
59.
60.
62.
60.
50.
.0

441

53.

O NN NN s DO 0D W0 A0t W =AU ND OO DO NN

2

N

2
9
8
5
0
1
3
5
9
6
4
9
9

8

I N A I
0B WO NTOAD DN O O
Mo ooOODTNND 0 EDWNWROOWN DD LD o N

OB B DR W WA AR R AR R RS AW
0NN DWWWHWN W WO =

vwwas OO N

BB R W R OB A W
N B ©O O & =0t 0N
NOW N OO S 000NN W W

oL WA A A A
SW oo A

v
oo

w
o

NHHET2
50% 97.5%

54.
45.
44.
60.

47.
51.
48.
52.
54.
56.
40.
51.
45.
54.

44

49.
56.

51

54.
56.

50
54

52.
50.
51.
40.
44.
44.
50.
49.
54.
53.
46.
49.
45.
53.
52.
59.
52.
47.
57.

39.
50.
52.
53.
54.
53.
42.
360.
51.

Table 3: 2.5%, median and 97.5% quantiles of the predictions for
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HIEREV HIERHET1 HIERHET?2
2.5% 50%  97.5%  2.5% 50%  97.5% 2.5% 50%  97.5%
Constant 8.63 26.63 4347 11.02 27.28 4288 10.74 27.01 42.74
TRIHEAT 0.09 0.44 0.82 0.09 0.42 0.77 0.10 0.43 0.78
TECxINC 0.40 2.60 4.71 0.56 2.59 4.81 0.61 2.62 4.81
PRESINC -3.68 2.04 7.76  -3.90 1.96 7.68 -3.74 2.04 7.65
APPRxINC  -0.09 -0.02 0.06 -0.09 -0.01 0.06 -0.09 -0.01 0.06

DEV3 0.26 0.34 0.42 0.25 0.33 0.41 0.23 0.31 0.39
DEV2 0.13 0.20 0.27 0.12 0.19 0.26 0.12 0.19 0.26
HOMEA4 2.03 3.70 9.37 1.69 3.15 4.60 2.02 3.52 5.09
VP4 0.11 1.85 3.43 0.29 1.77 3.30 0.31 1.86 3.47
LEGIS 0.02 0.0 0.07 0.02 0.05 0.07 0.03 0.05 0.08

EC11xINC -0.01 0.08 0.17  -0.01 0.08 0.18 -0.02 0.07 0.17
ADAACA 0.03 0.05 0.06 0.04 0.05 0.06 0.04 0.05 0.07

CATHG60 0.11 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.29
S4 3.32 6.72  10.26 2.98 6.50 9.95 3.12 6.58 9.99
SIG 3.37 3.60 3.85 3.34 3.56 3.81 3.35 3.57 3.82
TAU1 0.61 2.58 7.43 0.37 2.54 7.04 0.36 2.55 6.99
TAU2 1.64 2.46 3.63 1.59 2.34 3.56 1.62 2.38 3.61
TAU3 2.86 4.85 9.22 2.71 4.73 8.65 2.73 4.76 8.73
THETA 0.09 0.22 0.36 0.03 0.12 0.28

Table 4: 2.5%, median, and 95% quantiles of the posterior distributions of the

parameters for the HIER models (random effects omitted)
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HIERHET1 HIERHETALL
25% 50% 97.5% 2.5% 50% 97.5%

SIG 3.34 356 3.81 3.02 321 342
TAU1 037 254 7.04 0.69 210 548
TAU2 1.59 234  3.56 1.23 183 2.78
TAU3 271 473 865 0.90 220 4.76

THETA 0.09 0.22 0.36 0.03 0.16 0.28

Table 6: Posterior quantiles of variance components for HIERHET1 and HI-

ERHETALL



HIERHET1 HIERHETALL

Actual 2.5% 50% 97.5% 2.5% 50% 97.5%

CA 99.5 40.0 521 64.1 42.7 524 63.6
NJ 91.2 384  50.7 62.5 39.7  50.6 61.4
RI 62.3 46.3  59.5 72.8 489  59.8 71.8
VA 47.7 352 501 67.5 394  51.7 63.6

ELECCOLL  370.0 20.0 326.0 526.0 39.0 354.0 529.0

POPVOTE 53.6 41.7 514 62.3 434 519 61.9

Table 7: Prediction summary for HIERHET1 and HIERHETALL



Original Beta(.5,.5)
25% 50% 97.5% 2.5% 50% 97.5%
NHHET1
SIG 347 368 393 346 3.68 3.94
THETA 0.02 0.13 0.24 0.00 0.11 0.23
NHHET?2
SIG 3.46 3.68 3.94 346 3.69 3.93

THETA 0.02 0.10 0.22 0.01 0.09 0.21

Table 8: Variance component sensitivity analysis comparing original and new

prior densities on theta for NH models



Original Beta(.5,.5)

Actual  2.5% 50% 97.5%  2.5% 50% 97.5%

NHHET1
CA 59.5 46.1 52.5 59.0 46.2 52.7 59.6
NJ 51.2 43.1 50.1 56.7 43.1 50.2 56.9
RI 62.3 51.0 59.5 66.9 52.1 59.1 67.5
VA 47.7 45.1 52.2 59.9 45.1 52.5 59.5

ELECCOLL 370.0 252.0 362.0 441.0 263.0 368.0 437.0

POPVOTE 53.6 50.2 51.9 53.8 50.2 52.0 53.6
NHHET?2

CA 59.5 46.0 52.4 59.1 46.1 52.3 59.1

NJ 51.2 43.6 50.2 57.2 43.6 50.1 56.6

RI 62.3 51.2 59.3 67.2 51.9 59.4 66.5

VA 47.7 44.8 52.3 59.2 44.7 52.2 59.1

ELECCOLL 370.0 255.0 360.0 435.0 243.0 360.0 440.0

POPVOTE 53.6 50.0 51.9 53.7 49.9 51.9 54.0

Table 9: Prediction sensitivity analysis comparing original and new prior den-

sities on theta for NH models



Original 6 ~ Beta(.5,.5) Tj o 1

25% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

HIERHET1
SIG 3.35 3.56 3.80 3.35 3.56 3.81 3.36 3.56 3.80
TAU1 0.84 2.49 7.63 0.92 2.50 6.96 0.66 2.11 5.41
TAU2 1.60 2.35 3.55 1.59 2.33 3.58 1.60 2.38 3.40
TAU3 2.84 4.76 9.15 2.90 4.74 9.46 2.62 4.44 8.19
THETA 0.09 0.22 0.35 0.08 0.21 0.35 0.09 0.22 0.35
HIERHET?2
SIG 3.36 3.68 3.80 3.37 3.58 3.79 3.36 3.58 3.80
TAU1 0.79 2.61 9.88 0.75 2.61 9.70 0.61 2.09 5.73
TAU2 1.61 2.36 3.62 1.63 2.40 3.69 1.64 2.40 3.54
TAU3 2,71 4.69 9.40 2.65 4.60 8.80 2.56 4.27 8.01
THETA 0.03 0.12 0.25 0.02 0.10 0.24 0.03 0.12 0.25

Table 10: Variance component sensitivity analysis comparing original and new

prior densities for HIER models



Original Beta(.5,.5) Tj o< 1

Actual  2.5% 50% 97.5% 2.5% 50% 97.5%  2.5% 50% 97.5%

HIERHET1
CA 59.5 40.0 52.1 64.1 41.0 52.1 64.6 42.9 52.0 62.5
NJ 51.2 38.4 50.7 62.5 38.3 50.4 64.0 40.0 50.3 60.8
RI 62.3 46.3 59.5 72.8 47.1 59.6 72.9 47.5 59.3 70.9
VA 47.7 35.2 50.1 67.5 33.4 50.1 66.4 35.4 50.6 65.0

ELECCOLL 370.0 20.0 326.0 526.0 31.0 315.0 527.0 57.0 325.0 510.0

POPVOTE 53.6 41.7 51.4 62.3 41.8 51.3 62.3 43.6 51.2 59.5
HIERHET2

CA 59.5 38.2 52.1 64.6 41.0 51.4 62.8 41.0 51.4 62.8

NJ 51.2 36.8 50.7 64.6 38.1 50.5 60.6 38.1 50.5 60.6

RI 62.3 45.3 59.5 73.2 47.5 59.6 70.6 47.5 59.6 70.6

VA 47.7 33.2 50.1 68.5 36.6 50.0 65.1 36.6 50.0 65.1

ELECCOLL 370.0 13.0 314.0 525.0 11.0 316.0 532.0 24.0 314.0 511.0

POPVOTE 53.6 39.8 51.3 62.9 39.7 51.2 63.9 42.4 51.0 59.9

Table 11: Prediction sensitivity analysis comparing original and new priors on

theta for HIER models
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Figure 1: Standard error of predictions versus turnout (in 1000’s on a log

scale) for a) NHEV, b) NHHET1 and ¢) NHHET2
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Figure 2: Standard error of predictions versus turnout (in 1000’s on a log

scale) for a) HIEREV, b) HIERHET1 and ¢) HIERHET?2
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Figure 3: Standard error of predictions for HHERHETALL vs a) SE’s for HI-

ERHET1 and b) turnout
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Figure 4: Model checking: scatter plots of T'(y,¢p, @) vs T'(y, ®) under different
models. T'(y, ®) is the mean square error in the national vote compared to the
model. The top three plots indicate that T'(y, ) is consistently higher than
T (Yrep, @) for the NH models, showing that these models do not accurately
capture the variation in the national vote. The HIER models fit much better

in this respect.



