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1. Introduction  

Al-Lamee et al. (2017) report results from a randomized controlled trial of percutaneous 
coronary intervention using coronary stents for stable angina. The study, called ORBITA 
(Objective Randomised Blinded Investigation With Optimal Medical Therapy of 
Angioplasty in Stable Angina), included approximately 200 patients and was notable for 
being a blinded experiment in which half the patients received stents and half received a 
placebo procedure in which a sham operation was performed. In follow-up, patients 
were asked to guess their treatment and of those who were willing to guess only 56% 
guessed correctly, indicating that the blinding was largely successful. 

The summary finding from the study was that stenting did not “increase exercise time 
by more than the effect of a placebo procedure” with the mean difference in this 
primary outcome between treatment and control groups reported as 16.6 seconds with 
a standard error of 12.7 (95% confidence interval, -8.9 to +42.0 s) and a p-value of 0.20. 
In the New York Times, Kolata (2017) reported the finding as “unbelievable,” remarking 
that it “stunned leading cardiologists by countering decades of clinical experience.” 
Indeed, one of us (BKN) was quoted as being humbled by the finding, as many 
cardiologists had expected a positive result. On the other hand, Kolata noted, “there 
have long been questions about [stents’] effectiveness.” At the very least, the 
willingness of doctors and patients to participate in a controlled trial with a placebo 
procedure suggests some degree of existing skepticism and clinical equipoise.  

ORBITA was a landmark trial due to its innovative use of blinding for a surgical 
procedure. However, substantial questions remain regarding the role of stenting in 
stable angina. It is a well-known statistical fallacy to take a result that is not statistically 
significant and report it as zero, as was essentially done here based on the p-value of 
0.20 for the primary outcome. Had this comparison happened to produce a p-value of 
0.04, would the headline have been, “Confirmed: Heart Stents Indeed Ease Chest Pain”? 
A lot of certainty seems to be hanging on a small bit of data.  

The purpose of this paper is to take a closer look at the lack of statistical significance in 
ORBITA and the larger questions this trial raises about statistical analyses, statistically 
based decision making, and the reporting of clinical trials. This review of ORBITA is 
particularly timely in the context of the widely publicized statement released by the 
American Statistical Association that cautioned against the use of sharp thresholds for 
the interpretation of p-values (Wasserstein and Lazar, 2016) and more recent 
extensions of this advice by ourselves and others (Amrhein, Greenland, and McShane, 
2019, McShane et al., 2019).  We end by offering potential recommendations to 



improve reporting. 

2. Statistical analysis of the ORBITA trial 

Adjusting for baseline differences. In ORBITA, exercise time in a standardized treadmill 
test—the primary outcome in the preregistered design—increased on average by 28.4 s 
in the treatment group compared to an increase of only 11.8 s in the control group. As 
noted above, this difference was not statistically significant at a significance threshold of 
0.05. Following conventional rules of scientific reporting, the true effect was treated as 
zero—an instance of the regrettably common statistical fallacy of presenting non-
statistically-significant results as confirmation of the null hypothesis of no difference.  

However, the estimate using gain in exercise time does not make full use of the data 
that were available on differences between the comparison groups at baseline (Vickers 
and Altman, 2001, Harrell, 2017a). As can be seen in the Table, the treatment and 
placebo groups differ in their pre-treatment levels of exercise time, with mean values of 
528.0 and 490.0 s, respectively. This sort of difference is no surprise—randomization 
assures balance only in expectation—but it is important to adjust for this discrepancy in 
estimating the treatment effect. In the published paper, the adjustment was performed 
by simple subtraction of the pre-treatment values:  

Gain score estimated effect:   (ypost − ypre)T − (ypost − ypre)C ,   (1)  

But this over-corrects for differences in pre-test scores, because of the familiar 
phenomenon of “regression to the mean”—just from natural variation, we would expect 
patients with lower scores at baseline to improve, relative to the average, and patients 
with higher scores to regress downward. The optimal linear estimate of the treatment 
effect is actually:  

Adjusted estimate:    (ypost − β ypre)T − (ypost − β ypre)C ,  (2)  

where β is the coefficient of ypre in a least-squares regression of ypost on ypre, also 

controlling for the treatment indicator. The estimate in (1) is a special case of the 
regression estimate (2) corresponding to β = 1. Given that the pre-test and post-test 
measurements are positively correlated and have nearly identical variances (as can be 
seen in the Table), we can anticipate that the optimal β will be less than 1, which will 
reduce the correction for difference in pre-test and thus increase the estimated 
treatment effect while also decreasing the standard error. As a result, an adjusted 
analysis of these data would be expected to produce a lower p-value.  



The adjusted regression analysis can be done using the information available in the 
Table, as explained in detail in Box 1. The p-value from this adjusted analysis is 0.09: as 
anticipated, lower than the p=0.20 from the unadjusted analysis. 

Alternative reporting. Despite moving closer to the conventional 0.05 threshold, the p-
value of 0.09 remains above the traditional level of significance at which one is taught to 
reject the null hypothesis. A potential blockbuster reversal with an adjusted analysis—
“Statistical Sleuths Turn Reported Null Effect into a Statistically Significant Effect”—does 
not quite materialize.  

Yet within different conventions for scientific reporting, this experiment could have 
been presented as positive evidence in favor of stents. In some settings, a p-value of 
0.09 is considered to be statistically significant; for example, in a recent social science 
experiment published in the Proceedings of the National Academy of Sciences, Sands 
(2017) presented a causal effect based on a p-value of less than 0.10, and this was 
enough for publication in a top journal and in the popular press, with, for example, that 
work mentioned uncritically in the media outlet Vox without any concern regarding 
significance levels (Resnick, 2017). By contrast, Vox reported that ORBITA showed stents 
to be “dubious treatments,” a prime example of the “epidemic of unnecessary medical 
treatments” (Belluz, 2017). Had Al-Lamee et al. performed the adjusted analysis with 
their data and published in PNAS rather than the Lancet, could they have confidently 
reported a causal effect of stents on exercise time?  

Our point here is not at all to suggest that Al-Lamee el al. engaged in reverse “p-
hacking” (Simmons, Nelson, and Simonsohn, 2011), choosing an analysis that produced 
a newsworthy null result. In fact, the authors should be congratulated for pre-
registering their study, publishing their protocol prior to performing their analyses, and 
reporting a pre-specified primary analysis. Rather we wish to emphasize the flexibility 
inherent both in data analysis and reporting—even in the case of a clean randomized 
experiment. We are pointing out the potential fragility of the stents-didn’t-work story in 
this case. Existing data could easily have been presented as a success for stents 
compared to placebo by authors who were aiming for that narrative and performing 
reasonable analyses. 

Fragility of the findings. How sensitive were the results to slight changes in the data? To 
better understand this critical point, one can perform a simple bootstrap analysis, 
computing the results that would have been obtained from reanalyzing the data 1000 
times, each time resampling patients from the existing experiment with replacement 
(Efron, 1979). As raw data were not available to us, we approximated using the normal 



distribution based on the observed z-score of 1.7. The result was that, in 40% of the 
simulations, stents outperformed placebo at a traditional level of statistical significance. 
This is not to say that stents really are better than placebo—the data also appear 
consistent with a null effect. The take-home point of this experiment is that the results 
could easily have gone “the other way,” when reporting is forced into a binary 
classification of statistical significance, for many different reasons.  

3. Design of the trial and clinical significance  

In a justification for their study design and sample size, Al-Lamee et al. (2017) wrote: 
“Evidence from placebo-controlled randomised controlled trials shows that single 
antianginal therapies provide improvements in exercise time of 48–55 s . . . Given the 
previous evidence, ORBITA was conservatively designed to be able to detect an effect 
size of 30 s.” The estimated effect of 21 s with standard error 12 s is consistent with the 
“conservative” effect size estimate of 30 s given in the published article. So although the 
experimental results are consistent with a null effect, they are even more consistent 
with a small positive effect.  

One might ask, however, about the clinical significance of such a treatment effect, which 
we can discuss without relevance to p-values or statistical significance. For simplicity, 
suppose we take the point estimate from the data at face value. How should we think 
about an increase in average exercise time of 21 s? One way to conceptualize this is in 
terms of percentiles. The data show a pre-randomization distribution (averaging the 
treatment and control groups) with a mean of 509 and a standard deviation of 188. 
Assuming a normal approximation, an increase in exercise time of 21 s from 509 to 530 
would take a patient from the 50th percentile to the 54th percentile of the distribution. 
Looked at that way, it would be hard to get excited about this effect size, even if it were 
a real population shift.  

Beyond exercise time, there were other signals from ORBITA that seemed to suggest 
consistent improvements in the physiological parameter of ischemia through endpoints 
such as fractional flow reserve, instantaneous wave-free ratio, and stress echo. Actually, 
findings from the stress echo highlight a potentially important avenue into an 
alternative presentation of these results. There is no question that some physiological 
changes are being made by stents, with very large and highly statistically significant (p < 
0.001) effects seen on echo measures. As is often the case, the null hypothesis that 
these physical changes should make absolutely zero difference to any downstream 
clinical outcomes seems farfetched. Thus, the sensible question to ask is “How large are 
the clinical differences observed?”, not “How surprising is the observed mean difference 



under a [spurious] null hypothesis?” The simple textbook way to tackle this question is 
to report confidence intervals (CIs) around the mean differences and not to focus on 
whether the intervals happen to include zero. The fact that the standard 95% CI for the 
primary outcome comfortably includes the target effect size of 30 s suggests this value 
should be no more “rejected” than the null value. Furthermore, without the longitudinal 
data to observe the outcomes that matter most to patients—health and length of life—
much remains uncertain.  

The larger question has to be about balancing the long-term benefits of stents with risks 
of the operation. It does not seem reasonable for a person to risk life and health by 
submitting to a surgical procedure just for a potential benefit of 21 seconds of exercise 
time on a standardized treadmill test—or even a hypothesized larger benefit of 50 
seconds, which would still only represent a 10% improvement for an average patient in 
this study. Yet maybe a 5-10% increase is consequential in this case as it could improve 
quality of life for a patient outside of this artificial setting. Perhaps this small gain in 
exercise time is associated with the need for less medications, fewer functional 
limitations or greater mobility. If so, however, one might postulate this gain would have 
been apparent in assessments of angina burden, and it was not.  

Part of the bigger concern here is that these patients were already doing pretty well on 
medications—that is, they already had a low symptom frequency before stenting. For 
example, angina frequency as measured by the Seattle Angina Questionnaire was 63.2 
after optimizing medications and before stenting in the treatment group. This roughly 
translates as “monthly” angina (John Spertus, personal communication). How does a 
study with a follow-up of just 6 weeks expect to improve an outcome that happens this 
infrequently? In fact, one of the great debates surrounding ORBITA is that those who 
discount the trial suggest it enrolled patients who typically do not receive stents in 
routine practice. Those who believe ORBITA is a game-changer argue that these less 
symptomatic patients actually make up a large proportion of those receiving stents—
and that is why we have such a large problem with their overuse.  

Finally, are stents really being given to patients with stable angina just to improve 
fitness or to reduce symptoms? Or is there a continued expectation that stents have 
long-term benefits for patients, despite earlier data from studies like the Clinical 
Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) study 
(Boden, 2007)? This would seem to be the key question, in which case the short-term 
effects, or lack thereof, found in the ORBITA study are largely irrelevant. Other larger 
trials, such as International Study of Comparative Health Effectiveness With Medical and 
Invasive Approaches (ISCHEMIA,	see:	https://clinicaltrials.gov/ct2/show/NCT01471522) 



are considering this more fundamental question but will not have a placebo procedure.  

4. Recommendations for statistical reporting of trials 

The search for better medical care is an incremental process, with incomplete evidence 
accumulating over time. There is unfortunately a fundamental incompatibility between 
that core idea and the common practice, both in medical journals and the news media, 
of up-or-down reporting of individual studies based on statistical significance. We offer 
some recommendations summarized in Box 2	that we believe will be helpful to authors 
and editors moving forward. 

At this point it’s not clear how best to incorporate this recent experiment into routine 
practice despite its novel and provocative study design, so the forced reporting of the 
primary outcome as “positive” or “negative” is unhelpful. A reanalysis of the summary 
data from Al-Lamee et al. (2017) reveals a stronger estimated effect that is closer to the 
conventional boundary of statistical significance, indicating that the study could rather 
easily have generated and reported evidence in favor of, rather than against, the 
effectiveness of stents for patients with stable angina. And from our brief flurry of 
excitement over the possibility that a simple reanalysis could change the significance 
level, we are again reminded of the sensitivity of headline conclusions to decisions in 
statistical analysis. In any case, though, the observed increases in exercise time, even if 
statistically significant, do not appear at first glance to be of much clinical importance, 
compared to the much more relevant long-term health outcomes that remain uncertain.  

In the design, evaluation, and reporting of experimental studies, there is a norm of 
focusing on the statistical significance of a primary outcome y—in this case, change in 
average exercise time on a standardized treadmill test. In general, the conclusions that 
follow will be fragile because p-values are extremely noisy unless the underlying effect is 
huge. An experiment may be designed to have 80% power, but this doesn’t eliminate 
the fragility, as illustrated by our bootstrap re-analysis. Power calculations are often 
conditional on an overestimated effect size (Schulz and Grimes, 2005, Gelman, 2018) 
and does not address the important question of variation in treatment effects. 
Examination of the Lancet paper and its reception in the news media suggests that it 
exhibits a classic case of “significantitis” or “dichotomania” (Greenland, 2017), with 
frequent repetition of phrases such as “there was no significant difference.” In line with 
current thinking (Amrhein, Greenland, and McShane, 2019), we suggest that the phrase 
used by these authors, “We deemed a p value less than 0.05 to be significant,” should 
be strongly discouraged, rather than actively demanded as is currently the case by many 
journal editors. To their credit, the ORBITA authors themselves have recognized these 



critical issues (see https://twitter.com/ProfDFrancis/status/952008644018753536). 

In the case of stents, an important disconnect appears between the findings emphasized 
in the recent study—however presented—and the larger context of treatments for 
heart disease. From a statistical perspective, this appears to reflect a problem with the 
framing of clinical trials as attempts to discover whether a treatment has a statistically 
significant effect—commonly misinterpreted to be equivalent to a real (non-zero) 
population mean difference. Power calculations are used in an attempt to assure stable 
estimates and a good chance of the experiment being “successful”, although within 
these constraints there can be a push toward convenience rather than relevance of 
outcome measures—which is perhaps an inevitable compromise. ORBITA shows us the 
confusion that arises when a treatment is reported as a success or failure in statistical 
terms that are divorced from clinical context. 

ORBITA was never meant to be definitive in a broad sense—it was designed to find a 
statistically significant physiological effect of stenting on mean exercise time, without 
clarity on the clinical relevance of anticipated effects on this outcome measure. Indeed, 
a likely reason why the study was limited in its size and design of these surrogate 
outcomes was because this is all that could have passed an ethical board given the 
novelty of the placebo procedure in this setting. Further background on these topics 
from Darrel Francis, the senior author on the study, appears at Harrell (2017b). Beyond 
immediate news reports, one positive impact of ORBITA is that bigger trials of stenting 
with placebo procedures are now much more likely with a more definitive set of 
measured outcomes that are meaningful for patients.  

We don’t see any easy answers here—long-term outcomes would require a long-term 
study, after all, and clinical decisions need to be made right away, every day—but 
perhaps we can use our examination of this particular study and its reporting to suggest 
practical directions for improvement in heart treatment studies and in the design and 
reporting of clinical trials more generally.  
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Table. Summary data comparing stents to placebo, from Table 3 of Al-Lamee et al. 
(2017). 
 

	
	

	
  



Box	1.	Using	the	reported	data	summaries	to	obtain	the	analysis	controlling	
for	the	pre-treatment	measure	
	
For each of the treatment and control groups, we are given the standard deviation of 
the pre-test measurements, the standard deviation of the post-test measurements, and 
the standard deviation of their difference, which can be obtained by taking the width of 
the confidence interval for the difference, dividing by 4 to get the standard error of the 
difference, and then multiplying by √𝑛 to get back to the standard deviation.  

Then we use the rule, sd(y! − y") 	= +sd(y")!
	
+ 	sd(y!)!

	
− 	2ρ	sd(y")sd(y!) and 

solve for ρ, the correlation between before and after measurements within each group. 
The result in this case is ρ = 0.88 within each group. We then convert the correlation to 
a regression coefficient of y! on y" using the well-known formula, β	 = 	ρ	sd(y!)/
sd(y"), which yields β =	0.88 for the treated and β	 =	0.86 for the control group. If 
these two coefficients were much different from each other, we might want to consider 
an interaction model (Gelman, 2004), but here they are close enough that we simply 
take their average. 

We use the average, β = 0.87, in (2) and get an estimate for the adjusted mean 
difference of 21.3 (indeed, quite a bit higher than the reported difference in gain scores 
of 16.6) with a standard error of 12.5 (very slightly lower than 12.7, the standard error 
of the difference in gain scores) and 95% CI -3.2 to 45.8 s. The estimate is not quite two 
standard errors away from zero: the z-score is 1.7, and the p-value is 0.09.  

	 	



	
	
Box	2.	Recommendations	for	Analyses	and	Reporting	
	
Analyses 
 
1. Baseline adjustment for differences: should be prespecified for the primary analysis 
where strong confounders such as a baseline measure of the outcome are available. 
2. Be aware of fragility of inferences. Fragility can be demonstrated using the sampling 
or posterior distribution as estimated using mathematical modeling, bootstrap 
simulation, or Bayesian analysis. 
 
Reporting 
 
1. Avoid use of sharp thresholds for p-values and thus eliminate the term “statistical 
significance” from the reporting of results. 
2. Consider the full range (upper and lower ends) of interval estimates for important 
outcomes and their potential inclusion of clinically important differences. 
3. Consider the potential for individual variability in responses (heterogeneity of 
treatment effects) and not just mean differences. 
 


