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Abstract.  We discuss several issues of statistical design, data collection, analysis, 
communication, and decision making that have arisen in recent and ongoing 
coronavirus studies, focusing on tools for assessment and propagation of 
uncertainty.  This paper does not purport to be a comprehensive survey of the 
research literature; rather, we use examples to illustrate statistical points that we 
think are important. 

 
1. Statistics and uncertainty 

 
Just as war makes every citizen into an amateur geographer and tactician, a pandemic makes 
epidemiologists of us all.  Instead of maps with colored pins, we have charts of exposure and 
death counts; people on the street argue about infection fatality rates and herd immunity the 
way they might have debated wartime strategies and alliances in the past. 
 
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought 
statistics and uncertainty assessment into public discourse to an extent rarely seen except in 
election season and the occasional billion-dollar lottery jackpot.  Statistical claims become 
political claims and vice versa, with political and ideological positions impacting how we interpret 
the meaningfulness and uncertainty of statistical results.1  As statisticians and epidemiologists, 
we attempt to contribute to this discourse by laying out some of the challenges that arise in 
assessing uncertainty and propagating it through statistical analysis and decision making.  We 
consider several examples and conclude with some general recommendations. 
 
Statistics is key throughout the life cycle of a scientific project, from design through data 
collection and analysis, and ultimately through communication of results for policy 
recommendations.  In the case of a pandemic like SARS-CoV-2, surveillance data are critical for 
assessment of current status and for future projection, and clinical measurements are vital for 
evaluating diagnostic tests and intervention efficacy.  Design includes sample-size calculations, 
determination of comparison groups, and time horizons, and randomization, and is critical in 
research to identify effective treatments and vaccines. Analysis includes evaluation and 
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estimation based on clinical studies as well as disease modeling studies for forecasting and 
decision support. Communication includes the challenge of drawing inferences and making 
decisions based on a variety of models and data sources. Uncertainty is present at each step.  
 

2. Data and measurement quality 
 
It is becoming painfully apparent that the numbers defining the global burden of SARS-CoV-2 
are at best uncertain and at worst completely wrong.  The bread and butter of disease 
surveillance—cases and deaths—are both suspect, for reasons that are only beginning to be 
fully understood. Studies that rely on these as inputs, for example for estimating transmission 
dynamics or case fatality rates, have commonly made the mistake of considering these 
numbers as a given (and reliable) and do not account for uncertainty or bias in reporting.  
 
Incidence, prevalence, and mortality.  There has been some compelling reporting on how the 
number of deaths reported in the first few months of the pandemic far exceeds what would have 
been expected at that time of the year, particularly in states like New York, along with analysis 
of poor alignment between burden and testing.2  There has also been good reporting about the 
confusion arising from differences across states in reporting of COVID-19-related deaths.3  

Some states have changed how they classify deaths due to COVID-19, leading to potential 
increases in death counts in some cases (e.g., by including suspected and confirmed SARS-
CoV-2 infections in Michigan) and reductions in death counts in others (e.g., Colorado’s removal 
of individuals with COVID-19 at the time of death but for which COVID-19 was not the attributed 
cause of death from the official COVID-19 death count).4,5 
 
One big question in the early phases of the pandemic was understanding how changes in test 
availability and distribution both between regions and groups, and over time (for example, as a 
result of inadequate infrastructure and reagent shortages), impacted our measurements of 
incidence, prevalence, and mortality, conditional on age and other demographic variables.  As 
the pandemic has worn on and the political and economic costs of high SARS-CoV-2 caseloads 
have become clear, these issues remain but have shifted from supply considerations to more 
social ones.  For example, political and economic calculations appear to have impacted the 
accuracy of reporting of nursing home deaths in New York State and may have contributed to a 
decline in asymptomatic surveillance testing in some states.6,7  Since progress in the pandemic 
in the U.S. has often been assessed using state-to-state comparisons, this has likely led to 
erroneous conclusions about what works and what doesn't, as well as misrepresenting the 
overall trajectory of the pandemic. 
 
Missing data can also have serious implications for making between-group comparisons.  For 
example, recent work has shown that race/ethnic disparities in COVID-19 incidence and 
mortality are likely to be dramatically underestimated in complete-case analyses when cases 
missing race/ethnicity are dropped.8  This suggests that the horrific disparities in COVID-19 
incidence and mortality are likely even larger than those reported in scholarly research and 
administrative reports.  It could be possible to leverage missingness of key covariates.  For 
example, death certificates typically have more complete information on race/ethnicity than case 
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reports, and a joint model could allow us to efficiently marginalize over these missing covariates, 
which in preliminary work reveals disparities in mortality that are considerably greater than when 
these data are dropped.9  Here we are using census data to inform the probability that people 
who are missing race/ethnicity data will be in the mortality vs. case-only data. 
 
One way to address data quality is to triangulate.  In a clinical study, a hospital can perform 
antibody tests and RT-PCR RNA tests on patients.  In a study tracking symptoms, data can be 
collected from multiple sources, as in the Carnegie Mellon project that tracks Facebook and 
Google surveys, hospital records, web searches and flu tests.10  When measurements cannot 
be easily calibrated, inferences can be sensitive to assumptions; for example, results of the 
controversial Stanford antibody study were dependent on assumptions about the sensitivity and 
specificity of the test.11,12  One additional challenge is the communication of uncertainty in these 
tests:  there is a desire to imagine that the binary test results are conclusive one way or the 
other instead of essentially representing a probabilistic statement about whether an individual is 
infected or not. 
 
Transmission dynamics. These issues are no less pronounced when contemplating 
population-level transmission dynamics. The basic reproduction number, 𝑅!, and its cousin the 
effective reproduction number, 𝑅, which measures the actual number of infections generated by 
an average case, are often cited as measures of inter-human transmissibility and epidemic 
control.  However, it is easy to forget that 𝑅!	and 𝑅 are not empirical quantities. They are 
estimated on the basis of surveillance data, which as noted above, is not as reliable as we might 
wish to believe. In addition, 𝑅 is a function of (a) the per-contact infectiousness of each 
individual and (b) the rate at which those contacts occur.  Reduce either or both of these and 
you are likely to reduce the rate of spread.  Additionally, both measures represent average 
estimates of a parameter subject to between-individual and temporal variation, due, for 
example, to variable compliance with social distancing efforts, variation in the extent of viral 
shedding or age specific differences in contact and infectiousness. This variation is widely 
understood in infectious disease epidemiology, and there are theoretical and statistical modeling 
frameworks that allow us to account for inter-individual variability in susceptibility and 
infectiousness.  
 
Drivers of variation in infectiousness and susceptibility at an individual or population level can be 
studied using a hierarchical approach.  In this area, there are at least three key dimensions of 
uncertainty that we need to consider:  (1) What range of values of the average infectiousness is 
consistent with the observed data?  (2) How much between-individual variation is there in 
infectiousness/susceptibility, and how much does it matter to address it specifically?  (3) If we 
implement an intervention to reduce the value of 𝑅!, how can we estimate how well it worked? 
 
The Imperial College group has fit some reasonable models trying to untangle effects of 
different policies on the spread of coronavirus, making use of variation in space and time of the 
growth rates of the infection, and similar issues arise with variation in vaccine uptake.13,14 
 

3. Design of clinical trials for treatments and vaccines 
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Part of designing a study is accounting for uncertainty in effect sizes.  Unfortunately there is a 
tradition in clinical trials of making optimistic assumptions in order to claim high power.  Here is 
an example that came up in March, 2020.  A doctor was designing a trial for an existing drug 
that he thought could be effective for high-risk coronavirus patients.  He contacted one of us to 
check his sample size calculation:  under the assumption that the drug increased survival rate 
by 25 percentage points, a sample size of N = 126 would assure 80% power.  (With 126 people 
divided evenly in two groups, the standard error of the difference in proportions is bounded 
above by √(0.5*0.5/63 + 0.5*0.5/63) = 0.089, so an effect of 0.25 is at least 2.8 standard errors 
from zero, which is the condition for 80% power for the z-test.)  When we asked the doctor how 
confident he was in his guessed effect size, he replied that he thought the effect on these 
patients would be higher and that 25 percentage points was a conservative estimate.  At the 
same time, he recognized that the drug might not work.  We asked the doctor if he would be 
interested in increasing his sample size so he could detect a 10 percentage point increase in 
survival, for example, but he said that this would not be necessary. 
 
It might seem reasonable to suppose that a drug might not be effective but would have a large 
individual effect in case of success.  But this vision of uncertainty has problems.  Suppose, for 
example, that the survival rate was 30% among the patients who do not receive this new drug 
and 55% among the treatment group.  Then in a population of 1000 people, it could be that the 
drug has no effect on the 300 of people who would live either way, no effect on the 450 who 
would die either way, and it would save the lives of the remaining 250 patients.  There are other 
possibilities consistent with a 25 percentage point benefit—for example the drug could save 350 
people while killing 100—but we will stick with the simple scenario for now.  In any case, the 
point is that the posited benefit of the drug is not "a 25 percentage point benefit" for each 
patient; rather, it's a benefit on 25% of the patients.  And, from that perspective, once we've 
accepted the idea that the drug works on some people and not others—or in some comorbidity 
scenarios and not others—we realize that "the treatment effect" in any given study will depend 
entirely on the patient mix.  There is no underlying number representing the effect of the drug.  
Ideally one would like to know what sorts of patients the treatment would help, but in a clinical 
trial it is enough to show that there is some clear average effect.  Our point is that if we consider 
the treatment effect in the context of variation between patients, this can be the first step in a 
more grounded understanding of effect size.  
 
Many other issues arise when considering clinical trial designs in a pandemic, most notably 
balancing the goal of reducing uncertainty about the treatment effect and the goal of getting a 
treatment or vaccine into the population as soon as possible.  We recommend that policymakers 
attempt to quantify the potential risks and benefits of early or late decisions in the design stage, 
rather than relying on power calculations based on statistical significance.  
 
One issue that arises is what to make of different vaccine efficiency estimates coming from 
studies conducted at different points in time, in different contexts, and potentially with a 
differential mix of pathogens floating around?  The estimates that are commonly reported refer 
to symptomatic infection.  For the purposes of arresting the toll of mortality in the COVID-19 
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pandemic, it is most important that vaccines prevent severe disease and death. From this 
perspective, all the available options do a good job.  Arguably this is the number that should be 
emphasized for the public.   
 

4. Disease transmission models 
 
Infectious disease transmission models have been held to unprecedented and deserved 
scrutiny during the COVID-19 crisis. The field of infectious disease modeling finds its roots in 
the work of Ross15 on malaria, using mathematical tools to describe the complex relations 
between parasites, vectors, and hosts.  Ross defined the concept of dependent happenings, 
whereby the frequency of an event such as an infection in an individual depends on the number 
of individuals already affected.16  Kermack and McKendrick17 formalized this approach, leading 
to the development of the SIR (susceptible-infectious-recovered) differential equation system 
that is still the basis of many of the models used for SARS-CoV-2 today.  In the SIR model, the 
processes of contagion and immunity are modeled following the mass action principle:  the 
incidence of new infections is dependent on the proportion of infectious and susceptible 
individuals in the population, assuming homogeneous mixing.  In the following decades, the field 
of infectious disease modeling has seen tremendous development but has long been kept 
separated from statistical modeling and inference.  The focus was on putting theory into 
equations and exploring different scenarios, leading to important developments in the 
development and understanding of interventions aimed at controlling epidemics such as 
vaccines or vector control.  Until recently, comparatively less attention has been given to 
statistical concepts such as inference, measurement, and uncertainty. 
 
Several types of approaches have been used to model the transmission of SARS-CoV-2, 
depending on the stage of the epidemic and the objectives of the work. 
 
Whether the objective of a model is inference, forecasting, or intuition-building, the handling of 
uncertainty should be a central concern.  We can distinguish three sources of uncertainty: 
 

1. Stochastic uncertainty arises from chance events during the course of transmission 
(whether a contact between an infectious and a susceptible person will result in 
transmission) or data generation (sampling variation in infected individuals that are 
reported as cases).  

2. Parameter uncertainty represents the imperfect level of knowledge of a particular 
quantity, such as the average duration of the incubation period which is a fixed input 
parameter to most transmission models.   

3. Model (or structural) uncertainty refers to the set of assumptions underlying any 
modeling attempt and their adequacy to reality.18  To avoid overconfidence, especially 
when results are expected to impact policy, one should acknowledge and discuss the 
potential impact of each of these sources of uncertainty, and as often as possible directly 
propagate the uncertainty into the results. 
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Case example:  Estimating transmission rates from early reports.  In the early stages of the 
emergence of SARS-CoV-2 in Wuhan, China, a key focus was estimating the basic 
reproduction number 𝑅! from data on reported cases of SARS-CoV-2 infection. 𝑅! is defined as 
the average number of secondary cases that are generated by an infectious individual in a fully 
susceptible population.  In the first few weeks after its emergence, it was reasonable to assume 
that the population was fully susceptible to SARS-CoV-2 infection, allowing the use of simple 
models based on branching processes or exponential growth. Estimating 𝑅!from counts of 
reported cases constitutes a typical inference problem and must account for important 
considerations regarding stochastic, parameter, and model uncertainty. 
 
Stochastic uncertainty.  In the context of emerging pathogens, stochastic uncertainty can be 
important, and at the stage at which few people are affected, any outlier behaviour can have a 
strong impact on the course of the disease.  One key component here is the assumed 
distribution in the number of secondary cases. In a totally susceptible population, its average is 
by definition 𝑅!, but this can vary from individual to individual, with the extreme being a 
superspreading event (defined as an usually large number of secondary cases generated by a 
single infectious person).  Superspreading events can have a considerable impact in the early 
stages of disease emergence by accelerating the spatial spread of the pathogen, as was seen 
during the emergence of Middle-East Respiratory Syndrome coronavirus.19  Two introductions 
of the same pathogen with the same transmissibility (i.e., with the same 𝑅!) can result in vastly 
different epidemic trajectories.  Consequently, it would be a mistake to overinterpret differences 
in case counts across countries or areas as differences in transmissibility, especially when the 
number of cases is small.  Similarly, the uncertainty stemming from low case rates constrains 
the ability to make informative comparisons across time and space, for instance to identify the 
causal impact of specific mitigation measures or environmental drivers such as temperature or 
air pollution.20  Individual heterogeneity and the potential for superspreading events can be 
accounted for using a negative binomial distribution for modeling the number of secondary 
cases.21 
 
Parameter uncertainty.  Examining the mechanisms leading to the generation of count data 
gives insight about the basic assumptions that will explicitly or implicitly be part of any attempt at 
parameter estimation:  (1) an initial zoonotic event led to the infection of a number of humans on 
a given date; (2) each of these cases generated secondary cases (𝑅! cases on average, with a 
distribution as discussed above); (3) each of these secondary cases generated cases, with a 
delay that corresponds to the generation time (the gap between two successive generations of 
cases, which also is a random variable, not a constant); (4) infected cases will have an 
incubation period, some of the cases will have symptoms, some of the symptomatic cases will 
seek care, some of the patients will be tested and diagnosed, some of the diagnosed will be 
reported to the authorities and counted as a case.  From these observations, we understand 
that is not possible to estimate at the same time 𝑅!, the date and size of the initial zoonotic 
event, the incubation period, and the generation time from information about the incidence of 
SARS-CoV-2, as several combinations of these parameters may lead to the same data.  To 
estimate 𝑅!, it is therefore necessary to incorporate external information about the other 
parameters.  Here enters parameter uncertainty, as overconfidence about the initial conditions 
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or the generation time could result in both systematic bias in estimation and overconfidence—
not enough uncertainty—about the value of 𝑅!. 
 
Model uncertainty.  Thinking about the mechanisms of data generation brings further 
considerations about model uncertainty.  As of April 2021, much remains unknown about the 
specific factors, timing, and location of the emergence of SARS-CoV-2 at the end of 2019.22  

Putting aside any political aspect, the early phase of emergence of an unknown pathogen is 
always a chaotic matter, and modeling the transmission of SARS-CoV-2 and other emerging 
pathogens requires strong assumptions about how the data were generated.  For instance, 
some authors took the number of reported cases in Wuhan in the first few weeks at face value 
and directly inferred the rate of exponential growth and thus 𝑅!, implicitly assuming that the 
proportion of ascertainment (the proportion of cases that end up in the data) was constant over 
the period considered.23,24  Other authors made explicit assumptions about the shape of 
variation of ascertainment with time.25  Rather than making assumptions about ascertainment in 
Wuhan, other authors prefered to use data on national and international cases of SARS-CoV-2 
identified in areas still unaffected by the turmoil together with traffic data.26,27,28  However, this 
approach carries other assumptions about the representativity of people who traveled from 
Wuhan to other places.  Differences across estimates based on different assumptions may be 
referred to as model uncertainty, and this in itself is a good reason to consider multiple 
approaches to study the same issue. 
 
Accounting for nonstationarity.  Beyond the first few weeks following emergence, it becomes 
more and more implausible to ignore the impact on transmission of disease-related behavior 
and the accumulation of protective immunity in the population. Whether the objective is 
prediction or inference, it is essential to account for how behavior and other factors contributing 
to transmission—and observation—may change over time.  The two broad categories of 
transmission models typically employed can be adapted to this task, but it increases challenges 
of model identifiability and interpretability.   
 
Agent-based models can be used to simulate the detailed behavior and biology of each 
individual, going as far as to simulate every vehicle moving in a country.29  These models can 
provide useful insight but are often difficult or impossible to fit to data. In contrast, 
compartmental models divide the population into different states (susceptible, infectious, and 
removed for the classical SIR model), without considering any difference among individuals 
within a state.   
 
Compartmental models may be considered within a stochastic or a deterministic framework.  
The stochastic framework considers the probability of occurrence of each event at each time 
step, and as hinted by its name, is better suited to handle stochastic uncertainty.  The 
deterministic framework relies upon solving systems of ordinary differential equations (ODE) 
and leads to the same average results when the number of infected is sufficiently large.  The 
reduction in computational cost associated with solving ODEs instead of simulating a large 
number of events is important when the objective is inference.30 
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Alternative approaches.  A third, hybrid approach was developed by the Institute for Health 
Metrics and Evaluation (IHME), fitting a Gaussian curve to the shape of the epidemic’s mortality 
trajectory, estimating how restrictions including social distancing enacted in China impacted the 
time to and height of the peak, and then extrapolating to other settings on the basis of their 
accumulating mortality data.  The assumption of symmetry in the rise and fall of cases, coupled 
with the rapid rise in cases and deaths in almost every region, meant that the IHME model 
predicted a much more rapid decline than other models.31,32   As the virus spread across the 
U.S., problems with the model became clear, and the IHME replaced it with a hybrid empirical-
compartmental approach.  
 
Following this and other failed attempts at prediction, people have mostly given up on 
forecasting the incidence of COVID-19 beyond a few weeks.  While transmission models bring 
important insights about the general dynamics of an epidemic (e.g., concepts such as herd 
immunity, vaccine threshold, and final epidemic size), after a year in it is now more widely 
understood that the incidence of COVID-19 cases and deaths at a given time and place 
depends on too many converging factors to allow useful forecasting.  These factors range from 
diversity in the viral population, potential seasonality in transmissibility and contact, to variations 
in risk perception, care-seeking behavior, and vaccine uptake that can in turn be influenced by 
age, education and socio-economic status.  To some extent, this represents something of a 
bright spot, or at least a lesson learned about the limits of models and data as tools for decision 
making in a complex, fast-moving situation.  
 
How can we make better use of models to measure and manage uncertainty?  None of this 
is an argument against using transmission models to look at potential epidemic trajectories; 
rather we are arguing for greater transparency and humility in making projections.  Examples of 
how to accomplish this include the following recommendations, summarized in Table 1: 
 
Model-based predictions should incorporate stochastic uncertainty by including prediction 
intervals in addition to point estimates.  For time-series predictions, visualizations of entire 
trajectories using tools such as spaghetti plots, showing the impact of propagating uncertainty 
throughout the run of a model, should be preferred over simply plotting the intervals over time.  
 
Parameter uncertainty should directly be propagated in the results.  The quantification of 
uncertainty in the model outcomes is an integral part of the results and should not be relegated 
to the side as sensitivity analyses.  In this regard, the Bayesian framework with its focus on 
parameter probability distributions is attractive.   
 
Model uncertainty can be handled by carefully considering whether the model structure and all 
relevant assumptions (even implicit) are adapted to the question as well as using technical tools 
such as stacking.33  Conducting sensitivity analyses with alternative models is always sensible, 
but there is only so much than a team can do about its own model.  It is advisable to rely on 
other researchers and experts to provide critical assessment of the model by releasing code 
and data on an appropriate platform.  Model uncertainty is best assessed by the community, 
and this requires transparency.  Code sharing will also bring to academia much-needed good 
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practices for programming, and in the long run build more confidence in the field of infectious 
disease modeling.  Ideally, this process of collective validation would take place before new 
emergencies occur, in some sort of disaster model pre-registration.  Disease transmission 
models are often not entirely disease-specific but rather have defining features that relate to the 
modes of transmission and immunization.  This appears in the profound influence that influenza 
models and other SEIR-like models had over models applied to the SARS-CoV-2 pandemic.  
 

Source of 
uncertainty 

Interpretation Recommendations 

Stochastic 
uncertainty 

Chance events in data-
generating mechanisms 

- Acknowledge variability at all levels by 
using appropriate probability distributions 
 
- Present the entire range of possible 
predictions arising from the fitted model 
rather than measures of statistical 
significance 

Parameter 
uncertainty 

Imperfect knowledge of 
influential quantities 

- Propagate uncertainty from parameters 
through the results and predictions 
 
- Make use of Bayesian hierarchical models 
to partially-pool information across 
individuals, locations and other units of 
analysis 

Model 
uncertainty 

Set of assumptions underlying 
the model 

- Maximize transparency with open code 
and public release of data to allow 
replication 
 
- Pre-register modeling assumptions in 
advance of analysis 
 
- Compare the inferences and predictions of 
multiple plausible models rather than 
searching for the “one true model” 

 
Table 1. Summary of the different sources of uncertainty and recommendations on how to 
address them. 
 
 

5. Multilevel statistical modeling 
 
So far we have discussed accounting for uncertainty in research design, data collection, and 
transmission modeling during epidemics.  In addition, data analysis using regression and 
regression-like models can account for uncertainty and variation using multilevel modeling all 
the way, and decision making can be based on costs and benefits estimated using model 
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outputs, and not statistical significance. We have relatively little to say about statistical analysis 
of this sort because this is one area in which there are readily-available tools to handle 
uncertainty and variation. 
 
We are aware of several SARS-CoV-2 analyses that make use of multilevel models and 
Bayesian inference. Unwin et al.13 is an analysis by the Imperial College group that partially 
pools across U.S. states, and they have presented similar analyses for Europe.34,35  Zelner et al. 
36 used a multilevel approach to capture age-specific and race-ethnic variation in SARS-CoV-2 
mortality in Michigan.  A partial list has been collected of SARS-CoV-2 projects using the 
Bayesian inference engine Stan.37  Bayesian analysis can also be performed in the data 
collection stage, allowing more efficient designs.38 
 
A challenging issue with statistical models fit during an ongoing epidemic is dealing with 
unobserved or partially observed data.  Well-designed dynamic models that account for time-
varying observation processes can deal with some of these issues, but approaches for fitting 
stochastic dynamic models to partially-observed time-series data, such as the partially observed 
Markov process framework,39 are typically more computationally and technologically challenging 
than more familiar regression-like approaches for fitting deterministic models.  As a result, 
deterministic models have had wide influence, despite their weaknesses and often in situations 
where demographic stochasticity of the transmission process should be accounted for.  
 
Somewhat ironically, early statistical inferences for epidemic models were actually rooted in a 
stochastic approach known as the TSIR (time-series SIR) model which was originally used to 
account for time-varying birthrates and demographic stochasticity in models of measles 
transmission.40  An appealing aspect of the TSIR is that it is just a transformation of a regression 
model and so is accessible to researchers and policymakers with statistical training.  
Unfortunately, due to the data preparation required to fit them, TSIR models are most useful for 
the analysis of strongly immunizing infections such as measles in which the susceptible 
population can be accurately reconstructed using data on birthrates and historical measles 
incidence.  As a result, for other infections characterized by different dynamics, more complex 
and technically challenging approaches, such as the aforementioned partially observed Markov 
process framework, have become useful.  
 

6. Communication 
 

To effectively communicate the results of analyses conducted during the pandemic, what they 
are meant to accomplish needs to be clear.  In the context of the COVID-19 pandemic, this 
raises the problem of effective scientific communication to the central place it has always 
belonged.  This includes communication of key dimensions of uncertainty in risk.41  One of the 
key challenges here is familiar:  how does one impart a gestalt understanding of an interval 
statistic, such as a confidence or credible interval, to as broad of an audience as possible?  Van 
der Bles et al.42 provide evidence that people recognize uncertainty when presented as an 
interval and that communicating this openly does not undermine trust in the numbers or 
message, with verbal expressions of uncertainty being less effective.  Another challenge relates 
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to communication of the different ways in which uncertainty arises and the difficulty of picking 
one apart from another.  For example, what do we do when we can’t disentangle process noise, 
observation noise, and observation bias?  We recommend more emphasis on accurately 
communicating uncertainty in model inferences and predictions, as discussed by Hullman et 
al.43 
 
Much of the controversy surrounding the multiple transmission models used for prediction and 
planning could be mitigated by a more pragmatic reframing of what these—and all mathematical 
and statistical models—are all about.  Namely, they distill assumptions and data into inferences 
for outcomes of interest.  Understood this way, they are primarily tools for dimension reduction 
and exploration, rather than divining rods. 
 
One thing we keep hearing in conversations with state government officials is a concern that 
people just don’t understand when they are at risk.  Maps and other visuals can give a realistic 
and visceral sense of what that risk looks like.  Many questions of science communication arise 
here that relate specifically to the translation of theory into models and models into spoken and 
written language.44  Also relevant when mapping science into decisions is what Blastland et al.45 
call "evidence communication," where the goal is not to convince or nudge people to act in a 
particular way but rather to "offer evidence in the round" by conveying estimated quantitative 
benefits and harms, including numerical uncertainty measures, and anticipating and responding 
to potential areas of confusions. 
 
Another problem relates to the communication of uncertainty in the structure of the models 
themselves.  We've seen an appetite both from the public and from modelers themselves to find 
the one true model, with the George Box quote proclaiming that “all models are wrong” (which, 
like the term "social distancing," we hope never to hear again after this year) tacked on to 
papers and talks as a fig leaf.  But we believe the only way forward is to truly metabolize this 
argument:  What if the challenges and failures of prediction and forecasting in this pandemic are 
not to be overcome by more elbow grease and ingenuity, but instead require moving the 
inferential and predictive goalposts to better align with what the available data can tell us? 

 
7. Information aggregation and decision making 

 
In addition to quotidian difficulties of accounting for uncertainty that have occupied statisticians, 
and epidemiologists for hundreds of years, the pandemic setting adds challenges of urgency, 
novelty, high stakes, and nonstop change. 
 
There has been vigorous debate in the news media, social media, and governments regarding 
possible future paths of the epidemic and how best to mitigate it.  One thing that troubled us in 
the earliest phases of the pandemic response was the emphasis on rapid analysis of complex, 
incomplete datasets, followed by rapid publication and extensive media coverage.  Rapid 
response is not inherently problematic, but the conjuring of theoretical frameworks and analytic 
tools on the fly is unlikely to benefit many more people than the authors of the study.  Instead, 
this makes more sense when you have an existing framework and set of tools that you can 
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apply with minor modifications to incoming data, as was the case with a number of groups 
enlisted in the earliest days of the pandemic, including IHME as well as Imperial and other 
groups. 
 
This leads us to wonder whether some kind of disaster model pre-registration is in order for 
future events, so that the generic behavior of the set of potential tools is well understood before 
being pressed into services.  This could be looser than a clinical trial registration but at least 
gives the key data inputs and outputs and some characterization of expected behavior under 
different scenarios.  Critically, some type of standardization would give the ability to engineer 
connections between different types of analyses, so that information on, for example, variable 
PCR testing across geographic areas and demographic groups, can be easily used to inform 
estimates of disease incidence and prevalence.  
 
This takes us back to the motivating question behind this essay:  How can we adequately 
account for uncertainty in a pandemic?  The question is probably better reframed as:  How can 
we be better prepared to address the uncertainty inherent in the response to the next pandemic 
or another catastrophic, unforeseen—but foreseeable—event.  An answer to this question may 
lie in a reimagining of the tools of epidemiological modeling from something that looks a bit 
more like the engineering perspective and a bit less like the "pure science" perspective.  This 
entails a move away from analyses as one-off exercises that uncover some permanent—or at 
least durable—truth, towards a more software-like, continuous-improvement conception of the 
products of statistical analysis.  
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