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Abstract

It is well-known in statistics (e.g., Gelman & Carlin, 2014) that treating a result as

publishable just because the p-value is less than 0.05 leads to overoptimistic expectations of

replicability. These effects get published, leading to an overconfident belief in replicability.

We demonstrate the adverse consequences of this statistical significance filter by conducting

seven direct replication attempts (268 participants in total) of a recent paper (Levy & Keller,

2013). We show that the published claims are so noisy that even non-significant results are

fully compatible with them. We also demonstrate the contrast between such small-sample

studies and a larger-sample study; the latter generally yields a less noisy estimate but also a

smaller effect magnitude, which looks less compelling but is more realistic. We reiterate

several suggestions from the methodology literature for improving current practices.

Keywords: Type M error; replicability; surprisal; expectation; locality; Bayesian data

analysis; parameter estimation
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The statistical significance filter leads to overoptimistic expectations of replicability

Introduction

Imagine that a reading study shows a difference between two means that has an

estimate of 77 ms, with standard error 30, that is, with p = 0.01. Now suppose instead that

the same study had shown an estimate of 40 ms, also with a standard error of 30; this time

p = 0.18. The usual reporting of these two types of results—either as significant and

therefore “reliable” and publishable, or not significant and therefore either not publishable,

or seen as showing that the null hypothesis is true—is misleading because it implies an

inappropriate level of certainty in rejecting or accepting the null. Indeed, it has been argued

that this routine attribution of certainty to noisy data is a major contributor to the current

replication crisis in psychology and other sciences (Open Science Collaboration, 2015;

Amrhein, Korner-Nievergelt, & Roth, 2017). For recent examples from psycholinguistics of

replication difficulties, see Nieuwland et al. (2018), and Kochari and Flecken (2018). The

issue is not just the high frequency of failed replications, but also that these failed

replications arise in an environment where routine success (defined as p < 0.05) is expected.

We will refer to this p < 0.05 decision criterion for publication-worthiness as the statistical

significance filter. We will demonstrate through direct replication attempts one well-known

adverse consequence of the statistical significance filter (Gelman, 2018; Lane & Dunlap,

1978), that it leads to findings that are positively biased. We want to stress that none of the

statistical points made in this paper are new (for similar arguments, see Hedges, 1984;

Button et al., 2013; Dumas-Mallet, Button, Boraud, Gonon, & Munafò, 2017; Goodman,

1992; Ioannidis, 2008; Frank et al., 2017, among others). However, we feel it is necessary to

demonstrate through direct replication attempts why significance yields no useful

information when statistical power is low. The fact that underpowered studies continue to be

treated as informative suggests that such a demonstration is needed.

We assume here that the reader is familiar with the null hypothesis significance testing

(NHST) procedure as it is used in psychology today. NHST can work well when power is
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relatively high. But when power is low, published studies that show statistical significance

will have exaggerated estimates (see Appendix A for a formal argument). The effect of low

power is demonstrated in Figure 1 using simulated data: for a low-power scenario, the

estimates from repeated samples fluctuate wildly around the true value, and can also have

the wrong sign. Whenever an effect is significant, it is necessarily an overestimate. Gelman

and Carlin (2014) refer to these overestimates as Type M(agnitude) errors (when the sign of

the effect is incorrect, Gelman and Carlin call this Type S(ign) error). These overestimates

occur because the standard error is relatively large in low-power situations; the wider the

sampling distribution of the mean, the greater the probability of obtaining extreme values.

By contrast, when power is high, the estimates under repeated sampling tend to be close to

the true value because the standard error is relatively small.

Figure 1 illustrates another important point: when power is high, the estimates have

much narrower 95% confidence intervals. We will express this by saying that high-powered

studies have higher precision than low-powered studies. We borrow the term precision from

Bayesian statistics, where it has a specific meaning: the inverse of the variance. Here, we are

using the term precision to stand for the uncertainty about our estimate of interest (the

sample mean, or a difference in sample means). This uncertainty is expressed in frequentist

statistics in terms of the standard error of the sample mean. The standard error decreases as

a function of the square root of the sample size; hence, if power is increased by increasing

sample size, standard error will decrease.

Many researchers, such as Cohen (1962), and Gelman and Carlin (2014), have pointed

out that a prospective power analysis should be conducted before we run a study; after all,

why would one want to spend money and time running an experiment where the probability

of detecting an effect is 30% or less? In medical statistics, prospective power analyses are

quite common; not so in psycholinguistics. Suppose that we were to follow this practice from

medical statistics and conduct a prospective power analysis based on the effect sizes reported

in the literature. Gelman and Carlin (2014), and many others before them, have pointed out
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Figure 1 . A demonstration of Type M error using simulated data. We assume that the data
are generated from a normal distribution with mean 15 ms and standard deviation 100. The
true mean is shown in each plot as a solid horizontal line. When power is low, under
repeated sampling, whenever the estimates of an effect come out significant, the values are
overestimates and can even have the wrong sign. When power is high, significant and
non-significant effects will be tightly clustered near the true mean.
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that this can lead to an interesting problem. Whenever an effect in an underpowered study

comes out significant, it is necessarily an overestimate. In fields where power tends to be low,

these overestimates will fill the literature. If we base the power analysis on the published

literature, we would conclude that the effects are large. A formal power analysis based on

such exaggerated estimates is bound to yield an overestimate of power, and we can

incorrectly convince ourselves that we have an appropriately powered study.

In psycholinguistics, usually we do no power analyses at all. We just rely on the

informal observation that most of the previously published results had a significant effect.

From this we conclude that the effect must be “reliable,” and therefore replicable.

Although the above observations about power and replications are well-known in

statistics and psychology (see the discussion in Wasserstein & Lazar, 2016; Chambers, 2017),

they are not widely appreciated in psycholinguistics. Our goal in this paper is to

demonstrate—not via simulation but through actual replication attempts of a published

empirical result—that relying exclusively on statistical significance to decide whether or not

a result is newsworthy leads to misleading conclusions.

We show through a case study that small-sample experiments can easily deliver

statistically significant results that overestimate the true effect and are non-replicable. For

this case study, we chose a paper by Levy and Keller (2013) that investigated expectation

and locality effects in sentence comprehension. We selected this particular paper because

there are no a priori reasons to doubt the results in the paper, as they are theoretically

well-founded and have plenty of independent empirical support.

Anticipating our conclusions, we suggest that researchers and journals should avoid

focusing exclusively on statistical significance to evaluate the validity and reliability of

studies. Validity should be established by running as high-precision a study as possible (we

explain this later in the paper); and reliability should be established through direct

replication using pre-registration.
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Case study: The effects of expectation vs. memory retrieval in sentence

processing

Background

Levy and Keller (2013) published two eyetracking studies in the Journal of Memory

and Language in which they tested the predictions of two well-established theoretical

proposals in sentence processing research: the expectation-based account (Hale, 2001; Levy,

2008) and the memory-based retrieval accounts (Gibson, 1998, 2000; Lewis & Vasishth,

2005).

The expectation-based account, as developed by Levy (2008), predicts that intervening

material between, for example, a subject and its verb, facilitates processing at the verb. To

illustrate this point, consider the discussion by Levy (2008) of the following sentences from

an eyetracking (reading) study conducted by Konieczny and Döring (2003).

(1) a. Die
The

Einsicht,
insight,

dass
that

[NOM der
the

Freund]
friend

[DAT dem
the

Kunden]
client

[ACC das
the

Auto
car

aus
from

Plastik]
plastic

verkaufte,. . .
sold,. . .

‘The insight that the friend sold the client the plastic car. . . .’

b. Die
The

Einsicht,
insight,

dass
that

[NOM [der
the

Freund]
friend

[GEN des
of the

Kunden]]
client

[ACC das
the

Auto
car

aus
from

Plastik]
plastic

verkaufte,. . .
sold,. . .

‘The insight that the friend of the client sold the plastic car. . . .’

Konieczny and Döring found that regression path durations at the verb verkaufte in

(1a) were shorter than in (1b) (555 vs. 793 ms). Levy’s explanation for this facilitation is

that the dative noun phrase (NP) in (1a) sharpens the expectation for the verb to a greater

degree than in (1b): in the former, nominative, accusative, and dative NPs narrow the range

of possible upcoming verb phrases more than in the latter, where only nominative and

accusative NPs have been seen. Levy formalizes this idea in terms of surprisal (Hale, 2001),

which essentially states that the conditional probability of the verb phrase appearing given
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the preceding context determines processing difficulty: the more predictable the verb phrase,

the easier it is to process. Using a probabilistic context-free grammar of German, Levy

shows that syntactic surprisal is lower in (1a) than (1b) (23.51 vs. 23.91 bits); this suggests

that surprisal may be a good explanation for the facilitation effect seen in Konieczny and

Döring (2003).1

A competing class of theories of sentence processing difficulty makes the incorrect

prediction for the reading time pattern observed at the verb in the Konieczny and Döring

study. For example, the Dependency Locality Theory or DLT (Gibson, 2000) assumes that

processing difficulty (and therefore reading time) at a verb is a linear function of the distance

between the verb and its arguments; distance here is measured in terms of the number of new

discourse referents intervening between co-dependents. Under such an account, no difference

is predicted between the two sentences above, because the same number of new discourse

referents intervenes between the subject and verb in (1a) and (1b). A closely related account

is a computational model of cue-based retrieval (Lewis & Vasishth, 2005; Engelmann, Jäger,

& Vasishth, 2018; Nicenboim & Vasishth, 2018). The Lewis & Vasishth 2005 (LV05) model

assumes that completing argument-verb dependencies is affected by similarity-based

interference arising from distractor nouns in memory (a related model is by Van Dyke &

McElree, 2006). Like the DLT, the LV05 model predicts that interposing nouns between the

argument(s) and verb in grammatical sentences will increase processing difficulty at the verb.

For the Konieczny and Döring data, this model also predicts no difference in processing

difficulty between the two conditions (1a) and (1b). We will treat the DLT and the

cue-based retrieval theories as specific instantiations of the memory-based account.

Levy and Keller (hereafter, LK) built on the work of Konieczny and Döring by

developing a novel experimental design that cleverly pits the expectation-based and

memory-based accounts against each other. LK’s studies are described next, as they form

1A reviewer, Roger Levy, points out that these values are almost certainly overestimates of “true”
comprehender surprisal for these cases, because the probabilistic context free grammar used for the calculations
encodes much less information than human comprehenders would deploy.
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the basis for our replication attempts.

The experiment design by Levy and Keller (2013)

As shown in Table 1, in their sentences for their Experiment 1, a dative NP and a

prepositional adjunct either appeared in a subordinate clause or a main clause. The critical

region in this experiment was the verb versteckt; the post-critical region was defined as the

two words following the matrix verb (und somit, ‘and thus,’ in the example shown in Table

1).

Their Experiment 2 had a design similar to Experiment 1, with one difference:

syntactic complexity was increased by embedding the main clause of Experiment 1 within a

relative clause (see Table 2). Here, the critical region was the head verb of the relative clause

and the auxiliary (versteckt hat, ‘hidden had’, in Table 2) and the post-critical region was

the noun phrase (here, die Sache, ‘the affair’). Note that the two experiments take

advantage of the head-final property of German: the verb always appears clause-finally in

these constructions. Since all the arguments precede the verb, it is easy to investigate the

effect of verb predictability conditional on having seen all the arguments.

Predictions for the LK study

LK lay out the predictions of the expectation-based account as follows (Levy & Keller,

2013):

. . . [condition (a)] (neither dative nor adjunct in the main clause) should be

hardest to process, while [condition (d)] should be easiest (both dative and

adjunct in the main clause). [Conditions (b) and (c)] should be in between (one

phrase in the main clause). (p. 202)

The reasoning behind these predictions is that interposing material sharpens the

expectation for a participial verb. For a graphical summary of the predictions, see Figure 2,
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left panel; this figure is a reproduction of LK’s Figure 1. As mentioned above, Levy (2008)

and others refer to such predicted speedups as expectation effects.2

The memory-based account makes different predictions. Because intervening discourse

referents between the subject and the verb should generally lead to greater processing

difficulty, placing the dative NP or the adjunct in the main clause should lead to a slowdown

at the verb, and placing both the dative NP and the adjunct in the main clause should lead

to an even greater slowdown at the verb. This means that reading time at the critical verb

in condition (b) should be slower than (a), and condition (d) should be slower than (c); in

fact, (d) should show the greatest slowdown in reading time, because it is associated with

the highest processing cost (see Figure 2, right panel). Gibson (2000) and others often refer

to these slowdowns as locality effects.

One nice property of the LK design is that the verb position is always constant across

conditions being compared: the intervening phrases (dative NP and adjunct) always appear

in the sentence, either intervening between the subject and verb or at the beginning of the

sentence. This resolves a potentially serious confound in such studies; many of the previous

studies (Konieczny, 2000; Grodner & Gibson, 2005; Vasishth & Lewis, 2006) had the verb

further downstream in the sentence whenever an additional intervener was present. This

positional confound makes comparisons across conditions difficult to interpret: if a verb

appears later in the sentence, this alone may lead to slowdowns or speedups compared to a

baseline condition (for discussion, see Ferreira & Henderson, 1993).

2LK showed in a corpus analysis (summarized in their Table 1 Levy & Keller, 2013, p. 204) that if the
dative NP or both the dative NP and the adjunct phrase appeared in the main clause, the main clause verb
phrase (the verb phrase that the verb versteckt, ‘hidden’) heads had lower surprisal values. Thus, according
to the corpus analysis, conditions (a) and (c) would be predicted to be read slower than conditions (b) and
(d). In the present paper, we follow the predictions laid out in LK’s Figure 1.
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Table 1
Example sentences for LK’s Experiment 1 (simplified). The abbreviations mean the following:
ADJ: adjunct; DAT: dative; PP: prepositional phrase; NP: noun phrase.

a. PP adjunct in subordinate clause, dative NP in subordinate clause
Nachdem der Lehrer [ADJ zur Ahndung] [DAT dem Sohn] . . . ,
After the teacher [ADJ as payback] [DAT the son] . . . ,
hat Hans Gerstner den Fußball versteckt, und somit. . .
has Hans Gerstner the football hidden, and thus. . .
b. PP adjunct in main clause, dative NP in subordinate clause
Nachdem der Lehrer [DAT dem Sohn] . . . ,
After the teacher [DAT the son] . . . ,
hat Hans Gerstner [ADJ zur Ahndung] den Fußball versteckt, und somit. . .
has Hans Gerstner [ADJ as payback] the football hidden, and thus. . .
c. PP adjunct in subordinate clause, dative NP in main clause
Nachdem der Lehrer [ADJ zur Ahndung] . . . ,
After the teacher [ADJ as payback] . . . ,
hat Hans Gerstner [DAT dem Sohn] den Fußball versteckt, und somit. . .
has Hans Gerstner [DAT the son] the football hidden, and thus. . .
d. PP adjunct in main clause, dative NP in main clause
Nachdem der Lehrer . . . ,
After the teacher . . . ,
hat Hans Gerstner [ADJ zur Ahndung] [DAT dem Sohn] den Fußball versteckt, und somit. . .
has Hans Gerstner [ADJ as payback] [DAT the son] the football hidden, and thus. . .

‘After the teacher imposed detention classes, Hans Gerstner hid the football from the naughty son of the
industrious janitor as additional payback for the multiple wrongdoings, and thus corrected the affair.’

Table 2
Example sentences for LK’s Experiment 2 (simplified). The abbreviations mean the following:
ADJ: adjunct; DAT: dative; PP: prepositional phrase; NP: noun phrase.

a. PP adjunct in subordinate clause, dative NP in subordinate clause
Nachdem der Lehrer [ADJ zur Ahndung] [DAT dem Sohn] . . . ,
After the teacher [ADJ as payback] [DAT the son] . . . ,
hat der Mitschüler, der den Fußball versteckt hat, die Sache. . .
has the classmate, who the football hidden had, the affair . . .
b. PP adjunct in relative clause, dative NP in subordinate clause
Nachdem der Lehrer [DAT dem Sohn] . . . ,
After the teacher [DAT the son] . . . ,
hat der Mitschüler, der [ADJ zur Ahndung] den Fußball versteckt hat, die Sache. . .
has the classmate, who [ADJ as payback] the football hidden had, the affair . . .
c. PP adjunct in subordinate clause, dative NP in relative clause
Nachdem der Lehrer [ADJ zur Ahndung] . . . ,
After the teacher [ADJ as payback] . . . ,
hat der Mitschüler, der [DAT dem Sohn] den Fußball versteckt hat, die Sache. . .
has the classmate, who [DAT the son] the football hidden had, the affair . . .
d. PP adjunct in relative clause, dative NP in relative clause
Nachdem der Lehrer . . . ,
After the teacher . . . ,
hat der Mitschüler, der [ADJ zur Ahndung] [DAT dem Sohn] den Fußball versteckt hat, die Sache. . .
has the classmate, who [ADJ as payback] [DAT the son] the football hidden had, the affair . . .

‘After the teacher imposed detention classes, the classmate who hid the football from the naughty son of the
industrious janitor as additional payback for the multiple wrongdoings corrected the affair.’



THE STATISTICAL SIGNIFICANCE FILTER 12

●

● ●

●

(a) (b) (c) (d)

re
ad

in
g 

tim
e

Predictions of 
 the expectation−based account

●

● ●

●

(a) (b) (c) (d)

re
ad

in
g 

tim
e

Predictions of 
 the memory account

Figure 2 . Predictions for the Levy and Keller Experiments 1 and 2: The left panel shows
the speedup predicted by the expectation account. The right panel shows the slowdown
predicted by memory-based accounts. This figure is based on Figure 1 of Levy and Keller
(2013).
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A re-analysis of the LK data

The two studies by LK had 28 participants and 24 items each. In their paper,

statistical summaries and analyses for the critical and post-critical regions were prepared

using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) in R (R Core Team,

2018). They released their data to us, which allowed us to carry out the same analyses as

they did, but within a Bayesian framework (Gelman et al., 2014) using the probabilistic

programming language Stan (Carpenter et al., 2016). Below, we explain our reasons for

using the Bayesian data-analytic approach. Briefly, our main interest here is in quantifying

uncertainty about the parameter estimates of interest. We elaborate on this point next.

Motivation for using Bayesian data analysis. In the Bayesian framework, all

the parameters in the model, which can be represented as a vector θ, are assumed to have

some prior distribution of plausible values, p(θ). Given the prior, and a likelihood function

for the data p(data | θ), Bayes’ rule is used to compute the posterior distribution of the

parameters: p(θ | data). Bayes’ rule states that the posterior is proportional to the prior

multiplied by the likelihood: p(θ | data) ∝ p(θ)p(data | θ). Thus, the application of Bayes’

rule furnishes a posterior distribution representing plausible values of a parameter given the

data and model (the model subsumes the likelihood function and the priors). Technically,

this cannot be done with the frequentist approach, where each parameter is assumed to be

an unknown point value. Such a point value may represent an invariant number in some

fields (e.g., in physics, the speed of light in a vacuum), but is a fictional construct in areas

like psychology and psycholinguistics. For example, there exists no single number

representing the increase in reading time in object vs. subject relatives in English. The

Bayesian approach allows us to focus on the uncertainty of the estimates of interest. A

further, although more peripheral, advantage is that we can always fit so-called “maximal”

models with full covariance matrices for by-participant and by-item variance components

(Schielzeth & Forstmeier, 2009; Barr, Levy, Scheepers, & Tily, 2013). Such maximal models

often fail to converge in lme4 for small data sets and yield unrealistic estimates of the



THE STATISTICAL SIGNIFICANCE FILTER 14

variance components (see Vasishth, Nicenboim, Beckman, Li, & Kong, 2018, for an example).

Fitting a maximal model has the advantage that we can make the most conservative possible

claim about the parameters given the data and model. The reason that Bayesian methods

allow us to fit essentially arbitrarily complex random effects variance components is the

involvement of prior information in the model. We discuss priors next.

Prior specification in Bayesian models. In the Bayesian approach, it is

common to use so-called mildly and weakly informative priors that have a regularizing effect

on the posteriors.3 A weakly informative prior allows a wide range of plausible values;

regularizing means that we downweight extreme parameter values that are a priori unlikely

to occur. A simple example is a prior on correlations or correlation matrices; Stan allows us

to define a so-called LKJ prior (Lewandowski, Kurowicka, & Joe, 2009) on even large

correlation matrices such that the prior downweights −1 and +1 as possible values. This is

illustrated in Figure 3. When the nu (ν) parameter in the built-in Stan function for an LKJ

prior is less than 1, intermediate values are downweighted; such a situation is the opposite of

what we mean here by regularizing priors. When ν is higher than 1, extreme values are

downweighted. Regularizing priors are also defined for all other parameters in the model.

For detailed tutorials specifically intended for psycholinguistics, see Vasishth et al. (2018),

Nicenboim and Vasishth (2016), Sorensen, Hohenstein, and Vasishth (2016). More general

introductory book-length treatments suitable for psychologists and psycholinguists are

Kruschke (2015) and McElreath (2016). An advanced treatment is in Gelman et al. (2014).

Throughout this paper, we will summarize the posterior distributions with their mean

and the 95% credible interval.4 This equal-tailed interval demarcates the range over which

3Ideally, one should use a “community of priors” to conduct an analysis, so that all opinions on a topic
are taken into account. This approach is used sometimes in areas like medicine (Spiegelhalter, Abrams, &
Myles, 2004).

4Kruschke (2015) uses highest posterior density intervals. As Kruschke (2015, p. 87) puts it: “the HDI
summarizes the distribution by specifying an interval that spans most of the distribution, say 95% of it, such
that every point inside the interval has higher credibility than any point outside the interval.” This interval is
identical to the credible interval when the posterior distribution is symmetric about its mean. When the
posterior is asymmetric, the HPDI and the credible interval will have a large overlap, but the lower and
upper end-points will differ.
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Figure 3 . Example showing two different prior distributions using LKJ priors on a
correlation parameter ρ. When the ν (nu) parameter in the LKJ function is 2, this
downweights extreme values such as ±1. The LKJ(2) prior can be used to define priors for
arbitrarily large correlation matrices, not just for a single correlation parameter.

we are 95% certain (given the data and the model) that the true parameter lies. The credible

interval therefore allows us to do something that a frequentist confidence interval cannot:

quantify our uncertainty about the parameter of interest. The frequentist confidence interval

cannot quantify uncertainty about the estimate of interest for two reasons. First, in the

NHST way of thinking, a parameter in the frequentist paradigm is an unknown point value.

Once one assumes that a parameter can only have a fixed but unknown point value, the

parameter cannot have a probability distribution associated with it. All estimation in the

frequentist paradigm is done with reference to the sampling distribution of the estimator, µ̂,

which is a function that gives us the sample mean for a particular data set. The estimate of

the standard error of the sample mean (SE) is a function of the estimated standard deviation

σ̂ and the sample size n: SE = σ̂/
√
n, is quantifying the uncertainty of the distribution of
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the sample mean returned by the estimator µ̂ under hypothetical repeated sampling. Given

a data set consisting of a vector of data points x, the sample mean x̄ serves as an estimate of

the unknown point value µ. The confidence interval is then computed as x̄± 2× SE. Thus,

a particular 95% confidence interval from a single data set either contains the true, unknown

µ or it doesn’t. Second, the meaning of the confidence interval is so convoluted that it is

difficult to understand or communicate: if one were to—counterfactually—repeat the same

experiment multiple times and compute a 95% confidence interval each time, then 95% of

those hypothetical confidence intervals would contain the true parameter µ. No probability

statement can be made from any single confidence interval anyway. For further discussion of

confidence intervals, see Hoekstra, Morey, Rouder, and Wagenmakers (2014), Kruschke

(2015). In typical psycholinguistic experiments, the confidence interval and the Bayesian

credible interval will look very similar (for examples, see Bates, Kliegl, Vasishth, & Baayen,

2015); in some cases, the Bayesian interval may be slightly wider than the confidence interval.

As a consequence of this rough equivalence, the confidence interval is often interpreted as if

it were a Bayesian credible interval, even though this is technically incorrect. In the past,

due to limitations of software for carrying out Bayesian analyses, the confidence interval was

much easier to compute than the Bayesian credible interval, so equating Bayesian and

frequentist intervals was arguably a reasonable approximation. However, today, packages like

brms (Bürkner, 2017, in press) make Bayesian linear mixed models relatively easy to fit, and

so it is now quite straightforward to compute Bayesian credible intervals.

Statistical methodology. As in the original study, we investigated the main effects

of dative position (Dative) and adjunct position (Adjunct) and their interaction, using the

same contrast coding that LK employed. Their contrast coding is shown in Table 3. A

positive coefficient for the main effect of Dative or Adjunct means that a speedup in reading

time is seen when the dative NP (respectively, the adjunct) appears within the main clause

(Expt 1) or relative clause (Expt 2), i.e., when it is interposed between the grammatical

subject and the verb.
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Condition Dat Adj DatxAdj
a . . . [ Subj . . . . . . Verb] 0.5 0.5 0.5
b . . . [ Subj . . . ADJ . . . Verb] 0.5 -0.5 -0.5
c . . . [ Subj . . . DAT . . . Verb] -0.5 0.5 -0.5
d . . . [ Subj . . . DAT ADJ . . . Verb] -0.5 -0.5 0.5

Table 3
The contrast coding used by Levy and Keller (2013) for main effects of Dat(ive), Adj(unct),
and their interaction for the two experiments. The structures used in the four conditions are
shown schematically; note that the verb was always in the same position because the
interveners (Dat and Adj) either intervened between the subject and the verb, or appeared
before the subject. In Experiment 1, the subject-verb dependency was in the main clause, and
in Experiment 2, it was within a relative clause.

The reading times were log-transformed and a hierarchical (linear mixed) model was fit

with full covariance matrices for participants and for items (the “maximal” model

recommended by Barr et al., 2013). All the code and data are available from

https://osf.io/eyphj/. Because a reviewer requested it, all models were also refit using raw

reading times with lme4. The results do not change depending on whether one

log-transforms or not. In all the Stan models, regularizing, weakly informative priors

(Gelman et al., 2014) were used for all parameters and hyperparameters. For all parameters

(except the parameters of the correlation matrix for the random effects), the prior

distribution was defined as the standard normal distribution, Normal(0, 1); for variance

components these were truncated at 0 (because standard deviations cannot be less than 0).

The posteriors are not dependent on these specific priors; other choices (such as a Cauchy

prior) lead to similar posterior distributions. For the correlation parameters in the

variance-covariance matrix of the random effects, we defined regularizing LKJ priors on the

correlation matrix (Stan Development Team, 2016). For each model, we ran four chains with

2000 iterations each. The first half of these were warm-up samples and were discarded.

Convergence was checked by visually inspecting the chains and via the R-hat convergence

diagnostic (Gelman et al., 2014).

The posterior distributions for the main effects and interaction on the log scale were
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back-transformed to posterior distributions in milliseconds. This was done as follows.

Suppose that the fixed effects part of the model is defined as:

log(rt) = β0 + β1Dative+ β2Adjunct+ β3Dative× Adjunct (1)

with the effects coded as ±0.5. Then, we can obtain the posterior distribution of the

difference in means between the two levels of Dative by computing:

exp(β0 + β1 × 0.5)− exp(β0 − β1 × 0.5). This computation is done within Stan, taking as

input each of the posterior samples of β0, . . . β3, and returning as output the posterior

distribution of the difference in means on the raw ms scale. This transformation of the

posterior distributions from the log scale to the ms scale allows us to compute credible

intervals on the raw scale as well. Analogous calculations were done for the other factors.

Question-response accuracy in the LK data. Half of the 24 items were

followed by comprehension questions that had yes/no responses. Accuracy on the target

items was 69% in Experiment 1 and 65% in Experiment 2 (personal communication from

Frank Keller).

Reading time results in the LK data. It is standard in eyetracking reading

research to argue for an effect if just any of several dependent measures examined show an

effect. For example, Konieczny and Döring (2003) found their effect only in regression path

durations. In the LK studies, which take as a starting point the Konieczny and Döring

design, regression path duration showed no effect at all; instead, other measures showed

statistically significant effects. We avoid this approach and instead try to reproduce the

effect in one dependent measure that LK would consider representative of their claims. The

LK paper presents a graphical summary of their effects using total reading times for the two

experiments; see LK’s Figures 3 and 4 (Levy & Keller, 2013, pp. 209, 214). Because the

graphical summary using total reading times was considered by LK to be a representative

summary of their overall claims, below we only report the analyses involving total reading
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times.5

Limiting the dependent measure to total reading times (in both our reanalyses of LK’s

original studies, and in the analyses of our replication attempts) had a second motivation:

Analyzing multiple dependent measures greatly increases Type I error probability

(von der Malsburg & Angele, 2017). For example, LK analyzed eight dependent measures in

two regions of interest. Thus, for each experiment, 16 models were fit, so for each of the

three predictors (the effect of Dat(ive), Adj(unct), and their interaction, DatxAdj) a total of

32 statistical tests were conducted for both experiments combined. Assuming that a p-value

less than 0.05 is a statistically significant outcome, Dative showed six significant effects,

Adjunct showed one significant effect, and the interaction showed eight significant effects.

Because of the inflated probability of incorrectly rejecting the null when multiple dependent

measures are analyzed, it is vitally important to correct Type I error probability, e.g., via the

Bonferroni correction, to compensate for the inflated false positive rate (von der Malsburg &

Angele, 2017).

Our estimates of total reading times match LK’s published results quite closely (see

their Tables 6 and 9, pp. 208, 213). Note that LK’s estimates for the interaction term are

twice as large as ours; this is only because they multiplied together their main effects, coded

±0.5, to obtain their interactions, resulting in the interaction in their analyses being coded

as ±0.25. Some estimates (e.g., the effect of Dative in Experiment 1) differ slightly between

LK’s analysis and ours, because we analyze on log-transformed data and back-transform to

raw reading times, whereas LK analyzed raw reading times.

Our re-analysis of the LK Experiments 1 and 2 is summarized in Figure 4. Recall that

the critical region is the main clause verb in Experiment 1, and the relative clause verb in

Experiment 2. The post-critical region consisted of the two words following the verb. As

shown in Figure 4, an analysis of total reading times suggests the following:

1. In Experiment 1, at the critical region, the mean of the posterior for the effect of
5We attempted to obtain the Konieczny and Döring estimates for total reading time in order to compare

them with the LK estimates, but were unsuccessful.
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Dative is 80 ms, with a 95% credible interval [16, 153]. The positive coefficient has the

interpretation that interposing the dative NP between the subject and the verb leads

to facilitation, as predicted by the expectation-based account. LK explain this result as

follows:

“[The main effect of Dative] can be explained by assuming that the presence

the [sic] additional preverbal material allows the processor to predict the

upcoming verb, which leads to a facilitation effect.” (p. 214)

2. In Experiment 2, at the post-critical region, the estimate of the interaction between

Dative and Adjunct is 82 ms [19, 146]. LK’s interpretation is that having both the

dative NP and adjunct interposed between the subject-verb dependency leads to a

slowdown. LK explain this outcome in terms of locality effects emerging under high

memory load, i.e., when the subject-verb dependency is embedded inside the relative

clause (Levy & Keller, 2013):

“[The interaction] suggests the presence of a locality effect, i.e., the

additional material that needs to be integrated at the verb, leading to a

distance-based cost. This effect was only present in Experiment 2, which

tested relative clauses, rather than main clauses as in Experiment 1. This

suggests that locality effects can override expectation effects under

conditions of high memory load, as we hypothesized would be most likely to

occur in a relative clause.” (p. 214)

We were interested in replicating these effects because they are consistent with a large

body of evidence for both expectation and memory-based accounts of sentence processing.

There is compelling evidence consistent with the expectation-based account proposed by

Levy (2008) (some examples are the work of Linzen & Jaeger, 2016; Kwon, Lee, Gordon,

Kluender, & Polinsky, 2010; Demberg & Keller, 2008). Similarly, many studies show
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evidence for memory-based effects; see, for example, Grodner and Gibson (2005), Van Dyke

and Lewis (2003), Van Dyke and McElree (2006), Van Dyke and McElree (2011). Given the

literature, it makes sense that we see effects of memory retrieval only under high processing

load induced by encountering a relative clause: all demonstrations of locality effects in the

literature (e.g., Hsiao & Gibson, 2003; Grodner & Gibson, 2005; Bartek, Lewis, Vasishth, &

Smith, 2011) have involved embedded clauses such as those of LK’s Experiment 2. Thus, the

LK claim that memory load modulates whether expectation effects are observed is

compelling given theory and existing data.

Although the claimed effects are compelling given the prior literature, one striking

aspect of the LK estimates is their large uncertainty. The evidence for the first conclusion

above comes from an estimate with mean 80 ms, but the 95% credible interval ranges from

16 to 153 ms; and the evidence for the second conclusion comes from an estimate with mean

82 ms, with a credible interval ranging from 19 to 146 ms. These wide uncertainties imply

that values as small as, for example, 20 ms are also plausible.

There is good reason to believe that reading time effects relating to memory-based

retrieval may be closer to 20 ms than 80 ms. Nicenboim, Vasishth, Engelmann, and Suckow

(2018) carried out a self-paced reading study investigating number interference in German

with 184 participants. They estimated the magnitude of the memory retrieval effect in

number interference to be 9 ms with 95% credible interval [0, 18]. A meta-analysis by Jäger,

Engelmann, and Vasishth (2017) has also shown that similarity-based interference effects as

reported by Van Dyke and colleagues have a 95% probability of lying between 2 to 28 ms,

with posterior mean 13 ms. Similarly, recently published estimates of facilitation in reading

time (total reading time) due to memory misretrieval are approximately −20 ms, with

credible intervals ranging approximately from −1 to −40 ms (Cunnings & Sturt, 2018). If

memory retrieval effects generally have a small magnitude in reading studies, and if a sample

size of 28 participants and 24 items leads to low power, LK’s estimates may well be

exaggerated. Their estimates have very large standard errors, a characteristic of low-powered
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studies. For example, assume that the true effect in the LK studies is 30 and 50 ms. In this

scenario, power for 28 participants and 24 items would be about 13 to 41% (see Appendix B

for full details). Because of Type M error, with 28 participants it would be essentially

impossible to obtain statistically significant results that are also accurate estimates of the

effect.

But how can we determine whether the effects in the LK studies are the result of Type

M error? If the LK results were not due to a Type M error and LK’s effect sizes were in fact

as large as LK’s estimates, conducting a replication with 28 participants should have

sufficient power to detect them reliably and we should be able to reproduce the effect

consistently. However, if the LK results were due to Type M error leading to an overestimate

of the true effect, we should fail to detect the effect in the majority of cases. Thus, it will be

very informative to actually conduct direct replication attempts of the LK experiments using

the same sample size that was used in the original study.

We began by trying to replicate the two significant effects found by LK: the main effect

of Dative in Experiment 1 (critical region), and the interaction between Dative and Adjunct

in Experiment 2 (post-critical region). We did this by conducting four experiments: two

self-paced reading (SPR) studies of the two LK studies, and two eyetracking (ET) studies.

We chose these two methods because they are the two standard behavioral approaches for

studying cognitive processing costs in reading, and the previous research on

expectation-based effects and memory effects has largely relied on either self-paced reading

or eyetracking.

Two definitions of replication success. Before we discuss the replication

attempts, it is necessary to define what counts as a successful replication. A successful

replication can mean that a statistically significant result in the original study is also found

to be significant in the replication attempt. Alternatively, a successful replication could have

the interpretation that the estimated mean from a replication attempt falls within the 95%

credible interval of the original estimate. We will consider both possible ways to interpret a
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replication attempt.

Experiments 1-4

We conducted two self-paced reading and two eyetracking studies; the correspondence

to the original LK experiments is as shown in Table 4.

Our experiment Original experiment participants items
Expt 1 (SPR) LK Expt 1 28 24
Expt 2 (ET) LK Expt 1 28 24
Expt 3 (SPR) LK Expt 2 28 24
Expt 4 (ET) LK Expt 2 28 24

Table 4
The correspondence between our experiments and those of Levy & Keller (2013).

Participants. For each of the two self-paced reading experiments and the two

eyetracking studies, we used the same numbers of participants and items as LK (28 and 24,

respectively). Thus, the total number of participants in these four studies was 112.

Participants were native German undergraduate students from the University of Potsdam

who were permitted to take part in only one of the replication studies. All had normal or

corrected-to-normal vision, and received 7 Euros or course credit for their participation.

Experimental design and materials. We followed the 2× 2 fully-crossed

within-participants factorial design of the original study. The factors were Dative (in main or

subordinate clause) and Adjunct (in main or subordinate clause). We used the same 24

experimental items as LK from their Experiment 1 and 2, and 48 filler items. The yes/no

comprehension questions that followed the items targeted various dependencies; these were

also identical to the questions employed in the LK experiments. For the example in Table 1,

the question for condition (a) was ‘Did the teacher impose something on the naughty son?’

(‘Hat der Lehrer dem ungezogenen Sohn etwas verhängt?’) and the question for condition (b)

was ‘Did the teacher impose detention classes?’ (‘Hat der Lehrer den Strafunterricht

verhängt?’). For a list of all experimental and filler items with their respective



THE STATISTICAL SIGNIFICANCE FILTER 24

comprehension question, see https://osf.io/eyphj/.

Procedure: Self-paced reading studies. Experimental items were presented

word-by-word in a centered self-paced reading experiment using Linger.6 As in the original

studies, half the items were followed by yes/no questions. Due to the length of the sentences,

non-critical regions were presented phrase-by-phrase. The experiment began after four

practice trials. Participants were required to press the space bar on a keyboard to move on

to each subsequent word or phrase; in trials with comprehension questions, they recorded a

response via a button press. The experimental procedure lasted approximately 35 minutes.

For the purposes of future direct replication, all materials and relevant software settings can

be obtained from https://osf.io/eyphj/.

Procedure: Eyetracking studies. The experimental procedure was identical in all

of our eyetracking experiments. Participants’ eye movements (right eye monocular tracking)

were recorded with an EyeLink 1000 eye-tracker (SR Research7) with a desktop-mounted

camera system at a sampling rate of 1000 Hz. The participant’s head was stabilized using a

chin/forehead rest. Stimuli were presented on a 22-inch monitor with a 1680× 1050 screen

resolution. The eye-to-screen distance measured approximately 66 cm. For the experimental

presentation, SR Research Experiment Builder software was used. Stimuli were presented in

a monospaced font (Courier new) with font size 24 and were arranged on the presentation

screen such that the critical region always appeared in the same position (fourth word on the

fourth and final line). Each session began with the calibration of the eyetracker and four

practice trials preceding the experimental materials. Re-calibrations were carried out when

necessary. In 50% of the trials, a comprehension question had to be answered by pressing a

button on a gamepad. The entire procedure lasted approximately 40 minutes.

Differences between the LK studies and ours. Our procedure and participants

differed from the one used by LK in the following way. The original LK experiments were

run with an SR Research Eyelink II eyetracker with a head-mounted camera system at a
6See http://tedlab.mit.edu/∼dr/Linger/.
7http://www.sr-research.com/eyelink1000.html.
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sampling rate of 500 Hz using Eyetrack software8 for the experimental presentation.

In LK’s Experiment 1, the materials were presented in a non-monospaced font (Times

New Roman, font size 20), whereas in their Experiment 2 the materials were presented in a

monospaced font (Lucida Console, font size 14). The position on the screen of the critical

verb differed in their two experiments: In LK’s Experiment 1, the critical verb appeared in

the middle of either the third or fourth line of the presented text, whereas in their

Experiment 2 the critical verb was always the fourth word of the fourth line.

In the eyetracking experiments, the critical and post-critical regions were the same as

in the LK studies; in the self-paced reading studies, due to an oversight, the post-critical

region consisted of only one word (in the LK studies, the post-critical region consisted of two

words). Finally, in two experimental items, a non-critical part of the sentence was changed;

one due to a plausibility issue and another due to a repetition of an NP within one sentence.

One comprehension question following one of the experimental items was replaced due to an

ambiguity in the question. For details on these changes, see the supplementary materials.

LK had 44 filler items in each of their Experiments 1 and 2, but not all were identical

across the experiments. We combined their fillers from their two experiments to assemble 48

filler items, which were then held constant across all the experiments we conducted.

Finally, the population of participants differed significantly between the original LK

studies and ours. Our participants were native speakers of German who were undergraduates

at the University of Potsdam, whereas LK’s participants were native speakers of German

living in Edinburgh (Levy & Keller, 2013, p. 204).

Results of Experiment 1-4

Question-response accuracies. The question-response accuracies for

Experiments 1 and 2 were 66 and 64, respectively, and for Experiments 3 and 4 they were

61% and 60%, respectively. These are comparable to LK’s 69% and 65% in their

8https://blogs.umass.edu/eyelab/software/.
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Figure 4 . The effects of Dat(ive) and Adj(unct) interposition (and their interaction,
DatxAdj) at the critical and post-critical regions. Shown are the mean and 95% credible
intervals from the original LK Experiments 1 and 2, and the two replication attempts. SPR
stands for self-paced reading, and ET stands for eyetracking.
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Experiments 1 and 2, respectively.

Reading time results. Figure 4 summarizes the results of our four experiments.

As mentioned earlier, we only report the analyses of total reading time data.9

Recall that a successful replication can either mean that a significant effect found in an

original study is found to be significant in a replication attempt; or it can mean that the

estimated means from the replication attempt fall within the 95% credible interval of the

original estimates. If statistical significance is taken as a criterion for successful replication,

we failed to replicate the two key effects in the LK studies: the main effect of Dative in

Experiment 1 (critical region), and the interaction of Dative and Adjunct in Experiment 2

(post-critical region). If a frequentist p-value were to be computed for these effects, none

would come out even close to significant in any of the four attempts. The means and 95%

credible intervals for the critical comparisons in each experiment are as follows:

• Expt 1 (SPR replication of LK Expt 1): Effect of Dative in critical region -10 ms

[-45,28].

• Expt 2 (Eyetracking replication of LK Expt 1): Effect of Dative in critical region 18 ms

[-19,54].

• Expt 3 (SPR replication of LK Expt 2): Interaction of Dative and Adjunct in

post-critical region -16 ms [-47,15].

• Expt 4 (Eyetracking replication of LK Expt 2): Interaction of Dative and Adjunct in

post-critical region 28 ms [-19,79].

However, the replication attempts can also be seen as a near-complete success: all the

total reading times estimates from the eyetracking studies (and 9 of the 12 of the estimates
9In our data, we also analyzed all the dependent measures (critical and post-critical regions) in which LK

found statistical significance in their data. These were first-pass and re-reading times in Experiment 1, and
re-reading times, the proportion of first-pass regressions, and skipping proportions in Experiment 2 (in the
critical or post-critical region). None of these dependent measures came out statistically significant in our
data.
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computed in the self-paced reading experiments) fall within the 95% credible intervals of the

original studies.

The crucial point here is that the original estimates are so noisy that, despite the fact

that some of the effects in the original paper were statistically significant, the wide credible

intervals are consistent with the effect being near 0 ms. When the estimates are noisy, the

p-value furnishes little information about reliability (i.e., that the effect is true) or

replicability (i.e., that the significant effect can be reproduced if the study is repeated). Of

course, even when estimates are not noisy, the only way to establish replicability is to

actually replicate the effect.

In these first four small-sample replication attempts above, we aimed to show that the

original estimates are noisy and therefore uninformative, despite being statistically

significant. Next, we turned our attention to one of the conclusions that LK drew from their

study (Levy & Keller, 2013):

“[The interaction] suggests the presence of a locality effect, i.e., the additional

material that needs to be integrated at the verb, leading to a distance-based cost.

This effect was only present in Experiment 2, which tested relative clauses, rather

than main clauses as in Experiment 1.” (p. 214)

The emphasis is ours. Here, LK are pointing to the fact that the interaction between

Dative and Adjunct was found in Experiment 2 but not in Experiment 1. We will refer to

this difference between the two experiments as the Load-Distance interaction. Our goal here

is to show how the estimates of the effect change under a larger-sample replication attempt.

Investigating the Load-Distance interaction

LK describe the Load-Distance interaction in their General Discussion in the following

manner:

“[Experiment 1 showed] that the presence of a dative noun phrase led to
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decreased reading time at the corresponding verb, compared to a condition in

which there is no preceding dative noun phrase.

“Experiment 2 showed an interaction of adjunct position and dative position,

with the verb more difficult to process when both the adjunct and the dative

phrase were present than when only one was present.

“[O]urs is the first demonstration to our knowledge that both expectation and

locality effects can occur in the same structure in the same language, and that

the two effects interact with each other.”

This claimed interaction between expectation and locality across the two experiments

can be investigated in several different ways. One way to interpret the interaction is in terms

of the contrast in reading time patterns in their Experiment 1 vs. 2. LK’s Figures 3 and 4

(Levy & Keller, 2013, pp. 209, 214), which summarize total reading times at the critical

region, clearly show that Experiment 1 exhibits a speedup in (d) vs. (c), whereas Experiment

2 exhibits a slowdown in these conditions (see our Tables 1 and 2 for the items). Although

visual inspection of the figures does suggest a cross-over interaction between Load and

Distance, as Nieuwenhuis, Forstmann, and Wagenmakers (2011) have pointed out, the

interaction must be formally tested. Such an interaction would allow us to conclude, as LK

did, that “. . . both expectation and locality effects can occur in the same structure in the same

language, and that the two effects interact with each other”. LK did investigate the

expectation-locality interaction in their Experiment 2, but the claim to be investigated

involves the patterns seen across their Experiments 1 and 2, and this was not checked. We

evaluate this claimed interaction next.



THE STATISTICAL SIGNIFICANCE FILTER 30

Table 5
Example sentences (simplified) for investigating the Load-Distance interaction by combining
the conditions (c) and (d) of LK’s Experiment 1 and of Experiment 2. The abbreviations
mean the following: ADJ: adjunct; DAT: dative; PP: prepositional phrase; NP: noun phrase.

a [E1 c]. PP adjunct in subordinate clause, dative NP in main clause
Nachdem der Lehrer [ADJ zur Ahndung] . . . ,
After the teacher [ADJ as payback] . . . ,
hat Hans Gerstner [DAT dem Sohn] den Fußball versteckt, und somit. . .
has Hans Gerstner [DAT the son] the football hidden, and thus. . .
b [E1 d]. PP adjunct in main clause, dative NP in main clause
Nachdem der Lehrer . . . ,
After the teacher . . . ,
hat Hans Gerstner [ADJ zur Ahndung] [DAT dem Sohn] den Fußball versteckt, und somit. . .
has Hans Gerstner [ADJ as payback] [DAT the son] the football hidden, and thus. . .
c [E2 c]. PP adjunct in subordinate clause, dative NP in relative clause
Nachdem der Lehrer [ADJ zur Ahndung] . . . ,
After the teacher [ADJ as payback] . . . ,
hat der Mitschüler, der [DAT dem Sohn] den Fußball versteckt hat, die Sache. . .
has the classmate, who [DAT the son] the football hidden had, the affair . . .
d [E2 d]. PP adjunct in relative clause, dative NP in relative clause
Nachdem der Lehrer . . . ,
After the teacher . . . ,
hat der Mitschüler, der [ADJ zur Ahndung] [DAT dem Sohn] den Fußball versteckt hat, die Sache. . .
has the classmate, who [ADJ as payback] [DAT the son] the football hidden had, the affair . . .

‘After the teacher imposed detention classes, Hans Gerstner/the classmate (who) hid the football from the
naughty son of the industrious janitor as additional payback for the multiple wrongdoings corrected the affair.’
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Re-analysis of conditions (c) and (d) of LK’s Experiments 1 and 2. We

investigated the interaction statistically by combining the original LK data from conditions

(c) and (d) of each experiment; see Table 5 for the design. This analysis tested for the main

effects of Load, Distance, and their interaction. As shown in Table 6, a positive coefficient

for Load would imply that processing a verb within a relative clause is more difficult than in

a main clause; note that this effect is not interesting because the verb phrase (versteckt hat)

in conditions (c) and (d) of Experiment 2 is longer than the verb phrase (versteckt) in

conditions (c) and (d) of Experiment 1. More interesting is the effect of Distance. A positive

coefficient for Distance would imply that increasing subject-verb distance by interposing an

adjunct (which contains a new discourse referent) in addition to a dative NP will lead to

longer reading times at the verb; this is as predicted by memory-based accounts such as the

Dependency Locality Theory (Gibson, 2000). A negative sign would support the

expectation-based account of Levy (2008), as discussed earlier. Finally, a negative coefficient

for the Load-Distance interaction would confirm the cross-over interaction seen visually in

Figures 3 and 4 of LK’s paper: interposing a dative NP and an adjunct vs. a dative NP

alone should lead to a slowdown only in the relative clause conditions.

Condition Load Dist Load×Dist
E1 c . . . [MC Subj . . . DAT . . . Verb] -0.5 -0.5 -0.5
E1 d . . . [MC Subj . . . DAT ADJ . . . Verb] -0.5 0.5 0.5
E2 c . . . [RC Subj . . . DAT . . . Verb] 0.5 -0.5 0.5
E2 d . . . [RC Subj . . . DAT ADJ . . . Verb] 0.5 0.5 -0.5

Table 6
The contrast coding used for main effects of Load, Dist(ance), and their interaction in the two
experiments by Levy and Keller (2013). The first two conditions here are conditions (c) and
(d) of Experiment 1, and the last two conditions are conditions (c) and (d) of Experiment 2.

Results: The Load-Distance interaction in the LK data. As shown in

Figure 5, in the LK data the estimates for the interaction in the critical region are -52 ms

[-110,9]; and in the post-critical region, -40 ms [-92,10]. Here again, even though the

interaction has the predicted sign, we have very noisy estimates; the credible intervals have a
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width of about 100 ms. If a significance test were to be conducted, the interaction would not

come out significant. However, significance is not interesting for us. We wanted to know

whether we can obtain estimates for the Load-Distance interaction in our replication

attempts that have the same sign as the original LK experiments, and whether our estimates

are plausible given the wide credible intervals in the LK data.

Experiments 5, 6: Replication attempts of the Load-Distance interaction

We carried out two attempts to reproduce the Load-Distance interaction. As discussed

above, we designed the experiment to pit Load and Distance against each other by taking

conditions (c) and (d) of the original LK Experiment 1 (which we will refer to as the low

memory load conditions) and conditions (c) and (d) of Experiment 2 (high memory load

conditions). We conducted a self-paced reading study and an eyetracking study, each with

the same sample size as the original experiments (28 participants, 24 items). The procedure

was as described for the preceding studies.

As shown in Figure 5, both replication attempts showed that the estimate for Load in

the critical region had a positive sign:

• Expt 5 (SPR): 76 ms [42,111]

• Expt 6 (ET, total reading times) 152 ms [104,200].

These effects suggest that increasing load (the relative clause conditions (c) and (d) in

Table 5) leads to increased processing difficulty. However, recall that the effect of Load is not

interesting because the verb length differs in the two sets of conditions. Differently put, the

Load effect could at least partly be due to the word length effect. Therefore, we disregard

the Load effect, even though theoretically the sign of the effect makes sense under the LK

account.

The estimate for Distance is close to 0 ms: 3 ms [-30,39] in Expt 5; and 1 ms [-38,39] in

Expt 6. Finally, the interaction between Load and Distance is not far from 0 ms; 5 ms

[-30,43] in Expt 5, and -14 ms [-48,20] in Expt 6.
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Figure 5 . Load and Distance effects at the critical and post-critical regions. Shown are the
mean and 95% credible intervals from conditions (c) and (d) of the two original LK
Experiments 1 and 2; and from our three replication attempts (Expts 5-7). SPR stands for
self-paced reading, and ET stands for eyetracking.
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An interesting question arises here. If we were to run the experiment with a larger

sample size, would we perhaps detect the Load-Distance interaction? After all, the

interaction claimed by LK is very well-motivated both theoretically and empirically. We turn

to this larger-sample study next.

Expt 7 (Eyetracking): A larger-sample replication attempt of the

Load-Distance interaction

Before we discuss the results of Experiment 7, we first explain how we decided on

sample size. We used an approach that Kruschke (2015) refers to as the region of practical

equivalence (ROPE). Below, we also discuss how the ROPE approach can be used to make

decisions about the research question.

Determining sample size using a Bayesian approach. The Bayesian

framework allows us to incrementally determine how many participants we should run in

order to make a decision about our research question. One way to do this is to define what

constitutes “no effect” as a region rather than a point value. This approach was developed in

the context of clinical trials, where it is essential to stop the trial if the treatment is turning

out to harm the patients, or when it is immediately clear that the treatment is superior to

the control (Cornfield, 1966; Armitage, 1989; Spiegelhalter et al., 2004; Berry, Carlin, Lee, &

Muller, 2010; Freedman, Lowe, & Macaskill, 1984; Spiegelhalter, Freedman, & Parmar, 1994).

Kruschke (2015) re-introduced this idea into psychology, but it has not yet been widely

adopted. This approach serves both as a stopping rule, and for deciding whether one has

evidence for one’s theory. We will use Kruschke’s terminology here.

As mentioned above, the starting point is to define what counts as “no effect.” Instead

of the frequentist approach of asserting a point null value, we can define a region of practical

equivalence that counts as a null region. For example, in LK Experiment 1, we start by

asserting that in total reading times, what we count as “no effect” is a range of possible

values: −20 to 20 ms. This range can be seen as representing a 95% credible interval over a
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distribution (say a normal distribution with mean 0) of plausible values. Note that if we

were investigating first-pass reading times, the range would be much smaller, because effects

in first-pass reading time will be smaller in magnitude.

How did we decide on the width of 40 ms for the region of practical equivalence? This

decision is subjective but not arbitrary. It is based on estimates derived from what is already

known and well-established empirically.10 For clear grammaticality violations that the reader

is immediately consciously aware of, total reading time effects (at the word where the

ungrammaticality is detected) can show effect magnitudes of approximately 100 to 150 ms.

For example, the data in Dillon, Mishler, Sloggett, and Phillips (2013) (their Experiment 1)

showed a 41 ms [23, 58] effect of ungrammaticality (n=40) in first-pass reading time (FPRT),

and a 100 ms [69, 134] effect in total reading time (TRT). In a large-sample (n=181)

replication attempt of Dillon et al.’s Experiment 1 (Jäger, Mertzen, Van Dyke, & Vasishth,

2018), we found an effect of 55 ms [45, 65] in FPRT, and an effect of 121 ms [100, 141] in

TRT. We consistently find this magnitude of effect or smaller effects when the sentence is

ungrammatical; for example, Wagers, Lau, and Phillips (2009) and Lago, Shalom, Sigman,

Lau, and Phillips (2015) also showed the effect of (un)grammaticality in SPR with estimates

similar to those found by Dillon and colleagues. Sometimes we see even larger effects for

ungrammaticality; for example, an eyetracking study by Paape, Hemforth, and Vasishth

(2018) found that total reading times at the moment that an ungrammaticality was

registered in French was 176 ms, with 95% credible intervals 84 and 264 ms. Now, if we

consider more subtle experimental manipulations in sentence processing, the effects in total

reading time are likely to be in a lower range than effects of grammaticality. As an example,

we mentioned earlier that a meta-analysis showed that the similarity-based interference

effects found by Van Dyke and colleagues have a posterior mean of about 13 ms, with 95%

10This estimation approach is sometimes called Fermi-zation (Tetlock & Gardner, 2016). The name comes
from Fermi’s skill in obtaining rough but accurate estimates for physical phenomena; an example is the 1945
nuclear detonation conducted as part of the Manhattan project (the Trinity test). Fermi obtained remarkably
accurate estimates of the blast’s force before the data were available. The essential point here is to use the
information available to arrive at reasonable estimates; this is not very different from the elicitation of expert
opinion in Bayesian data analysis of clinical data (O’Hagan et al., 2006; Morris, Oakley, & Crowe, 2014).
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credible intervals [2, 28] ms. Since these estimates were based on SPR data and first-pass

reading times (FPRT), it is reasonable to assume that in total reading times (TRT) the

effect of interference would be larger; from experience with eyetracking data, we can say that

the effect is approximately twice as large, i.e., 30 ms (TRTs are a sum of FPRT and

re-reading times, so they are bound to be larger than FPRT). Given these assumptions, for

TRT we fixed ±20 ms around 0 ms as counting as effectively a null effect for the LK studies.

Our estimates of the region of practical equivalence (ROPE) are based on an empirical

argument, but are of course open to challenge. We cannot provide a one-size-fits-all

recommendation for deciding on a null region for specific phenomena, but we believe that for

the present question, our estimates are reasonable. For subtle phenomena for which no data

exist, some initial experiments could be used to establish a ROPE, and/or quantitative

predictions from a computational process model could be used as a guide (an example is

discussed in Engelmann et al., 2018).

Once we have decided on a null region, the goal should be to collect data until the 95%

credible interval of the parameter of interest is at most as wide as the null region; in the

above example, it should be at most 40 ms wide. This is how we established our stopping

rule in our pre-registration of the larger-sample study (which is available from:

https://osf.io/eyphj/). Note that, unlike the frequentist power analysis, we do not fix a

sample size in advance, but rather run the experiment until a certain precision is reached:

until the 95% credible interval of the posterior distribution has width 40 ms or less.

For interpreting the results, the ROPE method can be used as follows. As shown in

Figure 6 (adapted from Spiegelhalter et al., 2004, p. 184), once the data with the

pre-determined precision have been collected, there are five possible scenarios. For

illustration purposes, we assume that a positive sign on a parameter validates some theory X,

and a negative sign validates a competing theory Y. A concrete example of such opposing

predictions is the expectation vs. locality question discussed by LK in their paper.

The five outcome scenarios are as follows:
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• A, B: data’s credible interval falls clearly outside the null region. Decision: reject the

null region, and conclude that theory X or Y is validated (depending on the sign).

• C,D: data’s credible interval overlaps with the null region. Decision: if the sign is

positive, reject theory Y; if the sign is negative, reject theory X.

• E: data’s credible interval falls within the null region. Decision: conclude that the data

are consistent with “no effect.” Note that we do not say here that the decision is that

we have “proved” that the null is true, but merely that the data are consistent with the

posited ROPE. Only direct replications can establish whether an estimate and its 95%

credible interval consistently falls within the ROPE.

Incidentally, the ROPE method can also be used for affirming a theory’s predictions, if

the theory makes quantitative predictions. A stringent test of a theory’s predictions would

be that the posterior’s credible interval falls within the range predicted by theory; weaker

evidence for a theory would involve overlap with the predicted range of values; and a

rejection of a theory would involve a credible interval from data that falls completely outside

a predicted range of values. In the General Discussion, we give an example of how ROPE

can be used for model evaluation.

An obvious objection to the ROPE approach is its subjectivity. One can empirically

justify a region of practical equivalence, but different researchers could define different

regions of equivalence. But this is no worse than the way NHST is used; subjective decisions

are routinely taken in NHST and there are no fixed standards for these (Chambers, 2017).

Another obvious objection is that the ROPE approach can be misused. For example, one

could first run the study and compute the standard error and then retroactively define the

null region as four times the estimated standard error. However, we are assuming here that

the definition of the null region will be decided on before the experiment is conducted—this

is the same in NHST, where a prospective power calculation must be done before conducting

the study.
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Finally, this null region approach does not solve the problem of demonstrating

replicability; whatever the outcome of an experiment, one would still need to replicate the

effect. The only way to establish replicability is to actually conduct pre-registered direct

replications. We discuss pre-registration and replication in the general discussion.

A
B
C
D
E

-20ms 20ms

Figure 6 . The five possible outcomes when using the null region or “region of practical
equivalence” method for decision-making (Kruschke, 2015). Outcome A supports a theory X
that predicts a positive sign on the parameter; B supports a theory Y that predicts a negative
sign. Outcome C rejects theory X, and D rejects Y; and the estimate E is consistent with the
null region. The width of the null region here is 40 ms, but would depend on the dependent
measure, and the measurement precision achievable by the measurement instrument.

We now turn to Experiment 7, in which we investigated the Load-Distance interaction

with a larger sample.

Results of Experiment 7. The estimates are summarized in Figure 5. This time,

the estimate of Load at the critical region is 151 ms [121,185]; the effect of Distance is 22 ms

[2,42]; and the Load-Distance interaction is -8 ms [-26,11].11

Discussion. In Experiment 7, the positive coefficient for Distance suggests that

increasing subject-verb distance by interposing an adjunct in addition to a dative NP led to

slower reading times at the verb. A follow-up analysis using nested contrast coding shows

that in the critical region, the Distance effect in the low-load conditions is 14 ms [-14,43];

and in the high-load conditions, it is 29 ms [2,55]. The larger distance effect in the high-load

conditions is compatible with the LK argument in their paper that locality effects outweigh
11At first glance, it may be surprising that in the post-critical region, the 95% credible interval for the

effect of Load in Experiment 7 is as wide as that of Experiment 6, which had 28 participants. One might
expect that a larger-sample study always yields a narrower credible interval. But this need not necessarily be
true in a particular sample; the credible interval is dependent on the estimates of the variance components,
which will vary from study to study.
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expectation effects when memory load is high. However, the expectation account incorrectly

predicts a negative coefficient in the low-load conditions. One possible explanation for the

smaller distance effect in low-load conditions could be that expectation and locality act in

opposite directions. Such an explanation is compatible with the LK proposal, and is

consistent with the data. However, note that when we use the region of practical equivalence

approach, both the two nested contrasts and the main effect of Distance are not conclusive

because the 95% credible interval of the respective estimates overlap with the ROPE of ±20

ms centered around 0 ms.
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Figure 7 . A demonstration of the fluctuation in the estimates for the effect of Distance when
we choose 28 participants pseudo-randomly from the 100-participant experiment. The solid
horizontal line is the estimated mean from the 100-participant data set, and the broken lines
show the corresponding 95% credible intervals. The points show the means and 95% credible
intervals when randomly sampling from the 100-participant data set.
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It is worth considering how our estimates from this 100-participant study would differ

from a study that has only 28 participants. This can be demonstrated by repeatedly

sampling 28 participants pseudo-randomly from this larger-sample data set, and then fitting

a maximal linear mixed model using Stan. We carried out this repeated sampling 100 times.

The mean and 95% credible intervals for the effect of Distance are shown in Figure 7, along

with the mean and credible interval from the 100-participant study. The wide credible

intervals and the fluctuation around the larger sample’s estimated mean illustrates the

problem that arises with low-precision studies: wide uncertainty of the estimate and

fluctuation of means under repeated sampling. Because of this fluctuation, those estimates

that happen to come out significant in a frequentist test will, due to Type M error,

necessarily be overestimates relative to the reference point of the mean and credible intervals

estimated from the full data set. For a similar demonstration investigating similarity-based

interference using a larger data set, see Nicenboim, Vasishth, et al. (2018).

In conclusion, in this 100-participant study we don’t see any grounds for claiming an

interaction between Load and Distance. The most that we can conclude is that the data are

consistent with memory-based accounts such as the Dependency Locality Theory (Gibson,

2000), which predict increased processing difficulty when subject-verb distance is increased.

However, this Distance effect yields estimates that are also consistent with our posited null

region; so the evidence for the Distance effect cannot be considered convincing.

General Discussion

Experiment 1-6 showed that the statistically significant (or nearly-significant) effects

found in Levy and Keller (2013) are noisy enough that a broad range of possible

outcomes—including no effect—can be seen as consistent with the original studies’ estimates.

The noisiness of the estimates in the original LK study, expressed in the wide credible

intervals, implies low power, which can—and in this case did—lead to exaggerated effects in

the original studies. Had we carried out statistical significance tests on these replication
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attempts, we would have found that the original results would not be replicable, if by

replicable we mean that significance should be found consistently.

Regarding the absence of locality and expectation effects in our experiments, our point

here is not that the effects found by LK are not true. One cannot definitively conclude much

from the original studies and our replication attempts. Rather, our aim is to draw attention

to the point that we cannot learn much from a low-precision experiment, regardless of

whether or not statistically significant effects are found.

Experiment 7 showed that a larger-sample study generally delivers narrower credible

intervals than the 28-participant studies. It also delivers a smaller estimate of the posterior

mean for the Load-Distance interaction compared to the original study; the larger-sample

estimate is probably more realistic. Experiment 7 suggests that the key claim of a

Load-Distance interaction in LK’s original experiments may be consistent with no effect.

One interesting suggestion from this 100-participant study is that the locality effect that is

predicted by account such as the Dependency Locality Theory (Gibson, 2000) may have

some weak support. Since this is, to our knowledge, the first time that any evidence for

locality has been seen in German, clearly further investigation is needed. Locality effects

have been reported for other head-final languages such as Hindi (Husain, Vasishth, &

Srinivasan, 2015), and Persian (Safavi, Husain, & Vasishth, 2016); but it remains to be seen

whether these and other head-final languages consistently show locality. An important line of

research would be to attempt to replicate the published results for head-final languages like

German, Hindi, and Persian, and to investigate other head-final languages like Japanese and

Korean. If the LK experiment design is followed up on in future work, it would be advisable

to choose simpler sentences than the ones LK used; comprehension accuracy needs to be

better than in the studies discussed in the present paper.

A legitimate concern at this point is that most of the effects investigated in our seven

experiments showed results consistent with no effect. Could it be that there is something

fundamentally wrong with our experimental methodology? In order to address this worry, we
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checked whether we could recover well-known word length and frequency effects from the

filler items in the four eyetracking experiments. The details are discussed in Appendix D,

but briefly, all four experiments show the expected effects. Thus, the methodology does not

seem to have any fundamental problems. Of course, with null results one cannot be certain

that no effect is present, especially when power is low. In future work, other labs should

attempt to replicate LK’s and our reported estimates of effects.

We return now to the point that the significant effects in LK’s experiments are too

noisy to interpret using statistical significance. Noisiness is not a property that is unique to

the LK study considered here. Reading studies on other well-established effects also have

issues similar to those discussed here. One example is the difference in reading times at the

head noun of subject vs. object relative clauses in Chinese. A meta-analysis of 12 studies

(Vasishth, Chen, Li, & Guo, 2013) showed that the estimates of the effect (from self-paced

reading and eyetracking) across different studies fluctuate quite a lot, from −123 to 100 ms,

with confidence intervals ranging in width from 80 to 320 ms (also see Vasishth, 2015). A

more recent example is so-called number agreement attraction. Here, ungrammatical

sentences like the following are investigated: The key to the cabinet/cabinets are on the table.

For theoretical reasons that don’t concern us here (see Engelmann et al., 2018), faster

reading times are expected at the auxiliary when the preceding noun agrees in number with

the auxiliary’s number marking (i.e., the auxiliary verb in cabinets are is read faster than in

cabinet are). One theory, the Lewis and Vasishth (2005) cue-based retrieval model, predicts

that the mean expected facilitation is around −26 ms for most parameter configurations; if

the model parameters are varied over a narrow range, the predicted facilitation varies from

approximately −10 to −57 ms.12 Several studies have been published showing statistically

12Engelmann et al. (2018) provide a detailed investigation of the range of predictions that the model makes
for the facilitatory interference discussed here. They varied the latency factor F , the noise parameter ANS, the
maximum associative strength MAS, the mismatch penalty MP , and the retrieval threshold θ, and computed
model predictions for the range of parameter combinations given by F ∈ {0.01, 0.02, . . . , 0.6}, ANS ∈
{0.1, 0.2, 0.3},MAS ∈ {1, 2, 3, 4},MP ∈ {0, 1, 2}, θ ∈ {−2,−1.5, . . . , 0}. In order to derive approximate
upper and lower bounds of model predictions, we take the median together with the first and third quartiles of
Engelmann et al.’s simulated facilitatory interference effects (6000 iterations for each parameter combination),
with the difference that we only used parameter configurations with a latency factor of 0.05 to 0.6. The
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significant facilitation effects, as predicted by theory. Because of the repeated significant

effects found, this facilitation effect is considered very reliable in psycholinguistics. We

re-analyzed the data (self-paced reading; in one study, total reading time from eyetracking)

from 10 published experiments, 8 out of 10 reported a significant effect. We fit Bayesian

linear mixed models with full variance-covariances matrices for all random effects, and the

same regularizing, weakly informative priors that we used in the LK data. Unlike the

original studies, we did not delete extreme values; rather, we modeled the reading-time data

as being generated from a log-normal distribution and back-transformed the estimates to

milliseconds (see Appendix C for details). We find that the uncertainty of the estimates in

the data is quite high: The ten studies’ mean estimates range from -40 to -4 ms, with

credible intervals ranging in width from 30 to 89 ms. These empirical estimates (along with

their 95% credible intervals) are all consistent with the model predictions (−10 to −57 ms),

in the sense that the credible intervals from these 10 studies overlap with the theoretically

predicted range. But these data are not strongly consistent with the Lewis and Vasishth

model predictions. If these estimates had been more precise (i.e., had much narrower

credible intervals) and their 95% credible intervals had fallen within the predicted range, this

would have been a stronger validation of the model’s predictions. With such wide credible

intervals in the data, a broad range of outcomes is compatible with the data, including

effectively no facilitatory effect at all. Thus, even in the relatively clear agreement attraction

case, in future work higher precision replication attempts need to be carried out to determine

better estimates of the facilitation effect.

A central problem is that underpowered studies can yield a statistically significant

result due to Type M error, and these significant results will be overestimates. Given that

significant results are favored by journals and reviewers, effects reported in the literature are

guaranteed to be overestimates when power is low. They will also be seen as very convincing

because of their large magnitude. A large effect like 200 ms with a large standard error of 80

calculations can be reproduced using the Shiny app: https://engelmann.shinyapps.io/inter-act/.
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ms, leading to a t-value of 2.5, seems more convincing than a small effect of 9 ms with a

small standard error of 4.5 ms and a t-value of 2. In fact, with a null region defined under

the region of practical equivalence approach, both results could be consistent with there

being “no effect.” However, the smaller estimate with narrower credible intervals may reflect

reality better. Thus, when power is low, using significance to decide whether to publish a

result leads to a proliferation of exaggerated estimates in the literature. There is in principle

no harm in publishing low-powered studies in top journals, as long as strong claims are

avoided. This is what statisticians mean when they suggest that researchers “accept

uncertainty and embrace variation” (McShane, Gal, Gelman, Robert, & Tackett, 2017).

Currently, in psycholinguistics and other areas, we are taught to have the expectation that

every experiment be a “win.” Under this prior belief in routine success, even null results from

low-powered studies start to look informative.

It is of course possible to publish more informative studies by simply running

higher-power experiments. But how can we decide what constitutes a higher-powered study?

Frequentist statistics has several proposals for sequential testing (e.g., Frick, 1998), which

avoid running unnecessarily large numbers of participants. A Bayesian approach that we

used in this paper is to define a region of practical equivalence for total reading time

(specifically, ±20 ms around 0 ms) and to run the experiment until the desired precision was

reached. Our choice of a 95% credible interval width of 40 ms was only for illustration

purposes; depending on the resources available, one could aim for even higher precision. For

example, 184 participants in the Nicenboim, Vasishth, et al. (2018) self-paced reading study

had a 95% credible interval of 20 ms. Note that the goal here should not be to find a

credible interval that does not include an effect of 0 ms; that would be identical to applying

the statistical significance filter and is exactly the practice that we criticize in this paper.13

Rather, the goal is to achieve a particular precision level for the estimate, and to use the

region of practical equivalence for interpreting the results, possibly alongside the p-value.

13Doing hypothesis testing with Bayes factors would lead to similar problems unless one can specify a fully
generative model (Gelman et al., 2014).
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Once we have fixed the region of practical equivalence, we effectively also fix the

precision (the 95% credible interval) that is theoretically meaningful to us. Now we can run

the experiment until we reach this desired level of precision. This has at least two

advantages over a conventional power analysis. First, in the Bayesian framework, there is no

need to define a stopping criterion in advance of running our experiment. In

psycholinguistics, running more participants until a desired outcome (statistical significance

with a particular sign of the effect) is reached is a fairly common practice. But within the

frequentist paradigm, this stopping criterion will inflate Type I error (e.g., Pocock, 2013). In

the Bayesian framework, there is no concept of hypothetical replications; the data at hand

are not interpreted in the light of the properties of data from imagined repeated sampling.

The Bayesian framework rather obeys the likelihood principle, which states that all the

information from the data is contained in the likelihood function (Gelman et al., 2014; Lee,

2012). We can therefore check the precision of our estimates while running the experiment,

and stop the experiment when the desired precision is reached (as opposed to the desired

effect becoming significant).

A second advantage of using precision as a guide to data collection is that we can shift

the focus to what really matters: quantifying our uncertainty about the estimate of interest.

A conventional power analysis assumes a good guess about the magnitude of the true effect,

and this guess is often based on previously published data. As we have shown here, when the

sample sizes are small and there is a bias to only publish statistically significant effects, effect

magnitudes will be overestimated by a large amount. Using these estimates leads to a large

underestimation of the sample size needed for high-powered replications. In a precision-based

analysis, the focus is on the amount of uncertainty in the estimate that we are willing to

tolerate. The magnitude of the estimate, together with its uncertainty, are much more

important theoretically than just counting the number of significant vs. not significant

results in the literature. Such a vote-counting approach is commonly adopted to summarize

the literature in narrative reviews, and to decide whether an effect is “present” vs. “absent.”
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The voting-based approach would be fine if there were no publication bias at all and if power

were sufficiently high in published studies. For an example of a voting-based approach to

deciding whether an effect is present or absent, see Phillips, Wagers, and Lau (2011). There,

when discussing whether reflexives show similarity-based interference effects, the authors

conclude: “Thus, most evidence suggests that the processing of simple argument reflexives in

English is insensitive to structurally inappropriate antecedents, indicating that the parser

engages a retrieval process that selectively targets the subject of the current clause.” If power

in the studies that Phillips and colleagues base their conclusions on is low, then many null

results are to be expected. It is well-known in statistical theory that null results from

low-powered studies should be treated as inconclusive rather than proving that the null

hypothesis is true; unfortunately, this detail is not widely appreciated. In sum, simple

vote-counting would be highly misleading when power is low and publication bias exists.

Many researchers have pointed out that we should aim for higher-precision estimates

and focus on estimation rather than only focusing on statistical significance (e.g.,

Claridge-Chang & Assam, 2016; Greenland et al., 2016). Focusing on estimation will allow

for better-quality meta-analyses and better quantitative model comparisons of competing

computational models. The first comprehensive quantitative evaluation of the computational

memory-retrieval model of Lewis and Vasishth (2005) involved comparing model predictions

to estimates from 77 published results on retrieval processes (Engelmann et al., 2018). This

evaluation was only possible because the estimates (and their uncertainty) were available

from a meta-analysis (Jäger et al., 2017). The meta-analysis provided estimates based on all

relevant reading-time studies which were then compared with the model predictions.

Although the meta-analytic estimates are likely to be biased (due to publication bias and

Type M error in individual studies), they are more precise than the estimates from

individual studies because the meta-analysis aggregates data from multiple studies after

weighting them by their precision: the meta-analysis allows us to take into account

accumulated knowledge in a quantitative manner. However, the results of the quantitative
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evaluation by Engelmann et al. (2018) would have been more informative if the estimates

from the published individual studies had had higher precision.

In addition to fixing precision in advance, a second suggestion (Chambers, 2017) is that

we should attempt to conduct direct, pre-registered replications of experiments, because

there is no guarantee that a result reflects reality just because it is statistically significant.

Every major claim should be either accompanied by a pre-registered direct replication, or

even better, other researchers from competing labs should be encouraged to replicate the

original result. Direct replications are necessary even for higher-precision studies, because

population differences, lab practices, etc., can easily bias an individual result.

As Chambers (2017) explains, pre-registration involves defining in advance the analysis

that is planned and depositing this in an embargoed repository like OSF (osf.io) or

aspredicted.org. OSF time-stamps the pre-registration, which serves as a transparent way to

demonstrate that the analysis plan was defined before the data were collected.

Pre-registering will also minimize problems like p-hacking, HARKing (hypothesizing after

the results are known), and the garden-of-forking paths problem (Gelman & Loken, 2016;

Forstmeier, Wagenmakers, & Parker, 2017; Simmons, Nelson, & Simonsohn, 2011) that have

plagued psychology and other areas. With pre-registration, the researcher is still free to

explore their data, but pre-registration is a valuable tool that clearly separates the prior

analysis plan from the exploratory part (De Groot, 1956/2014). Currently, due to the

unreasonable pressure to publish fast and to report novel results in top journals, crucial

data-analysis decisions are often made after examining the data. For example, the same

researcher will often include or exclude data on different criteria, so that it eventually passes

the statistical significance filter. Sometimes, excluding or including a few data points can

make the difference between significance and non-significance (Vasishth et al., 2013).

Another example is region-of-interest selection in reading studies: researchers often change

the region of interest from study to study or even within a study, driven exclusively by the

search for significance (an example is discussed in Vasishth & Nicenboim, 2016). Another
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common approach is to run the study, check for significance, then either run more

participants if significance is desired but not reached, or stop collecting data if a null result is

desired. These decisions are often not reported in the published paper. Pre-registration

would remove these degrees of freedom and thereby ensure a clear separation between

confirmatory and exploratory analyses (De Groot, 1956/2014).14

Our third suggestion is that data and code be released mandatorily along with the

published paper. Some authors are happy to share their data and code, but in many other

cases the crucial information—the data itself—are not available. For example, Nieuwland

et al. (2018) tried but failed to obtain the data for the published result (DeLong, Urbach, &

Kutas, 2005) that they attempted to replicate. Many researchers have generously released

their data to us in connection with the present and other replication attempts. But attempts

to obtain data from published studies are often unsuccessful. Wicherts, Borsboom, Kats, and

Molenaar (2006) report an attempt to obtain data from 141 articles from major psychology

journals, which had a total of 249 experiments. Of these, 73% of the data were not released.

Wicherts and colleagues report that this is approximately the same non-response rate as in

1962. The continued absence of reproducible code and data seriously harms cumulative

progress in science; evidence synthesis (meta-analysis) needs accurate estimates from

published papers. Our experience with meta-analysis (Nicenboim, Roettger, & Vasishth,

2018; Jäger et al., 2017) shows that published summaries are usually far from adequate

because they often don’t contain the minimal information (the estimated mean of the

parameter of interest and the standard error) needed to conduct the meta-analysis.

Sometimes the published analysis is incorrect and as a result the published statistics are

unusable (some examples are discussed in Nicenboim, Roettger, & Vasishth, 2018).

Obtaining and reanalyzing the original data (using the originally used code) is the most

reliable way to obtain accurate estimates for evidence synthesis.

14A common objection we hear is that anyone could defeat the purpose of pre-registration by first collecting
the data and then depositing a fake pre-registration. However, this would just be scientific fraud; pre-
registration is not designed to solve that problem.
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Leading journals could trigger a positive change by requiring data and code release for

all articles, and introducing a special article type (e.g., a pre-registered Replication Report)

for direct replication attempts. Currently, direct replications are not considered to be novel

enough to be worth publishing, and novelty of results is given disproportionate weight.

However, replication is an important tool for establishing reliability. This is something that a

p-value, especially a p-value computed from an underpowered study, cannot ever deliver.

Increasing precision and conducting direct replications are vital for any empirically rigorous

science.

There is clearly a downside to focusing on higher precision and direct replications.

Perhaps the biggest one is that carrying out experiments towards the aim of increasing

precision would take much longer. For example, the experiments in the present paper were

started on 26 November 2015, and ended on 29 September 2017, a period of nearly two years.

This means that at least in smaller universities, where recruiting participants is not easy,

internet experiments may serve as a partial solution (but this comes with other

disadvantages). Another obvious side-effect is that the speed with which we can publish

papers will go down. Clearly, expectations regarding publication rate need to change. In

closing, a contribution of the present paper is to demonstrate through direct replication

attempts the fact (well-known in some scientific communities) that published results—even

results published in top journals—may not be all that newsworthy because they may be

consistent with effectively no effect and may not be replicable in the sense that significant

effects may not be found to be significant under replication. Too often, published empirical

results are treated as a novel contribution simply because of the application of the statistical

significance filter. How many published claims in psycholinguistics actually reflect reality

remains to be seen. Big effects involving, e.g., grammaticality violations or strong garden

paths, are likely to be replicable, but more subtle effects may not be. For example, the

recent failure to find significant effects in anticipatory processing by Nieuwland et al. (2018)

and Kochari and Flecken (2018) suggests that replicability problems arising from the
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statistical significance filter could run deep in psycholinguistics. Of course, the issues are not

limited to psycholinguistics and extend to all other scientific disciplines that use this decision

criterion to decide whether or not to publish results. The reliability of published results may

improve if we finally start to follow the best practices that have been advocated again and

again by statisticians but which have been largely ignored by psychology and other areas:

aim at higher precision, conduct direct, pre-registered replications, and release data and code.

These changes will contribute towards improving the reliability of published results.

Conclusion

In sentence processing, many results, such as the classical garden-path findings (Frazier

& Rayner, 1982), have large and robust effects. These are very likely to be easily replicable.

But the low-hanging fruit has long been picked. Subtle manipulations require designs and

sample sizes that deliver accurate estimates.

History has shown that any suggestions to improve power and to replicate results have

generally not been adopted in psychology (see discussion in Lane & Dunlap, 1978). We

nevertheless reiterate some proposals that many others have made in the past (e.g., Bakan,

1966; Amrhein, Trafimow, & Greenland, 2018; McShane et al., 2017; Chambers, 2017).

Researchers should (i) move their focus away from statistical significance and attend instead

to increasing the precision of their estimates (e.g., by increasing sample size, or improving

the quality of measurements, or designing stronger manipulations); (ii) carry out direct (not

just conceptual) replications in order to demonstrate the existence of an effect; (iii)

pre-register their designs and planned analyses and deposit them in venues like osf.io and

aspredicted.org; and (iv) release their data and code upon publication. Journals can

encourage these practices by favoring pre-registered analyses, introducing a short-article type

featuring direct replications, and mandating open data and code release upon publication.

Some of the leading journals already require data and code release upon publication, and in

some cases during the review process. This needs to become the default.
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Appendix A

How the statistical significance filter leads to inflated estimates of power

Assume for simplicity the case that we carry out a one-sided statistical test where the null

hypothesis is that the true mean is µ0 = 0 and the alternative is that µ > 0.15 Given some

continuous data x1, . . . , xn (such as reading times), we can compute the t-statistic and derive

the p-value from it. For a large sample size n, a normal approximation allows us to use the

z-statistic, Z = X̄−µ0
σX/
√
n
, to compute the p-value. Here, X̄ is the mean estimated from the

data, σX the standard deviation, and n the sample size.

One informal definition of the p-value is the following: “A p-value is the probability

under a specified statistical model that a statistical summary of the data (e.g., the sample

mean difference between two compared groups) would be equal to or more extreme than its

observed value.” (Wasserstein & Lazar, 2016). The p-value is itself a random variable P with

the probability density function (Hung, O’Neill, Bauer, & Kohne, 1997, 1):

gδ(p) = φ(Zp − δ)
φ(Zp)

, 0 < p < 1 (2)

where

• φ(·) is the pdf of the standard normal distribution, Normal(0,1).

• Zp, a random variable, is the (1-p)th percentile of the standard normal distribution.

• δ = µ−µ0
σX/
√
n
is the true point value expressed as a z-score. Here, µ is the true (unknown)

point value of the parameter of interest.

Hung et al. (1997, 1) further observe that the cumulative distribution function (cdf) of

P is:

Gδ(p) =
∫ p

0
gδ(x) dx = 1− Φ(Zp − δ), 0 < p < 1 (3)

15The presentation below generalizes to the two-sided test.
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where Φ(·) is the cdf of the standard normal.

Once we have observed a particular z-statistic zp, the cdf Gδ(p) allows us to estimate

power based on the z-statistic (Hoenig & Heisey, 2001). To estimate the p-value in the case

where the null hypothesis is in fact true, let the true value be µ = 0. It follows that δ = 0.

Then:

p = 1− Φ(zp) (4)

To estimate power from the observed zp, set δ to be the observed statistic zp, and let

the critical z-score be zα, where α is the Type I error (typically 0.05). The power is therefore:

Gzp(α) = 1− Φ(zα − zp) (5)

In other words, power estimated from the observed statistic is a monotonically

increasing function of the observed z-statistic: the larger the statistic, the higher the power

estimate based on this statistic (Figure A1). Together with the common practice that only

statistically significant results get published, and especially results with a large z-statistic,

this leads to overestimates of power. As mentioned above, one doesn’t need to actually

estimate power in order to fall prey to the illusion; merely scanning the statistically

significant z-scores gives an impression of consistency and invites the inference that the effect

is replicable and robust. The word “reliable” is frequently used in psychology, presumably

with the meaning that the result is replicable and reflects reality.

A direct consequence of Equation 5 is that overestimates of the z-statistic will lead to

overestimates of power. For example, if we have 36 data points, the true effect is 0.1 on some

scale, and standard deviation is 1, then statistical power is 15%.16

If we now re-run the same study, collecting 36 data points each time, and impose the

16This can be confirmed by running the following command using R
(R Core Team, 2018): power.t.test(delta=0.1,sd=1,n=36,alternative =
"one.sided",type="one.sample",strict=TRUE).
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Figure A1 . The relationship between power and the unknown z-score of the true effect.
Larger z-scores are easier to publish due to the statistical significance filter, and these studies
therefore give a mistaken impression of higher power.

condition that only statistically significant results with Type I error probability (α) 0.05 are

published, then only observed z-scores larger than 1.64 (for a one-sided test) would be

published and the power estimate based on these z-scores must have a lower bound of

GZα(α) = 1− Φ(1.64− 1.64) = 0.5 (6)

Thus, in a scenario where the real power is 15%, and only z-scores greater than or equal to

zα are published, the power estimate based on the z-score will be inflated by at least a factor

of 0.5/0.15=3.33.

Now, lower p-values are widely regarded as more “reliable” than p-values near the

Type I error probability of 0.05.17 This incorrect belief among researchers has the effect that
17Treating lower p-values as furnishing more evidence against the null hypothesis reflects a misunderstanding

about the meaning of the p-value; given a continuous dependent measure, when the null hypothesis that
µ = 0 is true, under repeated sampling the p-value has a uniform distribution. This has the consequence
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studies with lower p-values are more likely to be reported and published, with the

consequence that the inflation in power will tend to be even higher than the lower bound

discussed here.

that, when the null is true, a p-value near 0 is no more surprising than a p-value near 0.05.
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Appendix B

Prospective power analysis for repeated measures designs

We show here how power can be computed for data that are analyzed using linear mixed

models, with crossed random effects for participants and items. Consider the LK Experiment

1 data; we can estimate all effects and variance components from this 2× 2 design by fitting

a “maximal” linear mixed model and then estimating prospective power for a future study

using a range of plausible effects. In other words, this is not intended to be a post-hoc power

analysis; that would provide no new information beyond the p-value (Hoenig & Heisey, 2001).

When we do such a prospective power analysis, for an effect of 30 to 50 ms, which is

close to the estimates from our meta-analysis of memory retrieval effects (Jäger et al., 2017),

power is around 13 to 41%; see Table B1. If the true effect were as large as 80 ms (this is the

estimate we obtained in the LK Experiment 1 for the effect of Dative), a sample size of 28

participants and 24 items would lead to approximately 75% power. If the true effect is even

smaller than 30 ms, obtaining power greater than 80% would require hundreds of

participants and more items.

Effect (ms) Power (percentage)
30 13
50 41
80 75

Table B1
Estimates of prospective power for different effect magnitudes for Levy and Keller’s
Experiment 1. These estimates of power use estimates of variance components computed
from the Levy and Keller data.

How exactly did we compute these power estimates? For a repeated measures design,

one convenient way is to use fake-data simulation. As an illustration, we consider how we

would compute prospective power for a future replication of the LK13 Experiment 1.

1. Fit a “maximal” linear mixed model to existing data. As an example, we fit the model

to the LK Experiment 1 data below.
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2. Extract all variance component estimates and fixed effects estimates (hereafter, the

parameter estimates) from the fitted model. For the fixed effect of interest, choose a

range of effect magnitudes that are considered realistic (this is discussed below in

detail).

3. Using the parameter estimates from the step above, and the assumed effect magnitude,

repeatedly generate 100 fake data sets with a particular number of participants and

items, and compute the proportion of times that the relevant predictor is “significant”

at the specified α value (here, 0.05). This is the estimated prospective power for a

future study.

4. For sample size calculations with the goal of achieving 80% power, given a range of

effect magnitudes, increase the number of participants and/or items until you have

80% power.

We illustrate this procedure next. In order to generate fake data from a 2× 2 repeated

measures design with a Latin square design, we first define a function, gen_fake_lnorm2x2;

see Listing 1. This function generates log-normally distributed data because the dependent

variable is reading time data, and this is often assumed to be generated from a log-normal

distribution. We start by setting the number of participants and items to those used in the

LK experiments (28 participants, 24 items).

Then, we fit a linear mixed model to the Levy and Keller Experiment 1 data

(log-transformed) to obtain estimates of all the variance components and fixed effects. These

estimates will then be used for the power analysis. See Listing 2 for the parameter estimates

from the LK Experiment 1 data.

Next, we set the parameters for the fake-data simulation using the above model’s

results. See Listing 3.
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1 library(MASS)
2 gen_fake_lnorm2x2 <- function(nitem=24,nsubj=28,
3 beta=NULL,
4 Sigma_u=NULL,Sigma_w=NULL,sigma_e=NULL){
5 ## prepare data frame for four condition in a latin square design:
6 g1<-data.frame(item=1:nitem,
7 cond=rep(letters[1:4],nitem/4))
8 g2<-data.frame(item=1:nitem,
9 cond=rep(letters[c(2,3,4,1)],nitem/4))

10 g3<-data.frame(item=1:nitem,
11 cond=rep(letters[c(3,4,1,2)],nitem/4))
12 g4<-data.frame(item=1:nitem,
13 cond=rep(letters[c(4,1,2,3)],nitem/4))
14 ## assemble data frame:
15 gp1<-g1[rep(seq_len(nrow(g1)),
16 nsubj/4),]
17 gp2<-g2[rep(seq_len(nrow(g2)),
18 nsubj/4),]
19 gp3<-g3[rep(seq_len(nrow(g3)),
20 nsubj/4),]
21 gp4<-g4[rep(seq_len(nrow(g4)),
22 nsubj/4),]
23 fakedat<-rbind(gp1,gp2,gp3,gp4)
24 ## add subjects:
25 fakedat$subj<-rep(1:nsubj,each=nitem)
26 ## add contrast coding:
27 ## main effect 1:
28 fakedat$c1<-ifelse(fakedat$cond%in%c("a","b"),-1/2,1/2)
29 ## main effect 2:
30 fakedat$c2<-ifelse(fakedat$cond%in%c("a","c"),-1/2,1/2)
31 ## interaction:
32 fakedat$c3<-ifelse(fakedat$cond%in%c("a","d"),-1/2,1/2)
33 ## subject random effects:
34 u<-mvrnorm(n=length(unique(fakedat$subj)),
35 mu=c(0,0,0,0),Sigma=Sigma_u)
36 ## item random effects
37 w<-mvrnorm(n=length(unique(fakedat$item)),
38 mu=c(0,0,0,0),Sigma=Sigma_w)
39 ## generate data row by row:
40 N<-dim(fakedat)[1]
41 rt<-rep(NA,N)
42 for(i in 1:N){
43 rt[i] <- rlnorm(1,beta[1] +
44 u[fakedat[i,]$subj,1] +
45 w[fakedat[i,]$item,1] +
46 (beta[2]+u[fakedat[i,]$subj,2]+
47 w[fakedat[i,]$item,2])*fakedat$c1[i]+
48 (beta[3]+u[fakedat[i,]$subj,3]+
49 w[fakedat[i,]$item,3])*fakedat$c2[i]+
50 (beta[4]+u[fakedat[i,]$subj,4]+
51 w[fakedat[i,]$item,4])*fakedat$c3[i],
52 sigma_e)}
53 fakedat$rt<-rt
54 fakedat$subj<-factor(fakedat$subj); fakedat$item<-factor(fakedat$item)
55 fakedat}

Listing 1: Function for generating log-normally distributed fake data.
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1 Linear mixed model fit by REML ['lmerMod']
2 Formula:
3 log(region7) ~ dat + adj + int + (dat + adj + int | subj) + (dat +
4 adj + int | item)
5 Data: reading_time_nozeros
6

7 REML criterion at convergence: 1079.8
8

9 Scaled residuals:
10 Min 1Q Median 3Q Max
11 -2.70628 -0.66295 0.02944 0.62573 3.10073
12

13 Random effects:
14 Groups Name Variance Std.Dev. Corr
15 subj (Intercept) 0.147897 0.38457
16 dat 0.016867 0.12987 0.28
17 adj 0.007536 0.08681 0.15 0.88
18 int 0.014489 0.12037 -0.47 0.69 0.77
19 item (Intercept) 0.025317 0.15911
20 dat 0.033824 0.18391 0.11
21 adj 0.013480 0.11610 0.33 -0.89
22 int 0.019574 0.13991 -0.34 0.13 -0.16
23 Residual 0.233152 0.48286
24 Number of obs: 660, groups: subj, 28; item, 24
25

26 Fixed effects:
27 Estimate Std. Error t value
28 (Intercept) 6.27331 0.08180 76.690
29 dat 0.14966 0.05855 2.556
30 adj 0.01296 0.04740 0.273
31 int -0.03357 0.05245 -0.640
32

33 Correlation of Fixed Effects:
34 (Intr) dat adj
35 dat 0.132
36 adj 0.112 -0.159
37 int -0.257 0.170 0.069

Listing 2: Output of the linear mixed model fit to Levy and Keller’s experiment 1 data.
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1 # Extract parameter estimates:
2 beta<-round(summary(m)$coefficients[,1])
3 sigma_e<-round(attr(VarCorr(m),"sc"))
4

5 ## assemble variance covariance matrix for subjects:
6 subj_ranefsd<-round(attr(VarCorr(m)$subj,"stddev"))
7 subj_ranefcorr<-round(attr(VarCorr(m)$subj,"corr"),1)
8 ## choose some intermediate values for correlations:
9 corr_matrix<-(diag(4) + matrix(rep(1,16),ncol=4))/2

10 Sigma_u<-SIN::sdcor2cov(stddev=subj_ranefsd,corr=corr_matrix)
11

12 ## assemble variance covariance matrix for items:
13 item_ranefsd<-round(attr(VarCorr(m)$item,"stddev"))
14 Sigma_w<-SIN::sdcor2cov(stddev=item_ranefsd,corr=corr_matrix)

Listing 3: Fix parameters for fake-data simulation based on the linear mixed model fit of LK
Experiment 1.

Finally, we simulate data 100 times, for a range of effect magnitudes (30, 50, and 80

ms), 28 participants and 24 items, and estimate power for each effect magnitude. See

Listing 4.



THE STATISTICAL SIGNIFICANCE FILTER 71

1 set.seed(4321)
2 nsim<-100
3 ## effect size ranging from 30 to 80 ms on log scale:
4 ## e.g.: exp(6.3+.056/2)-exp(6.3-.056/2)=30 ms
5 (beta2<-c(0.056,0.095,0.155))
6 tvalsc1<-tvalsc2<-tvalsc3<-matrix(rep(NA,nsim*length(beta2)),ncol=nsim)
7 failed<-matrix(rep(0,nsim*length(beta2)),ncol=nsim)
8 for(j in 1:length(beta2)){
9 for(i in 1:nsim){

10 beta[2]<-beta2[j]
11 dat<-gen_fake_lnorm2x2(nitem=24,
12 nsubj=28,
13 beta=beta,
14 Sigma_u=Sigma_u,
15 Sigma_w=Sigma_w,
16 sigma_e=sigma_e)
17

18 ## no correlations estimated to avoid convergence problems:
19 m<-lmer(log(rt) ~ c1+c2+c3 + (c1+c2+c3||subj) +
20 (c1+c2+c3||item), data=dat)
21

22 ## ignore failed trials
23 if(any( grepl("failed to converge", m@optinfo$conv$lme4$messages) )){
24 failed[j,i]<-1
25 } else{
26 tvalsc1[j,i]<-summary(m)$coefficients[2,3]
27 tvalsc2[j,i]<-summary(m)$coefficients[3,3]
28 tvalsc3[j,i]<-summary(m)$coefficients[4,3]
29 }}}
30 ## proportion of convergence failures:
31 rowMeans(failed)
32 ## estimate power:
33 pow<-rep(NA,length(beta2))
34 for(k in 1:length(beta2)){
35 pow[k]<-mean(abs(tvalsc1[k,])>2,na.rm=TRUE)
36 }

Listing 4: Simulate data and compute power for different effect sizes.
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Appendix C

Estimates from 12 reading studies on facilitation effects, and model predictions

Figure C1 shows the 95% credible intervals for ten agreement attraction studies that were

part of the meta-analysis in Jäger et al. (2017); and two recently published studies on

semantic plausibility effects (Cunnings & Sturt, 2018). The number agreement studies (one

was an eyetracking study and the rest were self-paced reading) investigated ungrammatical

sentences such as The key to the cabinet/cabinets are on the table. The reading time was

either recorded at the critical (the auxiliary are) or post-critical region. Theory (Engelmann

et al., 2018) predicts a facilitation effect at the auxiliary or the following region when the

noun preceding the auxiliary is cabinets vs. cabinet. The two semantic plausibility studies

investigated by Cunnings and Sturt (2018) involved implausible sentences like Sue

remembered the letter that the butler with the cup/tie accidently shattered today in the dining

room. These are implausible because letters can’t shatter. Here, theory predicts a facilitation

effect at shattered due to misretrieval of the non-subject cup (vs. tie) (details are discussed in

Engelmann et al., 2018). In the number agreement experiments, study 1 is the

ungrammatical agreement data from Experiment 1 of Dillon et al. (2013); studies 2-5 are the

experiments reported in Lago et al. (2015), and 6-10 are from Wagers et al. (2009). Studies

11 and 12 are from Cunnings and Sturt (2018). The estimates shown in the figure were

computed by fitting a linear mixed model (with full covariance matrices for random effects) in

Stan using log-transformed reading times, and then by back-transforming the estimate of the

facilitation effect to milliseconds. Our estimates may be slightly different from the original

published estimates in some cases because we did not remove any data. The ten studies’

mean estimates range from -40 to -4, with credible intervals ranging in width from 30 to 89

ms. Again, our interest here is not in whether effects were significant or not significant—only

one of these 10 studies would show a significant effect if a p-value were to be computed.

Rather, what’s remarkable here is the wide variation in the estimates of the mean effect, and

the large uncertainty in many of the estimates expressed by the 95% credible intervals.
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Figure C1 . The means and 95% credible intervals of the predicted facilitation effect from 10
published studies on subject-verb dependencies with number agreement (Dillon, Mishler,
Sloggett, & Phillips, 2013; Lago, Shalom, Sigman, Lau, & Phillips, 2015; Wagers, Lau, &
Phillips, 2009), and two studies on subject-verb dependencies with a semantic plausibility
manipulation (Cunnings & Sturt, 2018), and model predictions from the Lewis & Vasishth
(2005) model for these configurations. Also shown are the number of participants (subj) and
the number of items (item) in each study.



THE STATISTICAL SIGNIFICANCE FILTER 74

Appendix D

Word length and frequency effects in the eyetracking data

Because we found almost no effects in the eyetracking studies, a legitimate concern is that

there may have been a systemic problem in the data-collection. We therefore checked

whether the well-known word length and word frequency effects on reading time (Kliegl,

Nuthmann, & Engbert, 2006) can be seen in all the four eyetracking data sets. If word

length and frequency effects cannot be found, then there would be something fundamentally

wrong with the data. We extracted type-frequencies (occurrences of a type per million

tokens) of all words occurring in a filler item from the dlexDB database (Heister et al., 2011),

which is based on the reference corpus underlying the Digital Dictionary of the German

Language (DWDS) (Klein & Geyken, 2016). We only investigated first-pass reading time.

Linear mixed models were fit using lme4 with centered log frequency and centered word

length as predictors, with all variance components but without intercept-slope correlations

for random effects. The results are shown in Table D1; there are clear effects of word length

and frequency, in the expected directions. Thus, our data do have the basic characteristics of

eyetracking data. Obviously, we cannot entirely rule out that there may be important

systematic differences between the original studies and ours that could explain why only

effects in the original work passed the statistical significance filter. But this is a limitation of

any replication attempt.
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ET Experiment Predictor Estimate Std.Error t-value
Expt 1 (LK13 Expt 1) Freq -3 1 -3

Len 22 2 15
Expt 2 (LK13 Expt 2) Freq -2 1 -3

Len 22 1 16
Expt 3 (LoadxDist n=28) Freq -4 1 -3

Len 21 1 16
Expt 4 (LoadxDist n=100) Freq -2 1 -2

Len 24 1 17
Table D1
The effect of centered word frequency and centered word length on first-pass reading times in
the four eyetracking studies. Experiment 1 is the replication attempt of LK’s Experiment 1;
Experiment 2 is the replication attempt of LK’s Experiment 2; and Experiments 3 and 4 are
small and larger-sample experiments investigating the Load-Distance interaction.


