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Abstract: Statistical theory affects statistical practice in- two ways: by
suggesting methods for us to try, and by giving us confidence in some
of our conclusions. We discuss both of these issues in the context of
a Bayesian analysis in toxicokinetics. Key areas of statistical theory
that have been helpful to us so far are Bayesian inference, Markov chain
simulation, and hierarchical modeling. Other areas, for which more the-
ory is needed, are parameter transformations for madel simplification,

modeling of correlations, and posterior predictive model checking and
sensitivity analysis.
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1 Introduction

The theme of this volume is “good statistical practice in scientific data analysis.”
Of particular interest to statisticians is the relation of statistical theory to good
statistical practice. We explore this issue in the context of a particular problem in
toxicokinetics (the study of the flow and metabolism of toxins in the body) studied
by a toxicologist (Bois) with the help of a statistician (Gelman). We begin in Section
1 with some background (see Bols ET AL., 1996, and GELMAN, BoIs and JIANG,
1996, for details of the problem and our analysis) and a discussion of why we felt the
need to use elaborate statistical methods. In Section 2, we discuss the key places
where statistical theory was crucial in allowing us to follow the principles of good
statistical practice. In Section 3, we discuss areas of “good statistical practice” (in
this example) where we feel that there is room for more statistical theory to be
developed. We conclude in Section 4 with a short discussion,

Very briefly, we identify statistical theory with the following topics: probability
and distribution theory; algorithms for statistical computation; formal procedures
for inference, testing, and prediction; and evaluation of the probability distributions
of statistical procedures. As “good statistical practice,” we include: data collection;
inclusion of all relevant information in the statistical analysis; relating statistical
models to scientific quantities of interest; recognizing variability in populations; rec-
Ognizing uncertainty in inference, testing, and prediction; checking the adequacy of

statistical procedures; and using graphical displays to understand data and infer-
ences,
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Figure 1: Estimated fraction of PERC metabolized, as a function of steady-state
concentration in inhaled air, for 10 hypothetical individuals randomly selected from
the estimated population of young adult white males.

1.1 Background

Tetrachloroethylene {also called perchloroethylene and-abbreviated PERC) is one of
many industrial products that cause cancer in animals and ig believed to do so in
humans as well. PERC is breathed in, and the general understanding is that it is
metabolized in the liver and that its metabolites are carcinogenic. Thus, a relevant
“dose” to study when calibrating the effects of PERC is that metabolized in the
liver. Not all the PERC that a person breathes will be metabolized and, because of
saturation mechanisms, the fraction metabolized depends on the rate of intake. We
were focusing on estimating the fraction of PERC metabolized as a function of its
concentration in the breathed air, and how this function varied across the population.
This particular work was funded by health and envirenmental regulatory agencies
that were interested in the exposure to PERC of the general population. To give
an idea of what we are talking about, we skip ahead to show some output from
our analysis. Figure 1 displays the estimated fraction metabolized as a function of
concentration in air, for 10 randomly selected draws from the estimated population
of young adult white males (the group on which we had data).

Figure 1 has two key features: extrapolation to low exposures, and population
variability. It was not possible to estimate either of these with reasonable confidence
using simple procedures such as direct measurement of metabolites {difficult even at
high doses and not feasible at low doses) or extrapolation from animal results. So it
was decided to fit a tozicokinefic model; that is, & mathematical model of the flow
of the toxin through the bloodstream and body organs, and of its metabolism in the
liver. “Figure 1” could then be estimated in two steps, which we in fact followed:

o Estimate the parameters of the toxicokinetic model from indirect measure-
ments (concentrations of PERC in the blood, inhaled air, and exhaled air,
over time) in experimental data. Use data on several individuals to estimate
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Figure 2: Concentration of PERC in exhaled air and in blood, over time, for one of
two replications in each of six experimental subjects.

the population variability of the parameters.

¢ Compute the curves in Figure 1 given the toxicokinetic model and the esti-
mated parameters.

In the standard model, which we used, the toxin enters and leaves through the
breath, is distributed by blood flow to four “compartments” —well-perfused tissues,
poorly-perfused tissues, fat, and the liver—and is metabolized in the liver. About
15 toxicokinetic parameters govern the model behavior: the equilibrium concentra-
tion ratios between air and blood, or blood and bodily tissues; the volumes of the
compartments; the blood flows between compartments, and the rate and capacity
of the metabolism in the liver. The model specifies, through differential equations,
the time evolution of the concentration in the blood, lungs, and the four compart-
ments and the quantity of metabolites formed, as a function of the input which
is the concentration in the inhaled air. We can use the model’s predictions about
corcentration in exhaled air and blood to estimate its parameters,

A sample of the experimental data we used is shown in Figure 2. Each of
several volunteers was exposed to PERC at a high level for four hours (believed
long enough for the PERC concentrations in most of their bodily organs to come
to equilibrium) and then measured over a period of a week. In addition, the data
on each subject were replicated, and measurements such as body weight and fat
content were recorded.

A key issue in the modeling is: how many compartments should be included?
The more compartments, the more realistic the model but the harder it is to fit. At
One extreme is the one or two-compartment model which, given data from several
stbjects, can be estimated reasonably precisely without the need for prior infor-
mation (see WAKEFIELD, 1996). However, these simpler models provide a poor fi
to our data and, more importantly, do not have the complexity to accurately fit
varying exposure conditions. (For example, if the concentration of PERC is high in
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your workplace and low at home, then your fatty tissues can store excess PERC at
the workplace, then release it into your bloodstream at home.) For this problem,
four compartments seemed necessary: the liver (where metabolism occurs), fatty
tissues (where the toxin can be stored), and other tissues (divided into well and
poorly-perfused to model immediate and longer-term reactions to changes in input
conditions). This model has a long history in solvent toxicology modeling and has
been shawed to reproduce most features of such datal.

1.2 Why complicated statistical methods were needed

The preceding section described why an elaborate model was used. Before going
on, let us discuss briefly why fancy statistics (rather than just something simple like
least squares) were needed to estimate it. First, multicompartment models are hard
to estimate from indirect data. That is, given a set of measurements such as shown
in Figure 2, there are many combinations of parameter values, some of which make
no scientific sense, that will fit the data about equally well. In numerical analysis
terms, this is an “ill-posed problem”——actually, close to the problem of estimating
the parameters in a mixture of declining exponential distributions. So we need to
find parameter values that fit both the data and our prior understanding. Second,
we are interested in estimating population variability, which means, in particular,
distinguishing this from estimation uncertainty. At this point, formal Bayesian
inference seemed to be the easiest way to attack the problem.

Following GELMAN ET AL. (1995), we divide the statistical analysis into three

steps: modeling, inference, and model checking. Throughout, there were three key
issues we had to deal with, which roughly corresponded to the three steps of analysis:

1. A physiclogical pharmacokinetic model, which has many parameters and in-
volve differential equations, is inherently complicated and much harder to un-
derstand than statistical standbys such as regressions and mixture models.

9. As noted above, the model's parameters are hard to estimate accurately from
indirect data.
3. Finally, the model is inherently oversimplified, most notably in that it assumes

that each compartment is in internal equilibrium at all times, and that it
assumes the parameters are constant over time.

2 Help from statistical theory so far

Without modern statistical theory, we would not have been able to have come close
to the amount of scientific progress that we achieved in this problem. Cur most
important theoretical tools were Dayesian inference, Markov chain Monte Carlo

1However, for other compounds {e.g-, butadiene}, a two-compartment model can fit well.
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sampling, and hierarchical modeling. To see why, let us describe the state of the
analysis before the statistical theory had arrived.

2.1 Toxicokinetics without statistical theory

What is done today by toxicologists who do not team up with statisticians? The
toxicokinetic models make scientific sense, but they are often unnecessarily com-
plicated. To cope with their complexity, highly uncertain parameters are assumed
known, so that parameters can be estimated. With no good plan for estimation,
the designs for data collection are not focused on the outcomes of interest. Mode!
parameterization can be based on visual fits to data, and model checking reduces
to statements like “the fit looks nice” when no formal fitting has been done. No
measures of uncertainty are given for parameters or predictions except purely from
independent prior distributions on parameters.

To be clear, we should distance this from pharmacology, where the drugs more
often have simple kinetics (for reasons linked to their molecular structure), the drugs
usually act directly, and measuring or predicting the drug level in blood or plasma
does a good job at getting at an effective dose. In addition, pharmacologists have a
strong motivation to accurately measure drug effects, and relatively clear evidence:
they give high levels of compounds to already sick people, and these chemicals are
pretty active. Money and lives are directly at stake, and the researchers must present
clear proofs of safety and efficacy, and statisticians have been vetting these analyses
for quite a while. So, in pharmacology they can use (often) simple models® and they
have been trained to deal with them rigorously.

In contrast, toxicologists often have study complicated pathways, have never

" thought about issues of variability (rarely having to deal with real people in bad
shape and able to sue them, usually using healthy animals which look all the same, so
the toxicologists forgot about inter-individual variability}. Usually the effort goes to
trying to prove that the chemical is ineffective (that is the industry’s interest, and it
has a big bearing on experimental design) or understand qualitatively how it works,
rarely thinking in quantitative terms. This is changing, but slowly. Impetus for
change comes in part from the interest in risk assessment for the range of individuals

in the population.
2.2 Areas of theory that have directly improved the practice
of data analysis in toxicokinetics

So where did statistical theory help in our analysis? First, as described in Section
1.2, it was possible to estimate the four-compartment model only with the use of

Z_More complicated models do have their place in pharmacokinetics, however. For example,
LUpDDEN, GILLESPIE and BACHMAN (1995) discuss the possibility of physiologically-based phar-
macokinetic models to help with complex drug problems (some drugs do act via several metabolites,
have complicated kinetics, and so forth).
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prior information {from the biomedical literature) on the physiological parameters.
work for incorporating this prior infor-

Bayesian inference provided a good frame

mation, when augmented with some special techmiques of our own (for example,
bounding the prior distributions of parameters at =3 standard deviations, and then
checking that the posterior distributions were not concentrated at the boundary
of parameter gpace—that is, that the model and data fit the prior distributions).
Other, less theoretically-developed ways of including the information—for example,

setting some parameters to fixed values and estimating the others—did not allow

the model to fit the data accurately.

Yecond, it was only possible to find parameter values that fit both the data and
the prior knowledge (in Bayesian terms, to explore the posterior distribution) by us-
ing Markov chain Monte Carlo simulation, an area of active theoretical research in
statistics (see GILKS, RICHARDSON and SPIEGELHALTER, 1996). The previously-
tried strategy of sampling from the prior distribution simply did not discover good
fits to the data. In addition, new research on efficient simulation algorithms (GEL-
MAN, RoBERTS and GILKS, 1996), motivated by this project, was helpful in reducing
the computation time required for this and subsequent projects.

Third, hierarchical modeling was crucial in distinguishing population variability
from parameter uncertainty, as discussed in Section 1.2. Statistical theory for hier-
archical models, developed only in the past few decades, allows us to simultaneously
estimate individual parameters along with their population distribution.
technical developments smoothed our path and allowed
ded as closely as possible to our scientific under-
ions of the parameter space to allow a natural
quired theory in the form of a new
d simulation-based posterior predic-

Fourth, many individual
us to fit a model that correspon
standing. These included transformat
modeling for constrained parameters (which re
computational method; see GELMAN, 1995), an
tive model checking (discussed more in Section 3.2).

3 Help from future statistical theory?

In this section we discuss the areas in our data analysis where we believe there is

the potential for new statistical theory to be helpful.

3.1 Constructing the model

t informative prior distxibutions, it was necessary to parame-
terize the problem in 2 meaningful way so that, for example, the four compartments
referred to recognizable bodily organs (this would not be reasonable in a one or two-
compartment model). As mentioned at the end of Section 2.2, the parameters were
transformed so that their values would be more similar across the population. For

example, instead of the volumes each of the four components, we worked with their

volumes relative to total body volume. In general, the practical advice is always to

To be able to construc
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transform data and parameters so that they are more understandable and easier to
model accurately. Existing statistical theory, which focuses on transformations to
additivity and normality, has not yet caught up with good practice. We believe that
more theoretical work needs to be done on the transformations to parameterizations
where a given set of prior knowledge will be maximally informative.

In addition to reducing the population variance (thus allowing more informa-
tion to be shared among individuals in the Bayesian analysis), the transformations
made it more plausible for us to assume independent prior distributions on our
15 individual-level parameters. This relieved a potential burden of modeling and
computing with a big covariance matrix, but left us awaiting more statistical the-
ory on the effects of ignoring parameter correlations in a multivariate hierarchical
model, Our understanding goes something like this: suppose parameters o; and f;
are positively correlated across the population of individuals j, but we ignore this,
assuming a zero correlation in our model. Then we will certainly be mistaken in
our predictions about additional individuals in the population—but for the indi-
viduals on which we have data, we are merely reducing the efficiency of inference
{compared to the analysis that accounts for the true correlation) by not allowing
information about oy to be useful in estimating #; and vice-versa. But we are not
aware of any theoretical results that directly address this question. One problem
is that the notion of “bias” is not easily translatable to hierarchical models, where
clagsical “unbiased” estimates are gencrally undesirable even if possible (see, e.g.,
pp. 108-109 of GELMAN ET AL., 1995).

Now here’s an issue we’ve swept under the rug: our model, as described so far,
is deterministic! Given the parameters and input conditions, it predicts the outputs
exactly. This of course will not fit any real data. We then simply assumed the errors
were independent and normally distributed (on the log scale}. The relevant practical
advice is to put “error terms” at all levels of your model, to reflect that it won't fit
reality and so that it will not overfit your data. For our example, the problem was
certainly model misfit and not measurement error. Much statistical theory has been
developed on the topic of model errors, from simple {distributions of error terms} to
complex (stochastic differential equations that put the error inside of the model)—
although in this example, we only felt the need to do the simplest thing, If short-
term kinetics were of interest, it might have been necessary to model the errors more
carefully. For our purposes, we were concerned not with the distribution of the errors
but with their magnitude. Figure 3 shows a scatterplot of the relative prediction
errors of all our observed data (that is, observed data divided by their predictions
from the model) along with their estimated values from the deterministic part of
the model. (Since the analysis was Bayesian, we have many simulation draws of the
barameter vector, each of which yields slightly different predicted data. Figure 3, for
simplicity, shows the predictions from just one of these simulation draws, selected
at random.) The magnitude of the errors {most no larger than a factor of 1.5) was
reasonably low compared to other fits of this kind of data, so we were satisfied.
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Figure 3: Observed PERC concentrations (for all individuals in the study) divided
by expected concentrations, plotted vs. expected concentrations. Note the different
scales on the (Jogarithmic) x and y-axes: observations vary by a factor of 10000,
but the relative errors are mostly between 0.8 and 1.25. Because the expected
concentrations are computed based on a random draw of the parameters from their
posterior distribution, the figure shows the actual misfit estimated by the model,
without the need to adjust for fitting.

3.2 Checking and understanding the model

A key step of data analysis, historically often ignored in the theory of Bayesian
statistics, is to check the fit of the model to data and other substantive knowledge.
In the toxicokinetics example, this began with the realization that fitting the model
freely to data, with no constraints on parameters, led to nonsense such as an 8-
kilogram liver, because the model was not well constrained by the indirect data used
to fit it. The first step in checking the Bayesian model was thus to check that the
posterior inferences were reasonable—that they agreed with the prior distribution.
They did so. Although the Bayesian approach is intended to compromise between
the data and the prior distribution, it can happen that the model is such a poor
fit that the result close to neither the prior distribution nor the data. Thus, we
also checked that the model predictions were close to the data. The fit of the data
to their predictions, from a single random draw from the posterior distribution, as
shown in Figure 3, is acceptable.

The theory that has been developed for this “good statistical practice” is based
on the idea of hypothesis testing: comparing observed data to what would be ex-
pected under the prior (Box, 1980} or posterior (RUBIN, 1984) distributions. One
theoretical issue we still do not understand is when is it appropriate to compare to
prior and when to posterior distributions. In many cases, a posterior check seems
more appropriate (see GELMAN, MENG and STERN, 1996), but in our example it
wag important to check the fit to the prior distribution as well.

In addition, we checked the sensitivity of our inferences to the prior distributions
using scatterplots showing the relation between the quantity of interest—the percent
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of PERC metabolized at low and high doses—and various key parameters in the
model. Bach dot in such a plot represents a different draw from the posterior
distribution. The plots show how the posterior distribution for the quantity of
interest would be affected by changes in the marginal posterior distributions of
the various parameters. This can be considered a “static” sensitivity analysis, in
contrast to the usually-recommended “dynamic” version that requires the model to
be re-fit with different prior distributions. The advantage of the static analysis is
that it does not require re-fitting the model. Theoretical work needs to be done to
understand the effectiveness of this approach.

Finally, we checked the model assumption of zero population correlations among
the 15 model parameters {recall from Section 3.1}. This was done in a fairly elaborate
way, making use of the replication in the data. For each of the 15 x 14/2 pairg of
parameters and for each posterior simulation draw, we computed the correlation
of the parameters across the six experimental subjects. Then, for each pair of
parameters, we examined the distribution of the simulated correlations to see if they
were substantially and statistically significantly far from zero. We in fact found some
high correlations—three parameters with correlations of about 0.8—which we were
able to remove by a further, relatively minor adjustment to the model. This check
is good practice, we believe, but the relevant theory is still somewhat elusive. Tt
seems to be related to predictive checking (since, under the model, the correlations
would be expected to be zero, on average).

4 Discussion

In general, statistical theory can and should lead to good statistical practice. In fact,
much of our analysis—setting up a hierarchical structure and assigning them prior
distributions, performing Bayesian inference, and some of the model checking—was
performed following statistical theories. Other crucial steps in the analysis—using
transformations to allow the prior distribution to be more informative, understand-
ing the consequences of assuming zero correlations, and some aspects of model
checking—clearly must have some theoretical justification, but more work needs
to be done. In addition, the applied work itself motivated new theoretical ideas
in Markov chain simulation, sensitivity analysis, parameterization of constrained
prior distribution. In applied work, statistical theory is often needed to transform
principles of “good data analysis” into practically-useful methods.
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