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The Mathematics and Statistics of
Voting Power
Andrew Gelman, Jonathan N. Katz and Francis Tuerlinckx

Abstract. In an election, voting power—the probability that a single vote is
decisive—is affected by the rule for aggregating votes into a single outcome.
Voting power is important for studying political representation, fairness and
strategy, and has been much discussed in political science. Although power
indexes are often considered as mathematical definitions, they ultimately
depend on statistical models of voting. Mathematical calculations of voting
power usually have been performed under the model that votes are decided
by coin flips. This simple model has interesting implications for weighted
elections, two-stage elections (such as the U.S. Electoral College) and
coalition structures. We discuss empirical failings of the coin-flip model of
voting and consider, first, the implications for voting power and, second,
ways in which votes could be modeled more realistically. Under the random
voting model, the standard deviation of the average of n votes is proportional
to 1/

√
n, but under more general models, this variance can have the form

cn−α or
√
a − b logn. Voting power calculations under more realistic models

present research challenges in modeling and computation.

Key words and phrases: Banzhaf index, decisive vote, elections, electoral
college, Ising model, political science, random walk, trees.

1. INTRODUCTION

To decide the outcome of a U.S. Presidential elec-
tion, your vote must be decisive in your own state, and
then your state must be decisive in the Electoral Col-
lege. The different states have different populations,
different numbers of electoral votes and different vot-
ing patterns, so the probability of casting a decisive
vote will vary between states. Even in much simpler
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settings, weighted voting can lead to unexpected re-
sults. For example, consider an election with four vot-
ers representing constituencies of unequal size, who
are given weights of 12, 9, 6 and 2, respectively, for a
weighted majority vote. The voter with 2 votes has zero
voting power in that these 2 votes are irrelevant to the
election outcome, no matter what the other three voters
do, and the other three voters have equal power in that
any two of them can determine the outcome. The voter
with 12 votes has no more power than the voter with 6.
In fact, this system is equivalent to assigning the voters
1, 1, 1 and 0 votes.

Examples such as these have motivated the mathe-
matical theory of voting power, which is generally de-
fined in terms of the possibilities that a given voter or
set of voters can affect the outcome of an election.
Ideas of voting power have been applied in a range
of settings, including committee voting in legislatures,
weighted voting (as in corporations) and hierarchical
voting systems, such as the U.S. Electoral College and
the European Council of Ministers. We restrict our-
selves in this paper to discussion of weighted majority
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voting in two-party systems, with the Electoral College
as the main running example.

The major goals of voting power analysis are (1) to
assess the relative power of individual voters or blocs
of voters in an electoral system, (2) to evaluate the
system itself in terms of fairness and maximizing
average voting power, (3) to assign weights so as to
achieve a desired distribution of voting power and
(4) to understand the benefits of coalitions and bloc
voting.

This paper reviews some of the mathematical re-
search on voting power and presents some new find-
ings, placing them in a political context. Many of the
best-known results in this field are based on a conve-
nient but unrealistic model of random voting, which
we describe in Section 3. Section 4 compares to em-
pirical election results and in Section 5, we move to
more complicated models of public opinion and eval-
uate their effects on voting power calculations. One of
the challenges here is in understanding which of the re-
sults on voting power are robust to reasonable choices
of model. Section 6 concludes with an assessment of
the connections between voting power and political
representation.

The main results presented in this article are the
following:

1. For the random voting model, we review well-
known findings on voting power in weighted and
two-stage elections.

2. We critically evaluate the random voting model,
both in theory and in relation to data from elections,
and discuss the general relevance of voting power
in politics and the mistaken recommendations that
have arisen from simplistic voting power calcula-
tions.

3. We review recent work and present new results on
probability models for voters on trees. These results
are mathematically interesting and point the way
to further work connecting multilevel probability
models of voters, empirical data on the variability
of elections and political science models of public
opinion.

2. BACKGROUND

2.1 Areas of Application of Voting Power

There are a variety of voting situations in which
votes are not simply tallied, and so voting power is a
nontrivial concept. We consider weighted majority vot-
ing and the closely related setting of two-level voting,

where the representatives casting the weighted vote are
themselves elected by majority vote in separate dis-
tricts. This is the structure of the U.S. Electoral Col-
lege and, implicitly, the European Council of Ministers
(where each minister represents an individual country
whose government is itself democratically elected).

Voting power measures have been developed in sta-
tistics, mathematics, political science and legal lit-
eratures for over 50 years. Key references are Pen-
rose (1946), Shapley and Shubik (1954) and Banzhaf
(1965). Felsenthal and Machover (1998) gave a re-
cent review. This article focuses on weighted and two-
stage voting systems such as the Electoral College
(which has been analyzed by Mann and Shapley, 1960;
Banzhaf, 1968; Brams and Davis, 1974; and Gelman,
King and Boscardin, 1998, among others). Power in-
dexes have strong and often controversial implications
(see, e.g., Garrett and Tsebelis, 1999), and so it is im-
portant to understand their mathematical and statistical
foundations.

Voting power has also been applied to more compli-
cated voting schemes, which we do not discuss here,
such as legislative elections with committees, multi-
ple chambers, vetoes and filibusters (Shapley and Shu-
bik, 1954). Luce and Raiffa (1957) discussed power
indexes as an application of game theory, following
Shapley (1953). The most interesting problems of leg-
islative voting arise when considering coalitions that
can change, so that individual voters are motivated to
form coalition structures that increase their power. This
game-theoretic structure differs from the examples in
this article, where the system of coalitions is fixed and
votes are simply added at each level.

2.2 Definitions of Voting Power

Voting power can and has been defined in a variety
of ways (see Straffin, 1978; Saari and Sieberg, 1999;
Heard and Swartz, 1999), and fairness of an electoral
system can be defined even more generally (see, e.g.,
Beitz, 1989; Gelman, 2002). In this article we shall
use the definition based on the probability that a
vote affects the outcome of the election. Consider an
electoral system with n voters. We use the notation i
for an individual voter, vi = ±1 for his or her vote,
v = (v1, . . . , vn) for the entire vector of votes and R =
R(v)= ±1 for the rule that aggregates the n individual
votes into a single outcome. It is possible for R to
be stochastic (because of possible ties or, even more
generally, because of possible errors in vote counting).
We shall assume various distributions on v and rules
R(v) which then together induce distributions on R.
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Voting power can also be defined without any prob-
ability distributions, simply as the number of combina-
tions of the other n− 1 voters for which vote i will be
decisive, but, as we note at the beginning of Section 3,
this is equivalent to the probability definition under the
model that all vote combinations are equally likely.

The probability that the change of an individual vote
vi will change the outcome of the election is

poweri = power of voter i

= Pr(R = +1 if vi = +1)

−Pr(R = +1 if vi = −1).

(1)

If your voting power is zero, then changing your vote
from −1 to +1 has no effect on the probability of either
candidate winning.

The probabilities in (1) refer to the distribution of the
other n− 1 voters, unconditional on vi . Voting power
represents the causal effect of changing your vote with
all the other votes held constant—the direct effect on
R of changing vi , not the information that vi might
convey about the other n− 1 votes.

We shall consider the following situations:

1. For simple weighted voting, we assume n voters
with weights wi, i = 1, . . . , n, and an aggregation
rule R(v)= sign(

∑n
i=1wivi); that is, the winner is

determined by weighted majority. Weighted voting
is important for its own sake (e.g., in public corpo-
rations) and also as the second level of two-stage
voting.

2. For two-stage voting, we assume the voters are
divided into J jurisdictions, with the winner within
each jurisdiction decided by majority vote. Each
jurisdiction j has a weighted vote of wj at the
second level, and the overall winner is decided
by the weighted majority of the winners in the
jurisdictions.

We assume that ties at all levels are decided by coin
flips.

2.3 Claims in the Literature and Connections to
Empirical Data

Social scientists have studied both the theoretical and
the empirical implications of voting power, mostly in
political applications, but also in areas such as cor-
porate governance (Leech, 2002). Researchers have
looked at fairness to individuals and also at the ef-
fects of unequal voting power on campaigning and
the allocation of resources (see Snyder, Ting and An-
solabehere, 2001). The probability that a single vote

is decisive in an election is also relevant in studying
the responsiveness of an electoral system to voter pref-
erences and the utility of voting (see Riker and Or-
deshook, 1968; Ferejohn and Fiorina, 1974; Aldrich,
1993; Edlin, Gelman and Kaplan, 2002).

The probability of a vote being decisive is important
directly—it represents your influence on the electoral
outcome, and this influence is crucial in a democracy—
and also indirectly, because it could influence cam-
paigning. For example, one might expect campaign ef-
forts to be proportional to the probability of a vote
being decisive, multiplied by the expected number
of votes changed per unit of campaign expense, al-
though there are likely strategic complications since
both sides are making campaign decisions. Thus, cam-
paigning strategies have been studied in the political
science literature as evidence of voting power (Brams
and Davis, 1974, 1975; Colantoni, Levesque and Or-
deshook, 1975; Stromberg, 2002).

Perhaps the most widely publicized normative po-
litical claim from the voting power literature is that,
in two-stage voting systems with proportional weight-
ing (that is, wj ∝ nj ), voters in larger jurisdictions
have disproportionate power (Penrose, 1946; Banzhaf,
1965). Under a simple (and, in our judgment, inap-
propriate) model, the voting power in such systems is
approximately proportional to

√
nj (see Section 3.2).

This has led scholars to claim that the U.S. Electoral
College favors large states (Banzhaf, 1968), a claim
that we and many others have disputed (see Section 4).

In political science these theories have been checked
with empirical data in various ways. Most directly, vot-
ing power depends on the probability that an election
is a tie. This probability is typically so low that it is
difficult to estimate directly; for example, in the past
100 years, there have been about 20,000 contested elec-
tions to the U.S. House of Representatives, and none
of them has been tied. However, the probability of a
tie can be estimated by extrapolating from the empir-
ical frequency of close elections (see Mulligan and
Hunter, 2001); for example, about 500 of the afore-
mentioned House of Representatives elections were de-
cided within 1,000 votes. If we define fV to be the dis-
tribution of the difference V in vote proportions be-
tween the two leading candidates, then

Pr(tie election)≈ fV (0)

n
(2)

in an election with n voters. Regression-type forecast-
ing models for V have been used to estimate voting
power for specific elections (see Section 4). In elec-
tions with disputed votes and possible recounts, so that
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no single vote can be certain to be decisive, the proba-
bility of affecting the outcome of the election can still
be identified with the probability of a tie to a very close
approximation (see the Appendix of Gelman, Katz and
Bafumi, 2002).

3. THE RANDOM VOTING MODEL

We begin with the assumption that votes are deter-
mined by independent coin flips, which we call ran-
dom voting. As we discuss in Section 4, the random
voting model is empirically inappropriate for election
data. We devote some space to this model, however,
because it is standard in the voting power literature.

Under random voting, all 2n vote configurations are
equally likely, and so the power of voter i is simply
2−(n−1) times the number of configurations of the
other n − 1 voters for which voter i is decisive (and
counting semidecisive configurations, in which votes
are exactly tied, as 1/2). Voting power calculations can
thus be seen as combinatorical. However, we see the
probabilistic, rather than the counting, derivation as
fundamental.

3.1 Weighted Voting

To calculate the power of voter i with weight wi in
a simple weighted majority voting system, we define
the total weighted vote of all the others as V−i =∑
k 	=i wkvk and we define the sum of the squares of

all the weights as W 2 =∑n
k=1w

2
k . Then, for weighted

voting,

poweri = Pr(|V−i |<wi)+ 1
2 Pr(|V−i | =wi).(3)

From the random voting model, we can immediately

derive that E(V−i) = 0 and sd(V−i ) =
√∑

k 	=i w2
k =√

W 2 −w2
i . If certain regularity conditions hold—if

the number of voters is large enough, no single voter
or small set of voters is dominant and there are no
discrete features in the weights (as in the introduc-
tory example, where all but one of the weights is
divisible by 3)—then we can think of the distrib-
ution of V−i as approximately normally distributed

and we can approximate (3) by �(wi/
√
W 2 −w2

i ) −
�(−wi/

√
W 2 −w2

i ), where � is the cumulative
normal distribution function.

If w2
i � W 2, voting power is approximately close

to linear in wi . For example, in the Electoral College,
the values of wi for the 50 states and the District of
Columbia range from 3 to 54, with a total of 538. We

can calculate poweri for each state (assuming random
voting) and compare to the linear approximation,
poweri ≈ √

2/π(wi/W). The linear fit has a relative
error of less than 10% for all states.

As this calculation for the Electoral College illus-
trates, voting power paradoxes such as illustrated in the
first paragraph of this article are unlikely to occur ex-
cept in the context of the discreteness of very small vot-
ing systems. Such situations have occurred (see Felsen-
thal and Machover, 2000), but in our opinion they are
fundamentally less interesting than the results on two-
stage voting and coalitions that we review below. In
weighted voting settings where thewi ’s display central
limit theorem-type behavior, voting power (given ran-
dom voting) is approximately proportional to weight,
as one would intuitively expect.

3.2 Two-Stage Voting

In two-stage voting, one must first compute the
voting power of each jurisdiction j and then the power
of each of the nj voters within a jurisdiction. As
described above, if the number of jurisdictions is large
and none is dominant, it is reasonable to approximate
the voting power of jurisdiction j as proportional to wj
under random voting.

For an individual voter i in jurisdiction j , let V−i be
the sum of the other nj − 1 votes in the jurisdiction.
Then the probability that vote i is decisive within
jurisdiction j is

Pr(V−i = 0)+ 1
2 Pr(|V−i | = 1)

=




(
nj − 1

(nj − 1)/2

)
, if nj is odd,

(
nj − 1
nj/2

)
, if nj is even,

under the random voting model. Unless n is very small,
this can be approximated as

√
2/(πnj ), which is a

special case of (2).
With random voting, the votes inside and outside

jurisdiction j are independent, and so the power of
voter i in jurisdiction j , for two-stage random voting,
is approximately proportional to

poweri ≈
wj√
nj
,(4)

given the conditions stated at the end of the previous
section. This result has led commentators to suggest
that a fair allocation of weights in a two-stage voting
system is proportional to the square root of the num-
ber of voters in the jurisdiction (Penrose, 1946), with
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perhaps some minor modifications due to the combi-
natorics of a discrete number of jurisdictions (Felsen-
thal and Machover, 2000). However, we disagree with
these recommendations because of systematic flaws in
the random voting model, as we discuss in Section 4.

3.3 Individual and Average Voting Power

The structure of a voting system can affect the
power of individual voters and the average power of
all n voters in interesting ways. Figure 1 illustrates
an example with simple majority voting and various
two-stage electoral systems with nine voters. These
trees (and the accompanying calculations) illustrate
the benefits under random voting of being in a large
jurisdiction; they also illustrate the negative side:
voters who are left tend to do worse than under
majority rule.

One way to study the total effect of two-stage voting
is to compute the average probability of decisiveness
for all of the n voters. It has been proved (and we sketch
a proof in the next paragraph) that, under the random
voting model, this average voting power is maximized
under simple popular vote (majority rule) and is lower
under any other system. Figure 1 illustrates this point:
the coalitions benefit their members but lower the
average probability of decisiveness.

To prove the general result, we start by re-expressing
voting power in terms of the probability of satisfac-
tion—that is, of a voter’s preferred candidate winning
the election (see Straffin, 1978). Under the random vot-
ing model, we can rewrite (1) as

poweri = Pr(R = +1 if vi = +1)

+Pr(R = −1 if vi = −1)− 1

= 2 Pr(R = +1 and vi = +1)

+2 Pr(R = −1 and vi = −1)− 1

(assuming random voting)

= 2 Pr(voter i is satisfied)− 1,

and so, under random voting, maximizing average
voting power is equivalent to maximizing the average
probability of satisfaction. Only voters on the winning
side will be satisfied and so, conditional on the total
vote, average satisfaction is maximized by assigning
the winner to the side supported by more voters, which
is simply majority rule. This theorem can also be seen
as a corollary of more general results in graph theory
(see Lemma 6.1 of Friedgut and Kalai, 1996).

One way to understand the result is that the winner-
take-all rule within coalitions magnifies small differ-
ences (e.g., a vote of 10–8 within a coalition is trans-
formed to 18–0 at the next stage in the tree), which
has the effect of amplifying noise (if the election is
thought of as a system of communicating individual
preferences up to the top of the tree). The least noisy
system is majority rule, with no coalitions at all. An
analogy is to scoring in a single game of ping pong
(the first player to get 21 points wins) versus a tennis
match (a three-level system where a player must win
a majority of sets, which in turn comprise games and
points). If points are scored independently, then scor-
ing is fairer in ping pong than in tennis.

4. EMPIRICAL RESULTS ON VOTE
DISTRIBUTIONS AND VOTING POWER

The random voting model is a natural starting point
for studying voting power, but it is obviously unreal-
istic. From a probabilistic perspective, one can imag-
ine developing more complex stochastic processes for
voting that allow for correlations and unequal proba-
bilities. From the tradition of analysis of voting data
in political science, it would make sense to set up
regression-type models and perform inference using
available data from elections and committee votes. Yet
another direction would be to estimate the probability
of casting a decisive vote directly from empirical data,
as has been done for judicial data by Heard and Swartz
(1999). This would be possible with voting within leg-
islatures using estimates such as those of Poole and
Rosenthal (1997) of legislators’ ideal points.

In this section we discuss the empirical failings of
the random voting model and why this has major
implications for voting power. Section 5 discusses
more complex probability models for votes that move
in the direction of realism.

4.1 Closeness of Elections, the Number of Voters
and Voting Power

The random voting model makes predictions that are
not valid for real elections. For example, in an election
with 1 million voters, the random voting model implies
that the proportional vote margin should have a mean
of 0 and a standard deviation of 0.001. In reality, large
elections are typically decided by much more than 0.1
of a percentage point.

Before discussing potential model improvements,
we consider here the voting power implications of
empirical problems with the random voting model.
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FIG. 1. An example of four different systems of coalitions with nine voters, with the probability of decisiveness of each voter computed
under the random voting model. Each is a “one person, one vote” system, but they have different implications for probabilities of casting a
decisive vote. Joining a coalition is generally beneficial to those inside the coalition but hurts those outside. The average voting power is
maximized under A, the popular-vote rule with no coalitions. From Katz, Gelman and King (2002).
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FIG. 2. Voting power for individuals in the 2000 U.S. Presidential election, by state under the random voting model and under an empirical
model based on randomly perturbing the actual election outcomes with variation at the national, regional, state and local levels. Voters in
large states have disproportionate power under the random voting model, but not under the empirical model.

Clearly, real elections are less close, and thus individ-
ual voters have less power, than predicted under ran-
dom voting, but how are the results of relative voting
power affected?

If the number of voters nj in a district is moderate
or large, we can use (2) to approximate the probability
that a single voter is decisive within district j as

Pr(a vote is decisive within district j)≈ fj (0)

nj
,(5)

where fj is the distribution of the proportional vote
differential V j = (1/nj )

∑nj
i=1 vi within district j . If

fj has a mean of 0 and a fixed distributional form (e.g.,
normality), then fj (0)∝ 1/sd(V j ) and so

Pr(a vote is decisive within district j)

≈ 1

nj sd(V j )
.

(6)

Thus, when comparing the probability of decisiveness
for voters in districts of different sizes nj (as in
Section 3.2), the behavior of sd(V j ) as a function of
nj is crucial. Under random voting, sd(V j )∝ 1/

√
nj ,

but for actual elections this is not generally true.

4.2 U.S. Presidential Elections

We focus on the most widely discussed example,
the relative power of voters in different states in
electing the President of the United States. In the
Electoral College, each state gets two electoral votes
plus a number approximately proportional to the state’s
population. Except for the smallest states, this means
that wj is approximately proportional to nj (voter

turnout varies slightly between states). The random
voting model then implies [see (4)] that an individual’s
voting power should be approximately proportional to
the square root of the population of his or her state; see
the left panel of Figure 2.

Thus, the general conclusion in the voting power
literature is that the Electoral College benefits voters
in large states. For example, Banzhaf (1968) claimed
to offer “a mathematical demonstration” that it “dis-
criminates against voters in the small and middle-sized
states by giving the citizens of the large states an
excessive amount of voting power,” and Brams and
Davis (1974) claimed that the voter in a large state
“has on balance greater potential voting power . . . than
a voter in a small state.” Mann and Shapley (1960),
Owen (1975) and Rabinowitz and Macdonald (1986)
came to similar conclusions. This impression has also
made its way into the popular press; for example, Noah
(2000) stated, “the distortions of the Electoral College
. . . favor big states more than they do little ones.” It has
similarly been claimed that if countries in the European
Union were to receive votes in its council of ministers
proportional to their countries’ populations, then voters
in large countries would have disproportionate power
(Felsenthal and Machover, 2000).

4.3 The 1/
√

n Rule

The above claims all depend on the intermediate re-
sult, under the random voting model, that the proba-
bility of decisiveness within a state is proportional to
1/

√
nj . The extra power of voters in large states de-

rives from the assumption that elections in these states
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FIG. 3. The margin in state votes for President as a function
of the number of voters nj in the state. Each dot represents a
different state and election year from 1960 to 2000. The margins
are proportional; for example, a state vote of 400,000 for the
Democratic candidate and 600,000 for the Republican would be
recorded as 0.2. Lines show the lowess (nonparametric regression)
fit, the best-fit line proportional to 1/√nj and the best-fit line of
the form cnαj . As shown by the lowess line, the proportional vote
differentials show only very weak dependence on nj . The 1/√nj
line, implied by standard voting power measures, does not fit the
data.

are much more likely to be close. This assumption can
be tested with data. For example, Figure 3 shows the
absolute proportional vote differential |V j | as a func-
tion of number of voters nj for all states (excluding
the District of Columbia) for all Presidential elections
from 1960 to 2000.

We test the 1/
√
nj hypothesis by fitting three differ-

ent regression lines to |V j | as a function of nj . First,
we use the lowess procedure (Cleveland, 1979) to fit a
nonparametric regression line. Second, we fit a curve
of the form y = c/

√
nj , using least squares to find the

best-fitting value of c. Third, we find the best-fitting
curve of the form y = cnαj . The best-fit α is −0.16
(with a standard error of 0.03), which suggests that
elections tend to get slightly closer for larger nj but
with a relationship much weaker than 1/

√
nj . As the

scale of the graph makes clear, it is impossible for the
1/

√
nj rule to hold in practice, as this would mean ex-

treme landslides for low nj or extremely close elec-
tions for high nj , neither of which, in general, will
hold.

4.4 Empirical Estimates of Voting Power in
Presidential Elections

Given that the 1/
√
nj rule is not appropriate for real

elections, how should voting power be calculated for
two-stage elections? The right panel of Figure 2 shows

a calculation for the 2000 Presidential election based
on perturbing the empirical election results. Uncer-
tainty in the election outcome is represented by adding
normally distributed random errors ε at the national,
regional, state and local levels: for Congressional dis-
tricts i in state j within region k, the election outcomes
are simulated 500 times by perturbing the observed

outcome, V
obs
i :

V
sim
i = V

obs
i + εnation + εregion

k + εstate
j + εdistrict

i .(7)

The V
sim
i values are then summed within each state

j to get a simulation of the state-level vote differen-
tials, V j . The error terms in the simulation (7) rep-
resent variation between elections, and the hierarchi-
cal structure of the errors represents observed corre-
lations in national, regional and state election results
(Gelman, King and Boscardin, 1998). For the simu-
lation for Figure 2b, the error terms on the vote pro-
portions have been assigned normal distributions with
standard deviations 0.06, 0.02, 0.04 and 0.09, which
were estimated from election-to-election variation of
vote outcomes at the national, regional, state and Con-
gressional district levels. (The pattern of results of the
voting power simulation are not substantially altered
by moderate changes to these variance parameters.)

Under the simulation, the probability that a voter is
decisive within state j is given by (5), which we evalu-
ate from the normal density function. We then compute
in two steps the probability that the state’s electoral
votes are decisive for the nation. First, we update the
distributions of the national and regional error terms
εnation and εregion

k using the multivariate normal distrib-
ution given the condition V j = 0. Second, we simulate
the vector of election outcomes for all the other states
under this condition and estimate the probability that
the wj electoral votes of state j are decisive in the na-
tional total. This last computation could be performed
by counting simulations, but is made more computa-
tionally efficient by approximating the proportion of
electoral votes received by either candidate as a beta
distribution, as in Gelman, King and Boscardin (1998).

Comparing to the result under the random voting
model, the empirical calculation shows much more
variation between states (because some states, like
New Mexico, were close, and others, like Massa-
chusetts, were not) and no strong dependence on state
size. In reality, but not in the random voting model,
large states are not necessarily extremely close, and
thus voters in large states do not have disproportion-
ate voting power.
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FIG. 4. The average probability of a decisive vote as a function
of the number of electoral votes in the voter’s state, for each U.S.
Presidential election from 1952 to 1992 (excluding 1968, when a
third party won in some states). The probabilities are calculated
based on a forecasting model that uses information available
two months before the election. This figure is adapted from Gelman,
King and Boscardin (1998). The probabilities vary little with state
size, with the most notable pattern being that voters in the very
smallest states are, on average, slightly more likely to be decisive.

A slightly different empirically based method of
computing voting power is described by Gelman, King
and Boscardin (1998). A hierarchical linear regression
model, based on standard election forecasting proce-
dures used in political science, was used to obtain prob-
abilistic forecasts for Presidential elections by state.
The models were then used to compute the probabil-
ity of decisive vote; Figure 4 shows the resulting av-
erage probability of decisiveness of voters in a state,
as a function of the number of electoral votes in the
state, for each election. The clearest pattern is that the
smallest states have slightly higher voting power, on
average; this is a result of the two “free” votes that
each state receives in the Electoral College, so that the
smallest states have disproportionate weights.

4.5 The Electoral College and Average
Voting Power

As discussed in Section 3.3, under random voting,
average voting power is maximized under a popular
vote system. However, this result is highly sensitive
to the assumption, under random voting, that all vote
outcomes are equally likely (see Natapoff, 1996). Thus,
if the question of average voting power is of practical
interest, it is important to address it using actual
electoral data.

Using the model (7) based on perturbing district-
by-district outcomes (as was used to calculate the

values displayed in Figure 2b), Katz, Gelman and King
(2002) computed average voting power for Presidential
elections under three electoral systems: popular vote,
electoral vote and a hypothetical system of winner-
take-all by Congressional district. They found average
voting power to vary dramatically between elections
(depending on the closeness of the national election);
within any election, however, changing the voting
rule had little effect on the average probability of
decisiveness.

4.6 Empirical Evidence from Other Elections

Analyses of electoral data from U.S. Congress, U.S.
state legislatures and European national elections also
have found only very weak dependence of the close-
ness of elections on the number of voters (Mulligan and
Hunter, 2001; Gelman, Katz and Bafumi, 2002). This
persistent empirical finding, contradicting the 1/

√
n

rule implied by random voting, casts strong doubt on
the recommendations by mathematical analysts from
Penrose (1946) to Felsenthal and Machover (2000) to
apply standard power indexes to weighted voting.

The best approach for assigning weighted votes is
still unclear, however. We have seen that assigning
weights to equalize voting power under random voting
is inappropriate in real-world electoral systems that
do not follow the 1/

√
n rule. However, equalizing

empirical voting power is also problematic, as the
weights would then have to depend on local political
conditions. For example, in the 2000 election, it would
be necessary to lower the weight of New Mexico and
raise the weight of Massachusetts (see Figure 2b),
but then these weights might have to change in the
future if New Mexico moved away or Massachusetts
moved toward the national average. A reasonable
default position is to assign weights in proportion
to population size or perhaps population size to the
0.9 power (see Gelman, Katz and Bafumi, 2002), but
these too are based on particular empirical analyses.
In general, this fits in with the literature on evaluating
voting methods and power indexes based on their
performance in actual voting situations (see, e.g.,
Felsenthal, Maoz and Rapoport, 1993; Heard and
Swartz, 1999; Leech, 2002).

5. STOCHASTIC PROCESSES FOR VOTERS

The simplest generalization of random voting is for
votes to be independent but with probability p, rather
than 1/2, of voting +1. This is not a useful model;
although it corrects the mean vote, it still predicts a
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standard deviation that is extremely small for large
elections (Beck, 1975). It is necessary to go further and
allow each voter to have a separate pi and to model
the distribution of these pi’s. If the probabilities pi are
given any fixed distribution not depending on n, then
the distribution of the average vote, for large n, will
converge to the distribution of the pi’s. The empirically
falsified 1/

√
n rule then goes away, to be replaced by

the more general expression (5), because the binomial
variation from which it derives is minor compared to
any realistic variation among the probabilities pi . (This
was noted by Good and Mayer, 1975; Margolis, 1977,
1983; and Chamberlain and Rothschild, 1981.)

The next step is give a dependence structure to the
voters’ probabilities pi . It makes sense to build this de-
pendence upon existing relationships among the voters.
The most natural starting point is a tree structure based
on geography; for example, the United States is divided
into regions, each of which contains several states,
each of which is divided into Congressional districts,
counties, cities, neighborhoods and so forth. When
modeling elections, it makes sense to use nested com-
munities for which electoral data are available (e.g.,
states, legislative districts and precincts). It might also
be appropriate to include structures based on nonnested
predictors. For example, voters have similarities based
on demographics as well as geography; nonnested
models also have been used to capture “small-world”
phenomena in social networks (Watts, Dodds and New-
man, 2002).

Section 5.1 discusses an approach based on directly
modeling the dependence of individual votes and Sec-
tion 5.2 presents a model using correlated latent vari-
ables. It is interesting to see the different implications
for observable outcomes that are obtained by these two
families of probability models.

5.1 Discrete Modeling of Dependence of Votes

One idea for modeling votes, taken from the math-
ematical literature and based on the Ising model
from statistical physics, is to model dependence of
the votes vi via a probability density proportional to
exp(−∑

ij cij vivj ), where cij represents the strength
of the connection between any two voters i and j .
Under this model, voters who are connected are more
likely to vote similarly. If the voters form a tree struc-
ture, then the model implies correlation of the votes in
the same local community. If the correlation is higher
than a certain critical value, then the properties of av-
erage votes can be qualitatively different than in the
random voting model, as we prove below (see Evans,
Kenyon, Peres and Schulman, 2000).

FIG. 5. Notation for the derivation of the standard deviation of

the average vote differential, V (d), for the Ising models on kd vot-
ers in a tree structure. This tree, unlike that in Figure 1, repre-
sents dependence between voters, not a coalition structure. Here,
z represents the unobserved ±1 variable at the root of the tree,
x represents the unobserved ±1 variable at one of the k branches

at the next level and V
(d−1)

is the average vote differential for the
kd−1 voters in this branch. The derivation proceeds by determin-

ing the mean and variance of V (d), conditional on z, in terms of

the mean and variance of V
(d−1)

, conditional on x.

5.1.1 A stochastic model on a tree of voters. To get
a sense of how these models work, we derive some
basic results for the Ising model on symmetric trees.
Suppose we have n = kd voters arrayed in a tree of
depth d with k branches at each node. At each node of
the tree is a variable that equals ±1 (see Figure 5). For
the leaf nodes, this variable represents a vote; at the
other nodes, the variable is unobserved and serves to
induce a correlation among the leaves. The probability
model states that, conditional on a parent node, the
k children are independent, each with probability π of
differing from the parent. We further assume that the
marginal probabilities of +1 and −1 are equal.

5.1.2 The distribution of the average of n votes.
One way to understand this model and to see how it
differs from random voting is to study its implications
for the probability that an individual voter is decisive
in a coalition or district j of nj voters. As discussed
in Section 4, the probability of decisiveness is linked
to the standard deviation of the proportional vote
differential V j in the district. The random voting
model predicts sd(V j ) ∝ n−0.5

j , whereas empirical
electoral data show much weaker declines on the order
of sd(V j ) ∝ n−α

j , with powers estimated at lower
values such as α = 0.15 (see Figure 3).

This model can easily be simulated starting at the
top of the tree and working downward. However, this is
computationally expensive for large values of n, so we

use analytic methods to evaluate sd(V
(d)
) as a function

of n = kd , as well as the parameters k and π that
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determine the stochastic process. The results we prove
here also appear in Bleher, Ruiz and Zagrebnov (1995)
and Evans et al. (2000).

The setup for our derivation is diagrammed in Fig-
ure 5. For an Ising-model tree of depth d , let z = ±1
be the equally likely values at the root and let V d be
the average value at the kd leaves. The variance of V d
can be decomposed, conditional on the root value z, as

var
(
V
(d)
)

= var
(
E
(
V
(d)|z

))
+ E

(
var

(
V
(d)|z

))
= 1

2

[(
E
(
V
(d)|z= +1

)
− 0

)2

+E
((
V
(d)|z= −1

)
− 0

)2]
+ 1

2

[
var

(
V
(d)|z= +1

)
+var

(
V
(d)|z= −1

)]
= µ2

d + σ 2
d ,

(8)

where µd and σd are the conditional means and
variances of V d given z= +1:

µd = E
(
V
(d)|z= +1

)
, σ 2

d = var
(
V
(d)|z= +1

)
.

This decomposition is useful because we can evaluate
µd and σ 2

d recursively.
At d = 0, the root of the tree is the same as the leaf,

and V
(0) = z. Thus,

µ0 = E
(
V
(0)|z= +1

)
= 1,

σ 2
0 = var

(
V
(0)|z= +1

)
= 0.

For d ≥ 1 we note that V d is the average of k
identically distributed random variables V d−1 that are
independent conditional on z (see Figure 5). Then
we can use the symmetry of the underlying model to
obtain

µd = E
(
E
(
V
d |x

)
|z= +1

)
= (1 − π)µd−1 + π(−µd)
= (1 − 2π)µd−1

= (1 − 2π)d,

(9)

with the last step being a recursive calculation starting
with µ0 = 1. We evaluate σ 2

d using the conditional
variance decomposition and the fact that it is the mean
of k independent components,

σ 2
d = 1

k

(
var

(
E
(
V
d |x

)
|z= +1

)
+E

(
var

(
V
d |x

)
|z= +1

))
= 1

k

(
4π(1 − π)µ2

d−1 + σ 2
d−1

)
,

(10)

with the second term being the variance of a random
variable that equals µd−1 with probability 1 − π

or −µd−1 with probability π . We can expand the
recursion in (10) and insert (9) to obtain

σ 2
d = 4π(1 − π)k−d

d∑
i=0

(
(1 − 2π)2k

)i
,

and combining with (9) into (8) yields

var
(
V
(d)
)

= ξd + (1 − ξ)k−d
d∑
i=0

(ξk)i,(11)

where, for convenience, we have defined

ξ = (1 − 2π)2.

We evaluate (11) separately for three cases, depend-
ing on whether the factor ξk in the power series is less
than 1, equal to 1 or greater than 1. For each, we focus
on the limit of large d—that is, large n—since we are
interested in modeling elections of thousands or mil-
lions of voters.

• If ξk < 1, then we can expand (11) as

var
(
V
(d)
)

= ξd + (1 − ξ)k−d 1 − (ξk)d
1 − ξk

≈
(

1 − ξ
1 − ξk

)
1

n
for large n.

(12)

Thus, for ξ < 1/k, the standard deviation of the
average of n votes is proportional to 1/

√
n, just

as in the random voting model but with a different
proportionality constant. This will not be useful for
us in modeling data with more gradual power-law
behavior such as displayed in Figure 3.

• If ξk = 1, then (11) becomes

var
(
V
(d)
)

= ξd + (1 − ξ)k−dd

= 1

n

(
1 +

(
1 − 1

k

)
logk n

)

≈
(

1 − 1

k

)
1

n
logk n for large n.

(13)

Thus, for ξ = 1/k, the standard deviation of the
average vote margin is proportional to

√
(logk n)/n.

• If ξk > 1, then (11) becomes

var
(
V
(d)
)

= ξd + (1 − ξ)k−d (ξk)d − 1

ξk − 1

≈ k − 1

k − 1/ξ
ξd for large n.

(14)
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Since d = logk n, we can write ξd = n−2α , where
α is a power less than 1/2; more specifically, α =
−0.5 logk ξ . We then can reexpress (14) as

var
(
V
(d)
)

≈
(
k − 1

k − k2α

)
n−2α for large n.(15)

Evans et al. (2000) generalized these power laws to
nonregular trees.

5.1.3 Fitting the model to electoral data. In real
elections, one can approximate the standard deviation
of V j for districts j as proportional to n−α

j , where α
is some power less than 1/2 (see Section 4). As we just
have shown, this corresponds to the Ising model with
ξ > k.

Given α and k, we can solve for π = 1
2 (1 − √

ξ)=
1
2 (1 − k−α). For example, the Presidential election
data illustrated in Figure 3 can be fitted by α =
0.16. For k = 2,3,10,100, the best-fitting π ’s are
0.05,0.08,0.15,0.26.

Next, one can imagine setting the parameter k

so that the coefficient
√
(k − 1)/(k − k2α) from (15)

matches the coefficient c in the fitted curve, sd(V j )≈
cn−α
j . However, this second fitting step is not so

effective, because the coefficient in (15) has a narrow
range of possibilities. For example, for α = 0.16,√
(k − 1)/(k− k2α) ranges from a maximum of 1.15

(at k = 2) to a minimum of 1 (as k → ∞), but the
estimate of c from the data in Figure 3 is 1.74.

Even if the estimated c from this data set happened
to be in the range (1,1.15), we would not want to take
the Ising model too seriously as a description of voters.
Our purpose in developing such a stylized model
here is primarily to show how simple conditions of
connectedness can induce power laws that go beyond
the random voting model.

5.2 Continuous Modeling of Latent
Underlying Preferences

The other natural approach to modeling variation
in opinion, deriving from preference models in social
science, is to think of the votes vi as independent but
with structure on the probabilities pi . A natural starting
point is an additive model on the logit or probit scale:
for example, in a hierarchical structure,

pi =�(αnation + βregioni + γstatei + γdistricti + · · ·).
More generally, a nonnested model has the form pi =
�((Xβ)i), with geographic and demographic predic-
tors X. This sort of model is consistent with under-
standing swings in votes (Gelman and King, 1994) and

public opinion in the short term (Gelman and King,
1993) and long term (Page and Shapiro, 1992). Further
work is needed to study how the votes in these mod-
els aggregate and their implications for voting power.
Mathematically, this is related to models in spatial sta-
tistics and their implications for the sampling distribu-
tion of spatial averages (Whittle, 1956; Ripley, 1981),
with the additional analytical difficulties that arise from
the nonlinear probit transformation.

5.2.1 A stochastic model on a tree of voters. A start-
ing point for theoretical exploration, by analogy to the
Ising models discussed in Section 5.1, is to apply the
additive model to a regular tree structure, with each
node of the tree having a continuous value z. We con-
sider a simple but nontrivial random walk model, in
which independent error terms ε ∼ N(0, τ 2) are as-
signed to each node of the tree, and then, for each node,
the value z is defined as the sum of the ε’s for that node
and all the nodes above it in the tree.

We work with a tree of depth D with k branches at
each node, thus representingN = kD voters. The value
z for a node at depth d of the tree is then the sum of
d + 1 independent N(0, τ 2) terms starting at the root
and working down to the node.

For any of the kD leaf nodes i (i.e., voters), the
probability pi = Pr(Vi = +1) is set to �(zi). In our
model, the values zi at the leaves marginally have
N(0, (D + 1)τ 2) distributions but with a correlation
structure induced by the tree. Such a model has
three parameters: D, k and τ , and we can explore
the variation of average votes at different levels of
aggregation, as a function of these parameters.

In the Ising model, we did not need to consider the
depth D of the larger tree in evaluating the properties
of average votes in subtrees of depth d . In contrast,
the distribution of the votes in the random walk model
depends on the higher branches of the tree. This
makes sense from a political standpoint, because state-
level votes, for example, are affected by national and
regional as well as statewide and local swings.

5.2.2 The distribution of the average of n votes. As
in Section 5.1, we shall determine the variance of V

(d)
,

the proportional vote differential based on averaging
n= kd voters. For this model, we compute the variance
by counting the number of pairs of the n voters that are
a distance 0,1,2, . . . , d apart in the tree,
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var
(
V
(d)
)

= 1

kd

(
1 +

d∑
δ=1

(k − 1)kδ−1ρδ

)
,(16)

where ρδ is the correlation between the votes vi at two
leaves a distance δ apart in the tree. In deriving (16),
we have used the fact that, from the symmetry of the
model, each vi = ±1 has a marginal mean of 0 and
variance of 1.

For each δ, the correlation ρδ can be determined
based on the bivariate normal distribution: if voters i
and j are at a distance δ, then we can write

ρδ = Pr(vi = +1 and vj = +1)

+Pr(vi = −1 and vj = −1)

−Pr(vi = +1 and vj = −1)

−Pr(vi = −1 and vj = +1)

= 2A− (1 − 2A)

= 4A− 1,

where A is the area in the positive quadrant of the
bivariate normal distribution with mean 0 and variance
matrix 

(D + 1)τ 2 + 1 (D − δ+ 1)τ 2

(D− δ + 1)τ 2 (D+ 1)τ 2 + 1


 .

The extra “+1” term in the variance here corresponds
to the latent N(0,1) error term in the probit model,
Pr(vi = +1) = �(zi). Evaluating the area of the
normal distribution, we obtain

ρδ = 2

π
arcsin

(
(D + 1 − δ)τ 2

(D + 1)τ 2 + 1

)
.

Thus,

var
(
V
(d)
)

= 1

kd

(
1 + 2

π
(k− 1)

d∑
δ=1

kδ−1

× arcsin
(
(D + 1 − δ)τ 2

(D+ 1)τ 2 + 1

))
.

(17)

Because of the power of k, the last terms (with
higher values of δ) will dominate in the summa-
tion in (17). For these higher terms, the expression
((D+ 1 − δ)τ 2)/((D + 1)τ 2 + 1) will be close to 0,
and so the arcsine can be approximated by the iden-
tity function. We use this approximation to gain un-

derstanding of the behavior of var(V
(d)
), knowing that

we can compare to the exact formula (17) at any point.
Approximating arcsin(x) by x yields

var
(
V
(d)
)

≈ 1

kd

(
1 + 2

π
(k − 1)

d∑
δ=1

kδ−1

×
(
(D + 1 − δ)τ 2

(D+ 1)τ 2 + 1

))

≈ 1

kd
+ 2

π

τ 2

(D+ 1)τ 2 + 1

×
(
D(1 − k−d)+ k

k − 1
− d

)
.

We further simplify by ignoring terms of order k−d =
1/n, to obtain

var
(
V
(d)
)

≈ 2

π

τ 2

(D + 1)τ 2 + 1

(
D+ k

k − 1
− d

)
.(18)

This is simply a linear function in logn (recall that
n= kd , so logn= d logk),

var
(
V
(d)
)

≈ a− b logn,(19)

where the parameters a and b are determined by D,
k and τ , the parameters of the underlying stochastic
model. For numbers of voters n in the thousands to
millions (as in our electoral data), we compared (19)
to (17) and found the approximation to be essentially
exact.

5.2.3 Fitting the model to electoral data. The model
(19) is much different from a power law but it ac-
tually behaves similarly over a fairly wide dynamic
range of n. For example, the Presidential votes by
state displayed in Figure 3 have n ranging from 60,000
to 10 million. The best-fit line of the form (19) to
these data is var(V

(d)
)= 0.20 − 0.0113 logn. Assum-

ing a normal distribution, this implies E(|V (d)|) =
0.8

√
0.20 − 0.0113 logn, which we display in Figure 6

along with the previously fitted power-law curve. The
two lines look almost identical, and it would be close
to hopeless to try to distinguish between them from the
data.

We can map the fitted values a = 0.020 and b =
0.0113 to D, k and τ in (18). Since we are fitting three
parameters to two, we can set one of them arbitrarily;
for simplicity, we set k = 2 for a binary tree. Then
the fitted values are N = 12 million and τ = 0.175.
As with the Ising model in the previous section, we
do not want to take these parameters too seriously;
these estimates are merely intended to give insight into
the sort of model that could predict patterns of vote
margins that occur in real electoral data.
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FIG. 6. The proportional margin in state votes for President as
a function of the number of voters nj in the state, repeated from

Figure 3. The best-fit lines of the form cnαj and
√
a − b lognj

are displayed. The power law is consistent with the Ising model
described in Section 5.1 and the logarithmic form is consistent with
the random walk model described in Section 5.2. Both fit the data
much better than the 1/√nj curve predicted by the random voter
model (see Figure 3).

6. DISCUSSION

Voting power is important for studying political rep-
resentation, fairness and strategy, and has been much
discussed in political science. Although power indexes
are often considered as mathematical definitions, they
ultimately depend on statistical models of voting. As
we have seen in Section 3, even the simplest default
of random voting is full of subtleties in its implica-
tions for voting power. However, as seen in Sections 4
and 5, more realistic data-based models lead to dras-
tically different substantive conclusions about fairness
and voting power in important electoral systems such
as the U.S. Electoral College. Further work is needed
to develop models of individual voters in a way consis-
tent with available data on elections and voting, and to
understand the implications of these models for voting
power.

We conclude with a discussion of the fundamental
connections between individual voting power and po-
litical representation.

6.1 Fundamental Conflict between Decisiveness of
Votes and Legitimacy of Election Outcomes

Our mathematical and empirical findings do not di-
rectly address normative questions such as, “Which
electoral system should be used?” or, in a legisla-
ture, “How should committees or subcommittees be as-
signed?” Let alone more fundamental questions such

as, “Is it desirable for the average voting power to be
increased?” After the 2000 election, some commenta-
tors suggested that it would be better if close elections
were less likely, even though close elections are as-
sociated with decisiveness of individual votes, which
seems like a good thing.

The issue of the desirability of close elections
raises a conflict between two political principles: on
one hand, democratic process would seem to require
that every person’s vote has a nonzero chance (and,
ideally, an equal chance) of determining the election
outcome. On the other hand, very close elections such
as Florida’s damage the legitimacy of the process, and
so it might seem desirable to reduce the probability of
ties or extremely close votes.

No amount of theorizing will resolve this diffi-
culty, which also occurs in committees and leads to
legitimacy-protecting moves such as voting with an in-
formal straw poll. The official vote that follows is then
often close to unanimous as the voters on the losing
side switch to mask internal dissent. This article’s the-
oretical findings on the benefits of coalitions imply that
such behavior is understandable but in a larger context
can reduce the average voting power of individuals.

6.2 Limitations of Individualistic Measures of
Group Power

We must also realize that individual measures of po-
litical choice, even if aggregated, cannot capture the
structure of group power. For one thing, groups that can
mobilize effectively are solving the coordination prob-
lem of voting and can thus express more power through
the ballot box (Uhlaner, 1989). For an extreme exam-
ple, consider the case of Australia, where at one time
Aboriginal citizens were allowed, but not required, to
vote in national elections, while non-Aboriginal cit-
izens were required to vote. Unsurprisingly, turnout
was lower among Aboriginals. Who was benefiting
here? From an individual-rights standpoint, the Abo-
riginals had the better deal, since they had the freedom
to choose whether to vote, but as a group, the Abo-
riginals’ lower turnout would be expected to hurt their
representation in the government and thus, probably,
hurt them individually as well. Having voting power is
most effective when you and the people who share your
opinions actually vote.
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