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Abstract:
Predictive modeling uncovers knowledge and insights regarding a hypothesized data gen-

erating mechanism (DGM). Results from different studies on a complex DGM, derived from
different data sets, and using complicated models and algorithms, are hard to quantitatively
compare due to random noise and statistical uncertainty in model results. This has been one
of the main contributors to the replication crisis in the behavioral sciences.

The contribution of this paper is to apply prediction scoring to the problem of comparing
two studies, such as can arise when evaluating replications or competing evidence.

We examine the role of predictive models in quantitatively assessing agreement between
two datasets that are assumed to come from two distinct DGMs. We formalize a distance
between the DGMs that is estimated using cross validation. We argue that the resulting pre-
diction scores depend on the predictive models created by cross validation. In this sense, the
prediction scores measure the distance between DGMs, along the dimension of the particular
predictive model. Using human behavior data from experimental economics, we demonstrate
that prediction scores can be used to evaluate preregistered hypotheses and provide insights
comparing data from different populations and settings. We examine the asymptotic behavior
of the prediction scores using simulated experimental data and demonstrate that leveraging
competing predictive models can reveal important differences between underlying DGMs. Our
proposed cross-validated prediction scores are capable of quantifying differences between un-
observed data generating mechanisms and allow for the validation and assessment of results
from complex models.

Keywords and phrases: cross validation, experimental social science, model assessment,
preregistration, reproducibility.

1. Introduction1

Many scientific advances begin with exploratory investigations of observed data, but much of sci-2

entific practice relies on confirmatory analyses that evaluate data against a scientific hypothesis,3

accounting for uncertainty (Tukey, 1972). In recent years, the scientific community has become in-4

creasingly more open to statisticians’ increasingly vocal warnings about this heavy reliance on null5

hypothesis statistical tests (NHST), and their p-values, that constitute much of confirmatory analy-6

ses (e.g., Ziliak and McCloskey, 2008; Nuzzo, 2014; Wasserstein and Lazar, 2016; Jeske, 2019). As a7

result, we have witnessed increasing research interest in alternatives to p-values and, more broadly,8

in methodology that can comprehensively account for the nuances of complex data, complex mod-9

els, and the increasingly complicated algorithms necessary to estimate these models. Motivated by10

this discussion, we consider the statistical problem of exploring and understanding the behavior of11

a data-driven discovery across two sets of observed data that are believed to have been generated12

from similar processes or models (e.g., a study and its replication, as in Pawel and Held, 2020, or a13

pilot study and realized experimental data).14

A key motivating example is the evaluation of preregistered hypotheses (Humphreys, Sanchez15

de la Sierra and Van der Windt, 2013; Gelman, 2013), often called prediction scoring, a research16

planning strategy which arose out of the frustration with p-values. Preregistration requires that17

∗To appear in Statistics and Computing.
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researchers make publicly recorded predictions, often based on prior or pilot data, for the scientific18

hypotheses that will be assessed once the data has been collected. This forces researchers to clearly19

differentiate between confirmatory and exploratory analyses, which ensures that p-values for the20

confirmatory analyses can be safely interpreted as intended. After data collection, the researchers21

are faced with a natural question: How well do the preregistered predictions align with the observed22

data? This question requires a method of scoring the predictions, in the face of the materialized23

observations and the noise that comes with them.24

This process of preregistration presents a unique statistical challenge: when we preregister our25

hypotheses we are making assumptions about the underlying data generating mechanism (DGM; e.g.,26

it behaves like it did in this previous study; or we suspect this or that parameter to have a positive27

or negative significant effect). Commonly, preregistered studies formulate hypotheses in the form of28

NHSTs (e.g., about regression coefficients) and predict whether or not the associated p-values are29

significant; the preregistered predictions are then evaluated on a purely binary scale: is the p-value30

significant or not? Our proposed prediction scoring approach quantifies the differences between31

preregistered predictions (which are often informed by pilot data) and the realized experimental32

data; and results in a natural way to visualize these differences. Our approach represents a unique33

statistical perspective on preregistration that has gone largely unaddressed. Furthermore, prediction34

scores measure differences between DGMs, such as in the preregistration setting but also in more35

general cases. For example, prediction scores can leverage competing models to make discoveries36

about the underlying DGMs, as in the simulated data examples investigated in Section 4.37

2. Our approach38

Returning to our motivating example of preregistration, consider the setting in which we have39

access to some pilot data or prior study that informs our preregistered hypotheses.1 Then, at the40

conclusion of a preregistered experiment, we are faced with two data sets: τ , from the pilot study,41

and τ ′, the realized experimental data. We assume that each of these datasets is generated from some42

unobservable data generating process—F and F ′—and we are interested in learning about underlying43

differences between F and F ′ (a definition for DGMs is discussed in Section 3). We propose evaluating44

the difference between (1) the set of (preregistered) predictions, τ̂ ′ and (2) the observed experimental45

data, τ ′, from F ′. These predictions, τ̂ ′, are predictions for the experimental data, τ ′, and are46

obtained from f̂τ , a model for F that is trained on the pilot data τ (See Figure 1). In this section,47

we discuss some motivating ideas for how to use this comparison, between τ̂ ′ and τ ′, to learn about48

the quantity of interest, the underlying distance between F and F ′. This comparison needs to49

decompose the total error (i.e., the observed difference between these model-based predictions, τ̂ ′,50

and the observed experimental data, τ ′) into estimation error (from estimating F by f̂) and model51

differences, i.e., true differences between the underlying DGMs.52

Why NHSTs are often insufficient. To better understand the nuances of this type of com-53

parison, consider an example with a simple linear regression model with data sampled from each54

DGM (as in the right panel of Figure 1). Common practice is to predict the outcome of NHSTs for55

parameters in an assumed predictive model. When we have access to pilot data, we could simply56

merge the datasets and construct indicator variables, allowing for varying intercepts or slopes across57

the two samples. Hypothesis tests for the corresponding regression coefficients can nicely summarize58

these specific types of differences between the two DGMs; see also Figure 7 for a full example with59

real data. But for more general cases, evaluating differences between DGMs is not straightforward.60

1This is the case we will assume throughout the rest of the paper; if this is not the case, we might considering
simulating some potential pilot data that incorporates whatever scientific beliefs we hold about the process and wish
to study in our preregistered hypotheses
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Fig 1. Prediction scores are meant to measure the agreement between predictions and realized data. For preregistered
studies (right panel), common practice is to specify predictions in the form of null hypothesis statistical tests about
model parameters; these predictions are then scored on a binary scale. We formalize (and broaden) the concept of
prediction scores as model-based continuous functions of predicted observables for the realized experimental data, τ ′,
obtained from the assumed predictive model trained on some pilot or prior data, τ (left panel).

For example, in the simple example in the right panel of Figure 1, the NHST from a linear regression61

is incapable of detecting the more nuanced true difference between F and F ′. In practice, simple62

linear regression simply cannot sufficiently summarize the scientific process under consideration and,63

even when more complex statistical models can be used, relying on a single parameter or summary64

measure is typically unsatisfying.65

Instead, we propose using appropriate predictive models to formulate scores for the predictions66

from one DGM F against observables from another, F ′. As in predictive inference, this has the67

advantage of providing results that are highly interpretable and of direct interest to substantive68

researchers while also allowing for direct validation (in a way that is simply impossible for model69

parameters; Geisser, 2017; Billheimer, 2019). Further, this allows us to incorporate highly complex70

statistical models in exploring the unobserved DGMs, beyond linear regression models, and to move71

beyond effects described by a single parameter. As in posterior predictive checking for Bayesian72

models, this choice allows for great flexibility in the types of differences that can be uncovered73

between the underlying DGMs.74

Controlling for model fit issues. In some ways, prediction scoring is similar to measuring75

predictive accuracy, but the goal here is different. Using the notation in Figure 1, both predictive76

accuracy and prediction scoring focus on discrepancies between τ̂ ′ and τ ′ but predictive accuracy77

uses these discrepancies to evaluate how well a model, f̂τ , matches the true underlying DGM, F78

(and often which of among a set of competing f̂τ s provides the best match). In this setting, it is79

typically assumed that F = F ′; comparisons of this type are often called validation studies. In the80

prediction scoring setting, we do not assume that F = F ′. As a result, typical predictive accuracy81

metrics are model-dependent measures that mix together the discrepancies between the modeling82

framework and the underlying DGM family (i.e., model fit issues) and any differences between the83

DGMs.84

For this reason, we propose comparing validation summary measures to similar measures obtained85

from cross validation. The resulting prediction scores are then adjusted for cross validation’s estimate86

of how well the model fits the data. Additionally, unlike other measures of model fit, cross validation87
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is a general procedure that can accommodate many modeling frameworks (although appropriate88

partitioning can be difficult for dependent or hierarchical data; Racine, 2000; Gelman, 2006; Roberts89

et al., 2017) and is a clear analogue for the traditional validation procedure.90

The role of the predictive model. In our approach, while the cross validation loss statistics91

help to normalize or account for some of the effects of a poor modeling choice, the chosen predictive92

model does impact the resulting prediction scores. As a result, the predictive model acts as a lens93

through which we can view differences between the two underlying DGMs, which themselves cannot94

be directly observed. Naturally, different models offer different perspectives and in the application95

described in Section 4 we leverage this aspect of our prediction scoring methodology by examining96

suites of non-nested predictive models to uncover distinct types of differences between the underlying97

DGMs.98

Our proposed prediction scores. We provide full details of our proposed prediction scoring99

methodology in Section 3. In short, the idea is to learn about the distance between F and F ′ by100

comparing between model-based (preregistered) predictions, τ̂ ′, to observed experimental data, τ ′,101

using flexible loss functions to summarize the comparison and cross validation (along with subsam-102

pling of τ ′) to adjust for error due to model fit (see Figure 2; a more detailed discussion of this figure103

is given in Section 3). In Section 4, we extend our approach to consider differences across settings104

of a single simulated experimental setup and examine the probabilistic behavior of our proposed105

scores across many repetitions of the experiment. In Section 5, we return to the motivating setting106

of preregistration and demonstrate how prediction scoring can be used to evaluate preregistered107

predictions from a human behavior experiment. We discuss directions for future work in Section 6.108

Related methods for assessing predictive accuracy in the model selection setting and a review of109

recent advances in cross validation approaches are discussed in the appendix.110

3. Cross-validated prediction scoring111

In our approach, we will use the term data generating mechanism to refer to the unobservable112

underlying stochastic process that describes the scientific phenomenon under study. To be precise,113

we will conceptualize a DGM as a particular member of a family of probability distributions that114

represent a set of (model) assumptions about the scientific phenomenon115

For any family of data generating mechanisms, we are interested in estimating a distance, or116

measure of dissimilarity, between different members of the same family.117

Definition 3.1. For a particular family of data generating mechanisms, let the dissimilarity between118

any two members of the family be represented by119

∆DGM = d (F, F ′)

where F and F ′ are both members of a particular DGM family and the choice of the dissimilarity120

function d is motivated by the form of the DGM family.121

We will focus on regression-like settings where we are interested in learning about the relationship122

between a target variable, y, and a vector of inputs, X. As a result, we will think of the underlying123

DGM F as representing the joint population distribution for the data, but that research interests124

are focused on learning the conditional relationship, p(y|X). This is a natural framework since, for125

example in a human behavior study, we may be interested in learning about the conditional rela-126

tionship between individuals’ demographic characteristics and some behavioral outcome but believe127

that a joint distribution describes the way that the sampled data are drawn from the population128
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Fig 2. General outline of the proposed prediction scoring methodology for generic data generating mechanisms, F and
F ′. We observe datasets τ = ((x1, y1), . . . (xN , yN )) with data points drawn from F and τ ′ =

(
(x′

1, y
′
1), . . . (x

′
N , y′N )

)
with data points drawn from F ′. We believe that the target variable y is related to a vector of inputs X and estimate
a predictive model, f̂τ (X), based on τ .
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of all possible studies (i.e., for a new sample, we would observe different individuals with different129

demographics and different behavioral outcomes).130

3.1. Predictive accuracy and test error131

To motivate the form of the prediction scores proposed here, we first review classical definitions132

of predictive error. As mentioned previously, the prediction scores essentially compare model-based133

predictions to real-world observations (see Figure 1), and so traditional model assessment tools are134

useful. In the model assessment setting, we are interested in evaluating the performance of a final135

selected model by estimating the model’s predictive error for new data. Let f̂τ (X) be a predictive136

model estimated from a fixed dataset τ = ((x1, y1), . . . , (xN , yN )) drawn from F . For an appropriate137

loss function, L(y, f̂τ (X)), model assessment tools typically estimate the conditional test error (also138

called the prediction or generalization error; Hastie, Tibshirani and Friedman, 2017), which depends139

on the particular (fixed) training set τ :140

ErrF |τ = EX,y∼F

(
L
(
y, f̂τ (X)

)
|τ
)
.

This is the expected error for the predictive model trained on the dataset, τ , and the expectation141

is over all new data drawn from F but is conditional on observing the particular training data in142

τ . In practice, a new dataset is typically not available, and so this error is estimated using only the143

original observations, for example by performing cross validation (or bootstrapping or by calculating144

AIC, BIC, etc.) which estimates the expected test error, Eτ [ErrF |τ ], an average of the (conditional)145

test error over all possible training sets τ .146

In the prediction scoring setting, we are considering two data generating mechanisms, or popula-147

tion distributions, F and F ′, each of which are joint distributions for the data. From each of these148

distributions, we observe a dataset, τ and τ ′ respectively. In the model assessment setting we care149

about the difference between F and f̂ (i.e., how well does the model estimate the truth), whereas150

in the prediction scoring setting we care only about differences between F and F ′. Since we cannot151

observe the DGMs directly, we can use a predictive model to summarize differences in the observed152

data; in this sense, the predictive model is like a nuisance parameter that we cannot avoid since the153

DGMs themselves cannot be directly observed (we only observe the datasets τ and τ ′).154

Alternatively, we could consider measuring differences between the DGMs through explicit dif-155

ferences across the datasets themselves. For example, consider the test statistic for the two-sample156

t-test which is a function of the sample means. This test (and others like it) assume an underlying157

parametric model; the test is designed to detect differences between parameters from this model.158

A natural model-based approach is to perform validation, where the predictive model is trained159

on (some subset of) the first (training) dataset, τ , but evaluated in the context of the new (test)160

data, τ ′. The estimate of predictive error given by validation is typically of the following form,161

Val(f̂τ ) =
1

N ′

N ′∑
i=1

L
(
y′i, f̂

τ (x′
i)
)

where N ′ is the number of observations in τ ′. In this sense, validation error estimates a different162

conditional test error, given by163

ErrF ′|τ = EX′,y′∼F ′

(
L
(
y′, f̂τ (X ′)

)
|τ
)
,

where here the expectation averages over draws from F ′.164
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However, model validation captures differences due to both model fit issues (from estimating F165

by f̂τ ) and true differences between the DGMs (between F and F ′). Instead of relying solely on166

validation measures, we propose using cross validation to properly calibrate the measurements from167

validation. In this way, we can separate the differences due to model fit issues and random variation168

(as measured by cross validation) from any true differences between the data generating mechanisms.169

3.2. General framework170

Letting κ : (1, . . . , N) → (1, . . . ,K) be an indexing function specifying data splits, the estimate of171

predictive error given by K-fold cross validation is172

CVκ(f̂
τ ) =

1

N

N∑
i=1

L
(
yi, f̂

τ
−κ(i) (xi)

)
,

where κ is typically specified such that the number of observations in each of the K partitions is173

roughly equal. Cross validation estimates the expected test error, Eτ [ErrF |τ ].174

Our prediction scores are designed to compare differences between validation and cross validation.175

In order to make this comparison meaningful, we need to consider a version of validation that esti-176

mates the conditional test error, ErrF ′|τ , averaged over new potential draws of τ from F : Eτ [ErrF ′|τ ].177

This can be achieved by redefining the typical validation loss statistics as follows:178

Valκ(f̂
τ ) =

1

N ′

N ′∑
i=1

L
(
y′i, f̂

τ
−κ(i) (x

′
i)
)

where the f̂τ
−κ(i)’s are the same predictive models from cross validation (i.e., the models are trained179

on the same subsets of τ). This differs from the traditional implementation of validation in which180

the predictive model would be trained using all entries in τ . Intuitively, if this were the case, we181

would naturally expect better predictive performance in the validation routine, since the predictive182

model has the benefit of being trained on more data. Keeping the predictive models as comparable183

as possible (across the cross validation and validation routines) by training them on the same subsets184

of the data enables better detection of true differences between the underlying DGMs.185

Differences between our redefined validation and cross validation estimate differences between the186

conditional test errors based on F and F ′, averaged over new training datasets τ . In other words,187

Valκ(f̂
τ )− CVκ(f̂

τ ) estimates Eτ

[
ErrF ′|τ

]
− Eτ

[
ErrF |τ

]
and the estimand can be expanded as188

Eτ

(∫
X ,Y

L
(
y, f̂τ (x)

)
d (F (x, y|τ)− F ′(x, y|τ))

)
,

which is the prediction error or loss averaged over differences between the DGMs and averaged over189

training sets τ . This expansion elucidates a natural connection; the differential resembles the form190

of the Kolmogorov-Smirnov statistic, a popular method that uses differences in empirical cumula-191

tive distribution functions (i.e., estimates for F and F ′) to measure discrepancies across univariate192

distributions.193

In Algorithm 1 and Figure 2, we generalize the prediction scores so that comparisons between the194

cross validation and validation summary measures need not be computed only as the difference of195

means, as above. That is, our prediction scores are defined as196

∆pred = h (l, l′) ,
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Algorithm 1 Prediction Scoring
Let τ = ((x1, y1), . . . (xN , yN )) be a dataset with N observations drawn from the DGM F which is the joint
population distribution for X and y; and analogously, τ ′ consists of N ′ observations and is drawn from F ′. Let
κ : (1, . . . , N) → (1, . . . ,K) be an indexing function specifying data splits for τ . Let L be an appropriate loss
function and let h be the prediction scoring function.

1: procedure Fit Predictive Models
2: for k = 1, . . .K do
3: construct τ−k = ((xi, yi) s.t. κ(i) ̸= k)

4: compute f̂τ
−k, the predictive model trained on τ−k

5: procedure Cross Validation
6: for i = 1, . . . N do

7: li = L
(
yi, f̂

τ
−κ(i)

(xi)
)

8: procedure Validation
9: for i = 1, . . . N ′ do

10: l′i = L
(
y′i, f̂

τ
−κ(i)

(x′
i)
)

11: procedure Prediction Scoring
12: ∆pred = h (l, l′)

where l and l′ are the vectors of loss statistics such that li = L
(
yi, f̂

τ (xi)
)
for i = 1, . . . , N and197

l′i = L
(
y′i, f̂

τ (x′
i)
)

for i = 1, . . . , N ′; and h is a function that compares the distributions of loss198

statistics. Although in our definition above the prediction score is a function that compares the loss199

statistics, in practice, diagnostic plots that represent the differences between these distributions may200

be more useful, as demonstrated in later examples.201

3.3. Additional considerations202

Forecast distributions and non-Bayesian models. In order to appropriately account for un-203

certainty, we recommend making predictions in the form of vectors of possible outcomes, also called204

simulated forecast distributions. In the examples that follow we will adopt Bayesian predictive models205

which provide a natural way of computing vector-valued predictions; we can simply draw samples206

from the posterior predictive distribution for each observation. For non-Bayesian models, similar207

types of predictive distributions can be computed with bootstrapping or other resampling methods.208

Choosing appropriate functionals. In practice, calculating prediction scores involves specifying209

a few important elements: the predictive model (f̂), the loss function to compare predictions to210

realized data (L), and the subsampling method for the cross-validation and validation routines (κ).211

Additionally, to study the theoretical properties of the prediction scores, appropriate choices for d212

(the measure of the true difference between the data generating mechanisms) and h (the measure of213

the difference between the distributions of the loss statistics) must be made. These choices should be214

well motivated by the data types and modeling choices of the particular application. More specifically,215

the true DGM distance should be motivated by the form of the family of data generating mechanisms216

being considered, and the loss function should be motivated by the form of the chosen predictive217

model and model fitting software.218

Because we encourage making predictions in the form of forecast distributions, the loss function219

needs to be capable of evaluating differences between the true observation, yi, (a number) and the220

corresponding set of predictions (a vector). This still leaves questions as to the form of the loss in221

the face of different types of predictive models. For example, when using a linear regression model,222

predictions for y will be continuous and so quantiles may be a natural choice. However, for a logistic223
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regression model, the predictions will be probabilities (between 0 and 1) while the observations are224

binary. Some variant of the area under the curve (AUC) statistic may be a better choice for L.225

Strictly proper scoring rules such as the logarithmic score or Brier score could be easily incorporated226

(Gneiting and Raftery, 2007).227

Additionally, the choice of the prediction score, h, should be motivated by both of these consider-228

ations and the subsequent choices for d and L. Although this methodology would be simpler if d, L,229

and h were universally specified, it is important that they capture relevant features of the data gen-230

erating mechanisms and are suitable to whatever modeling assumptions and model fitting software is231

chosen by the researcher. This sort of conditional specification is not unlike the choice of an appropri-232

ate link function for generalized linear models. This framework is nicely aligned with many popular233

measures of predictive accuracy. For example, choosing L as quadratic loss for a linear regression234

predictive model and choosing h appropriately will result in prediction scores that compare mean235

squared error across the cross validation and validation routines. In the examples discussed here we236

consider logistic regression predictive models and adopt the popular AUC statistic for L, examining237

histograms of these statistics in Section 5 and computing h as Kolmogorov-Smirnov statistics in238

Section 4. Deriving appropriate forms of d, L, and h for more dependent data, such as networks or239

time series, is an active area of future research. Ideally, the prediction scoring methodology, including240

these choices for d, L, and h, should be fully preregistered prior to any data collection. This does241

not preclude us from using the prediction scores in an exploratory fashion to discover interesting242

data features.243

As demonstrated in Section 4, h can be specified as a test statistic (or p-value) from a non-244

parametric test of the hypothesis that the validation and cross-validation loss statistics come from245

the same distribution (e.g., the Kolmogorov-Smirnov test, the Mann-Whitney U test, or DeLong’s246

test). However, some care should be taken when interpretting the results of these tests for real data.247

First, such tests generally assume independent, identically distributed samples whereas the groups248

of loss statistics under comparison are likely correlated; recall that the loss statistics are model-based249

predictions, and the validation and cross-validation routines use models trained on the same subsets250

of τ . Second, any difference between the cross-validation and validation loss statistics (i.e., between251

the preregistered hypothesis and the resulting experimental data) may be of substantive interest.252

For these reasons, we highly encourage using visual checks and diagnostic plots when evaluating253

differences between the loss statistics, as demonstrated in the following sections.254

3.4. The predictive model as a lens255

As we will emphasize in the following examples, the proposed prediction scores reveal differences256

between the DGMs along the dimension of the model used to make predictions. Consider evaluating257

differences between the same pair of DGMs in the face of two competing models. In the case where258

these predictive models are orthogonal in some sense (i.e., capture distinct features of the DGMs),259

we can imagine that each model should produce a set of prediction scores that capture differences260

between the DGMs only according to the features of the DGMs that each model is equipped to detect.261

For example, consider the illustrative diagram given in Figure 3. Here, we imagine two DGMs, F262

and F ′, which reside in a large, complex, multidimensional DGM space. The true distance between263

these DGMs, ∆DGM , is typically unobservable, but we can calculate prediction scores relative to a264

model, which measure the distance between the distributions of cross validation and validation loss265

statistics. For example, using model f̂1, we can learn about the DGMs, F and F ′, by projecting them266

into a lower-dimensional space, the prediction space for model f̂1 (represented by the low-dimensional267

green rectangle in Figure 3). In this lower-dimensional space, we can measure the distance between268

the predictive accuracy of model f̂1 for data corresponding to F (this is represented in the empirical269

distribution for q1 and is obtained via cross validation) and for data corresponding to F ′ (represented270



10 A. Smith, T. Zheng and A. Gelman

DGM Space

Prediction space 
from Model !"#

Δ%&' Δ()*+
!,-

.

.′

Prediction space 
from Model !"0

1()*+
!,23#

30

3#4

304

Fig 3. A geometric illustration of how prediction scores measure differences between DGMs along the dimension of
the model used to make predictions.

by q′1, obtained via validation). This prediction scoring distance, ∆f̂1
pred depends on the model used271

to make predictions, f̂1, and will correspond to differences between F and F ′ that the model is272

equipped to detect. Now if we imagine a competing model, f̂2 (its prediction space is represented by273

the low-dimensional blue rectangle in Figure 3), which is “orthogonal” to this model, the resulting274

prediction scoring distance for model f̂2 will reflect different types of differences between the DGMs275

(i.e., in Figure 3, the blue distance is not the same as the green distance). In other words, DGMs276

may look more or less similar in terms of prediction scoring distances, depending on the model277

used to make the predictions. As we will discuss in more detail in Section 4, we can leverage this278

dependence and consider suites of “orthogonal” models in order to discover interesting differences279

between DGMs.280

4. Simulated experiments281

While our prediction scoring approach is motivated by the unique setting of preregistration, at its282

core it is a method for detecting differences between two data sources and their underlying DGMs.283

To demonstrate that these prediction scores can pick up on meaningful differences between compet-284

ing DGMs (here, across experimental settings), we have designed a simulation study that utilizes285

a simplified experimental design, modeling the outcome of interest with logistic regression. The de-286

tails of the simulated experiments are motivated by experimental data from a large-scale human287

behavior study, the Next Generation Social Science (NGS2) program (more details are available in288

the Appendix; experimental data from this program, and the motivating setting of preregistered289

hypotheses, will be explicitly considered in Section 5). This simulation study also allows us to ex-290

amine how prediction scores can leverage competing predictive models to identify different types of291

differences between DGMs and to get a sense of their asymptotic behavior.292
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4.1. Experimental setup: human behavior in the presence of bots293

Our simulation study will compare multiple settings of the simple and well-studied public goods294

game, from economic game theory (Ledyard, 1995). In a public goods game, n players have the295

opportunity to contribute (“cooperate”) or not (“defect”) over a series of T sequential rounds to a296

set of pooled resources that will be (multiplied and) shared among all participants. Each player’s goal297

is to collect as many tokens (money) as possible; in each round, players are faced with the decision298

to be selfish (and keep their tokens), or be cooperative (and donate money to the common pool).299

In our simulated experiments, we assume that each player’s decisions are made public to all other300

participants. Economists hypothesize that players’ decisions to contribute at each round depends on301

the players’ own baseline tendency to contribute, their previous decisions, and can be affected by302

the outcomes and behaviors of other players from the previous rounds.303

Inspired by the experimental plan of the NGS2 research teams from the University of Pennsylvania304

and University of California, we imagine that bot-like participants play alongside the simulated305

human participants. Theoretically, inserting bot participants within these experiments would allow306

researchers greater experimental control over the social and environmental landscape within the game307

(Suchow et al., 2017) while simultaneously enabling the study of human behaviors in larger groups308

(i.e., adding bot participants is easier than recruiting human subjects). In this sense, researchers can309

use bot behaviors to create interventions and trigger different behaviors.310

True DGM. In our simulation study, we consider an array of K = 5 different DGMs, representing311

different levels of the percent of bot participants in the game, from π = (0, 0.25, 0.50, 0.75, 1). We312

are most interested in understanding the ways in which participants’ decisions to cooperate are313

influenced by the presence of bots; thus, prediction scores will compare predictions for participant314

contribution across experimental settings where the percentage of bots differs.315

For each experimental setting (i.e., each element of π), we imagine recruiting J cohorts of individu-
als to participate; let njk be the number of individuals competing in the jth cohort of the kth setting.
Let yijkt be the decision to cooperate (yijkt = 1) or defect (yijkt = 0) for the ith individual in the jth
cohort of the kth experimental setting during round t, where i = 1, . . . njk, j = 1, . . . J, k = 1, . . .K,
and t = 1, . . . T . Additionally, let zijk be an indicator of whether the ith participant in the jth cohort
of the kth round is a human participant (zijk = 1) or a bot (zijk). We will assume that yijkt|zijk are
independently distributed Bernoulli random variables, for all i, j, k, and t. Then, the true underlying
data generating mechanism for the simulated data in our hypothetical experiments is given by the
following:

zijk
iid∼ Bernoulli(πk)

Model 0: logit−1 (P (yijkt = 1|zijk = 1)) = β0 + β1t+ β2yijk,t−1 + β3ȳ·jk,t−1

logit−1 (P (yijkt = 1|zijk = 0)) = β′
0 + β′

2yijk,t−1,

where πk is the proportion of bots in the kth round, β0 and β′
0 are baseline tendencies to cooperate, β1316

captures any trend across the rounds, β2 and β′
2 capture the tendency to switch between behaviors,317

and β3 represents the influence of team members’ decisions. For example, if all other individuals318

cooperated in the previous round (ȳ·jk,t−1 is close to one), then the probability that individual i also319

cooperates in the next round is high, for large positive β3. For bot participants, β3 is defined to be320

zero; the simplistic bots we consider here are not influenced by the behavior of other participants.321

To specify reasonable parameter values for our simulation, we fit this true model to the experimental322

data from both Rand, Arbesman and Christakis (2011) and Diego-Rosell (2017) (analyzed in Section323

5), using data from games played under the fluid network update setting for bot behavior and the324

fixed network setting for human behavior (see Table 1).325
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Parameter β0 β1 β2 β3

Predictor 1 t yijk,t−1 ȳ·jk,t−1

Human behavior −1.31 −0.10 1.97 1.25
Bot behavior −0.78 - 2.68 -

Table 1
Parameter values for Model 0: True data generating mechanism.

To mimic subject recruitment, for each setting, k, we will set the number of cohorts J = 10 and the326

number of rounds T = 15, and draw nkj ∼ Binomial(M,p), where J and T are chosen to mimic the327

experimental settings specified by Rand, Arbesman and Christakis (2011) and Diego-Rosell (2017),328

M = 10000 is the size of the pool of possible recruits, and p = 0.0018 is the participation rate; this329

corresponds to roughly 18 participants per cohort and an expected 2700 data points per setting.330

Prediction scoring. To mimic our analysis of experimental data in Section 5, we will fit Bayesian331

logistic regression models (this also aligns well with the true underlying DGMs). As discussed in332

Section 3.2, the form of the predictive model can help to inform our choice of loss function. Natural333

loss functions for these models include ROC or precision-recall curves.2, and the corresponding area334

under the curve statistics. We will consider visual comparisons of these curves as well as differences335

in the distributions of the AUC statistics. Data subsets are created as random subsamples containing336

roughly 500 observations each (this translates to K ≈ 5 subsamples per setting, since the expected337

sample size is 2700); since we are not investigating cohort- or individual-level effects of any kind, the338

data are partitioned completely randomly across all observations but is resampled in order to preserve339

consistent class proportions across all subsets. This resampling method is necessary to ensure that340

the precision-recall curves are comparable across datasets that vary by baseline cooperation rates341

(this is discussed in more detail in Section 5 and in Panel I of Figure 8).342

Researcher models. We consider a suite of three potential researcher models:343

Model 1: logit−1 [P (yijkt = 1)] = γ0 + γ1t,

Model 2: logit−1 [P (yijkt = 1)] = γ′
0 + γ2yijk,t−1,

Model 3: logit−1 [P (yijkt = 1)] = γ′′
0 + γ3ȳ·jk,t−1,

where γ0 is a baseline tendency to cooperate, γ1 can capture some trends across the rounds, γ2344

represents the influence of the most recent decision, and γ3 represents the influence of team members’345

decisions. In practice the true data generating mechanism is unknown to the researcher. However, the346

researcher typically has hypotheses about features of the DGMs that might differ across experimental347

settings and these features are incorporated in models as above. For example, if all participants348

are bots, than Model 2 should perform fairly well. However, whenever humans participate, Model349

2 will fail to represent the full spectrum of observed behaviors well. The models specified here are350

intentionally non-nested. Since prediction scores are inherently model-based (i.e., they depend on the351

model used to make the predictions), recall from Figure 3 that we can interpret them as a distance352

between DGMs along the dimension of a particular model. In this sense, when trying to uncover353

features of the DGM that may differ across settings, models that can measure distinct features of354

the DGM should be prioritized. In some sense, we can think of the desired set of researcher models355

2Generally, the precision-recall curve is preferred over the ROC curve when data are imbalanced, for example when
there are many more 0’s than 1’s (see Davis and Goadrich, 2006, for more discussion) In our simulated data, even
across each setting (i.e., where we compare data with πk1

bot participants to data with πk2
bot participants) the

aggregate baseline cooperation rate varies from 0.44 (when both πk1
and πk2

are close to 0) to 0.66 (when both πk1

and πk2
are close to 1; these differences in the baseline rates are also apparent in the upper left panel of Figure 5).
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as being orthogonal to each other3 so as to maximize the possibility of discovering true differences356

between the DGMs.357

4.2. Results358

Shortcomings of predictive accuracy. First consider the more traditional approach of per-359

forming validation alone. In this case, the posterior predictive distribution is conditioned on the full360

set of data from the first experiment or dataset (predictors, x, and responses, y) but provides a361

prediction for the responses, y′, from the second experiment, corresponding to the predictors in that362

second experiment, x′. This procedure is often used to compare competing models, such as those363

considered in our suite of researcher models here (see the far right panels in Figure 4). Whether364

the underlying DGMs differ or not (in the top row, both DGMs have π1 = π2 = 0 bots; the bot-365

tom row compares data from DGMs with π1=0 and π2 = 0.50), we observe that Model 3 has the366

best predictive accuracy. However, using these curves alone, it is impossible to say much about any367

underlying differences between the DGMs being compared. First, these curves fail to account for368

sampling variability. If the sample of participants in either experiment differed slightly, we would369

expect to see the curves in these figures move around a bit, but just how much they would move370

(i.e., how much sampling variability for this particular population or experiment impacts model371

fit and predictive ability) can not be estimated or accounted for in the validation-only procedure.372

In this sense, prediction scoring goes above and beyond traditional predictive accuracy measures;373

using subsets of the data in both the cross validation and validation routines helps to appropriately374

account for the effects of sampling variability. Secondly, these curves do not allow us to separate the375

effects of (poor) model fit from any true differences between the DGMs. Only by comparing cross376

validation curves to validation curves are we able to observe these differences. Both cross validation377

and validation curves are based on predictions made from the same model, so that any observed378

differences should solely reflect true differences between the DGMs.379

Detecting DGM differences. First, consider the case where the DGMs are in fact identical380

across settings; see the top panel of Figure 4. As we would expect, there is little discernible difference381

between the cross validation and validation curves, regardless of the model used to make predictions.382

If instead we consider the case where there is a difference between the DGMs, such as π1 = 0 and383

π2 = 0.50 as in the bottom panel of Figure 4, we can see some evidence of a difference between384

the DGMs as we would expect. In short, the prediction scores are successful in detecting differences385

between the underlying DGMs.386

Leveraging competing models. Recall from Figure 3 that the prediction scores are dependent387

on the predictive model and measure differences between DGMs along the dimension of the model388

used to make predictions. For Model 1, there is clear separation of the cross validation and validation389

curves indicating that there is a difference between these DGMs. For Models 2 and 3, this difference390

is less clear, but there does appear to be an ordering of the curves which is some indication of a391

difference across the two DGMs. Model 1 depends only on the round number. In fact, if we look at392

the raw data simulated for these experiments we see strong differences over time across these two393

settings. Thus it is not surprising that the prediction scores which come from a model that depends394

on time are particularly helpful in differentiating the two DGMs. In other words, the prediction395

scores reveal that the behavior of participants when there are 0% bots as compared to 50% bots396

differs most strongly with respect to the number of rounds; there is not a strong difference in regards397

to the participants’ previous decisions or the average previous decision.398

3Here we mean that the models should be non-nested, but we use the term “orthogonal” to better relate to the
geometric description of prediction scores provided earlier—that they measure distance along the dimension of a
particular model.
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Fig 4. ROC curves (true positive rate, y-axis, vs. false positive rate, x-axis) from prediction scoring to compare
experimental settings. Across the top row, experimental settings are identical (i.e., the underlying DGMs are identical
and so F = F ′) with all human participants (π = 0) while in the bottom row, the experimental settings differ
(i.e.,F ̸= F ′) and compares all human participants (π1 = 0) to 50% bot participants (π2 = 0.50). The plots on the far
left contain boxplots of the cooperation rate across all cohorts and individuals by round, where the color represents the
experimental settings. The plots on the far right are ROC curves for validation only, with each curve corresponding
to a different researcher model. Remaining plots display the prediction scoring ROC curves for subsets of the data
from the cross validation (red) and validation (blue) routines, with each plot corresponding to a different researcher
model.

Finally, we examine the prediction scores across a range of experimental settings, making com-399

parisons across π = (0, 0.25, 0.50, 0.75, 1), in Figure 5. Just as in Figure 4, we see that Model 1 is the400

most sensitive to differences across the experimental settings. Further, as we might expect, as the401

distance between the experiments increases (in terms of |π1 − π2|), so too does the separation be-402

tween the cross validation and validation ROC curves, especially for Model 1. In other words, when403

the model is aligned with true differences between the data generating mechanisms, the distance404

between the cross validation and validation statistics reflects the true distance between the DGMs.405

Summary. This simulation study demonstrates that prediction scores go above and beyond tradi-406

tional predictive accuracy measures, can be used to uncover features of data generating mechanisms407

that differ across experimental settings, and can leverage competing predictive models to uncover408

different types of differences between the DGMs. This is true even when the true data generating409

mechanism is unknown, as is the typical case in practice. Here, the prediction scores discovered that410

the impact of round number or time in the game is best aligned with true differences between bot411

and human behavior. This is reassuring since we can verify this effect by examining boxplots of the412

cooperation rate by round across each setting (e.g., the leftmost panel in Figure 4).413

4.3. Estimating prediction score accuracy414

In order to get a sense of how these prediction scores behave asymptotically, we repeat the above415

simulation study and examine the relationship between the true distance between DGMs and our416

prediction scoring estimates of that distance. This requires defining a true distance between the417

data generating mechanisms. Here, we simply use the difference between the percentage of bots,418

|πi − πj |. We compare this true distance to the prediction scoring estimates of distance, which we419
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Fig 5. ROC curves from prediction scoring to compare across experimental conditions for π ∈ (0, 0.25, 0.50, 0.75, 1).
The panel on the top left contains boxplots of the cooperation rate across all cohorts and individuals by round, where
the color represents the experimental settings. Remaining panels display the prediction scoring ROC curves for subsets
of the data from the cross validation (red) and validation (blue) routines, with each panel corresponding to a different
researcher model. Within each panel, the columns correspond to experimental conditions (values of π) for the first
DGM and the rows correspond to the second DGM.
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Fig 6. Distance correlations for prediction scores, based on 100 repetitions of simulated experimental data. In each
simulation, predictions are scored according to the predictive researcher models described earlier in Section 4 and by
calculating Kolmogorov-Smirnov statistics that compare the empirical distributions of cross validation and validation
AUC statistics. The left panel displays these results as boxplots; the right panel displays the same results as empirical
density plots.

calculate as Kolmogorov-Smirnov statistics (Kolmogorov, 1933) that compare the distributions of420

AUC statistics for the ROC curves across cross validation and validation. To evaluate whether or not421

the prediction scoring estimates are well-aligned with this measure of the true underlying distance,422

we calculate distance covariances (Székely, Rizzo and Bakirov, 2007). A distance covariance is a423

measure of dependence between two paired vectors that is capable of detecting both linear and424

nonlinear associations. If the vectors are independent, then the distance covariance is zero. We can425

treat each repetition of the above simulation study (where we compute prediction scores across all426

possible pairs of π) as a sample which gives rise to a vector of prediction scoring distance estimates.427

Then we examine the distribution of sampled distance covariances, as a function of the (researcher)428

model used to make predictions. After repeating this simulation 100 times, we plot the distance429

covariances in Figure 6. As expected, we see that on average Model 1 out-performs Model 2 which430

out-performs Model 3, in terms of how correlated the prediction scoring estimates of distances431

between the DGMs are with the true distance, as measured by the difference in the percentage432

of bot participants. This indicates that, on average, the prediction scores can successfully detect433

important differences between the DGMs.434

5. Preregistered hypotheses in human behavior experiments435

Recall from Section 2 that one important motivating example for prediction scoring methodology is436

in the case of evaluating preregistered hypotheses. In this section, we briefly review the idea behind437

preregistered analyses and traditional evaluation approaches. We evaluate a preregistered hypothesis438

against realized experimental data from Cycle 1 of the NGS2 program (see the Appendix for more439

details) from the research team led by scientists at Gallup (Diego-Rosell, 2017), demonstrating440

how prediction scores provide important advantages over traditional NHST procedures and that441

prediction scores can identify important differences between pilot and experimental data.442
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5.1. Preregistration443

In a preregistered design, researchers prepare a detailed plan for all data collection, coding, and444

statistical analysis, along with the hypotheses and corresponding predictions regarding the study’s445

results. This plan is made publicly available (“registered”) in some way before (“pre”) any data446

collection or analysis, so that the researchers are held accountable to their preregistered plan,4447

and the “garden of forking paths” can be safely avoided (Gelman and Loken, 2014). Preregistration448

ensures that in such settings where a p-value is useful, it can be interpreted correctly. Many journals,449

across many disciplines, now encourage preregistered studies, in the form of registered reports (e.g.,450

the neuroscience journal, Cortex ), and any study’s preregistration materials can easily be made451

publicly available on sites like the Open Science Framework.5452

As best we can tell, current practice for prediction scoring generally consists of making predictions453

in the form of directional hypotheses (in some cases, predictions for the relative effect size are also454

included) for parameters in a model that captures our beliefs about the true underlying DGM.6455

These predictions are then typically assessed by fitting the model to the observed experimental456

data, performing the corresponding hypothesis test and checking for a significant effect.457

5.2. Example: Experimental human behavior data458

Experimental setting. In this study, the Gallup team was interested in understanding the role of459

social networks in the public goods game (Ledyard, 1995). In this version, participants’ contributions460

are split only among neighbors in their (possibly evolving) social network. Experimenters randomly461

assigned participants to one of four conditions which determined the dynamics of the social network462

in the game: (1) static or fixed links, (2) random link updating, where the entire network is regen-463

erated at each round, (3) strategic link updating, where a randomly selected actor of a randomly464

selected pair may change the link status of that pair. The strategic link updating condition was fur-465

ther split into two categories: (a) viscous, where 10% of the subject pairs were selected and (b) fluid,466

where 30% of the subject pairs are selected. We will be primarily interested in the impact of the fluid467

version of the strategic link updating condition, from here on called “rapidly updating networks.”468

The Gallup team used a logistic regression model to examine individuals’ decisions (cooperation or469

defection) under a variety of experimental conditions. The Gallup team’s experiments were inspired470

by the experiments performed by Rand, Arbesman and Christakis (2011) and whose data can serve471

as a set of preregistration pilot data.472

Traditional analysis. We consider the following hypothesis from the Gallup team’s preregistra-
tion materials: rapidly updating networks should support cooperation (across rounds of the game)
more than any other condition (see Hypothesis 1.4 of Nosek et al., 2018). The traditional approach
to evaluating this hypothesis would be to specify a model which includes a parameter that compares
the rapidly updating network condition to all other conditions and then to perform a null hypothesis
statistical test. Let yit represent the decision to cooperate (yit = 1) or defect (yit = 0) for participant

4This sort of preregistration does not preclude further exploratory analyses; the point of preregistration is not to
restrict analyses but rather to provide more structure to analyses that are already planned. For example, after data
collection, a researcher may notice a pattern or posit a new explanation that motivates additional analyses. Such
additional exploratory data analysis (beyond preregistered plans) are generally desirable as they can lead to new
discoveries or hypotheses and even inspire additional confirmatory research.

5The preregistration materials corresponding to the study data used in the human behavior example discussed in
Section 5 are hosted on this site.

6Other approaches include using Bayes factors or the small-telescopes approach (Simonsohn, 2015), though these
methods seem far less popular than traditional NHSTs.



18 A. Smith, T. Zheng and A. Gelman

III.  Comparing full modelsI.  Null hypothesis test

!": $% > 0 vs.  !(: $% ≤ 0 .

*$% = 0.223
/−value = 0.00012 .

7$% = 0.135/−value = 0.000003 .

7$% = 0.223/−value = 0.00012 .

II.  Comparing effect sizes

b4

b3

b2

b1

−1 0 1 2 3

model Experimental Data Pilot Data

b4

b3

b2

b1

−1 0 1 2 3

model Experimental Data Pilot Data

b4

0.0 0.1 0.2 0.3 0.4

model Experimental Data Pilot Data

b4

b3

b2

b1

−1 0 1 2 3

model Experimental Data Pilot Data

Fig 7. Various approaches for evaluating a preregistered hypothesis in the face of pilot and experimental data.

i in round t, which we can model as

yit
ind∼ Bernoulli(pit)

logit−1(pit) = β1 + β2t+ β3Xi + β4Xit,

where Xi represents inclusion in the rapid updating network condition for participant i. Then we
are simply interested in testing:

H1 : β4 > 0 vs. H0 : β4 ≤ 0.

In this case, the estimated effect size is about 0.22, with a p-value of 0.0001, and so one would473

traditionally conclude that the rapidly updating network conditions statistically significantly increase474

the likelihood of cooperation; see panel I of Figure 7. For this analysis and all those to follow, we475

match the modeling strategy proposed in Nosek et al. (2018) but will perform the analyses in a476

Bayesian setting.477

However, this type of analysis does not incorporate the valuable information we have from the478

pilot data. Perhaps we could compare the results of this hypothesis test to its analogue for the pilot479

data; see panel II of Figure 7. In this case, the estimated effect size is about 0.14, with a p-value less480

than 10−5. What does this allow us to say about how the pilot data compares to our experiment?481

In our pilot data there is a significant increase in the likelihood of cooperative behaviors under the482

rapid updating network condition; we find the same effect in our experiment, with a larger effect483

size but with slightly less evidence that this network condition makes a significant impact.484

But this analysis ignores other trends in the data that might differ across the two data sources.485

Regression null hypothesis tests, like the ones above, are conditioned on all other predictors in the486

model. And if we compare these other effects across the two data sources (see panel III of Figure487

7), we see a difference in the estimates for the baseline rapid updating condition. In our experiment,488

the baseline effect is positive and large and is significantly different than zero (though the p-value is489

on the larger side) whereas in the pilot data, the baseline effect is negative although not significant.490

While participants seemed to be much more cooperative overall in our experimental data, the way491

the game progresses also seems to affect the decision to cooperate across these two settings. From492

this analysis, it is unclear how these other differences between the experimental and pilot data might493

affect our hypothesis about the fluid network condition. Other summaries of model fit are generally494

unhelpful here as well; take for example, AIC, which can compare non-nested models (like these) but495

the interpretation of comparisons across different response data (i.e., different observed realizations496

of the outcome variable, y) is unclear.497
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So, how does the pilot data differ from our experiment? And how can we summarize these dif-498

ferences in a more holistic way that accounts for all trends related to our hypothesis about the499

rapid network condition? As in Section 4, we can consider traditional predictive accuracy metrics500

in the context of validation. As in Section 4, we will consider ROC and precision-recall curves,7501

and the corresponding area under the curve statistics. In this case, ROC seems to indicate that502

our model is little better than random guessing; see the yellow lines in panel I of Figure 8. At first503

the precision-recall curve appears to provide better news, but it is sensitive to differences in the504

proportions of 1’s in the data. We also noticed this difference between the pilot and experimental505

data in our comparison of the full logistic regression models in panel III of Figure 7. So, to fairly506

assess the predictive accuracy of a model across two datasets, we need to ensure that the baseline507

rates are comparable. To accomplish this, we resample the experimental data so that the baseline508

rates across the datasets are matched (equivalent results can be obtained via reweighting). After this509

adjustment, the precision-recall curve seems to agree with the ROC in indicating that our model510

trained on the pilot data does not do a great job of predicting the experimental data; see the blue511

lines in panel I of Figure 8. Is that because our model does not represent the experimental data512

well (i.e., returning to Figure 2, the pilot and experimental data are clearly different and ∆DGM is513

large)? Or could it be that our model doesn’t represent either the pilot data or the experimental514

data well (i.e., our model doesn’t represent the DGM family well, and so can’t tell us much about515

∆DGM , the distance between the pilot and experimental data)? To answer these questions, we need516

to be able to assess how well our observed pilot and experimental data represent the underlying517

DGMs; we need to represent the variability across datasets generated from the same DGM. But518

these curves and any resulting analyses are conditioned on the particular observed (pilot) data. We519

have no way of understanding the inherent variability in these types of summaries. In fact, this is520

the case for all of the traditional analyses investigated thus far; null hypothesis tests, effect sizes and521

predictive accuracy measures are all conditioned on the particular set(s) of observed (training and522

testing) data.523

Prediction scoring details. Recall from Figure 2, prediction scores require the following practical524

considerations: the predictive model, the loss statistic to compare predictions to realized data, and525

the subsampling method for the cross validation and validation routines. As mentioned above, we526

fit Bayesian logistic regression models from the Gallup team’s preregistration materials and we527

calculate ROC and precision-recall curves along with their corresponding AUC statistics; this means528

that we are considering two different ways of scoring the predictions (in practice, there may be many529

appropriate loss statistics). Data subsets are created as random subsamples containing roughly 50530

and 25 observations in training and testing sets, respectively. As discussed above, experimental531

data are resampled so that baseline rates across all datasets are comparable, which ensures that532

precision-recall curves can be accurately compared.533

Results. We are evaluating the hypothesis that rapidly updating networks support cooperation534

more than any other condition. As in Section 4, we begin with visual comparisons of the ROC and535

precision-recall curves in panel III of Figure 8. In general, we see little separation between the cross536

validation and validation curves, indicating that the underlying DGMs are likely to be similar; this537

matches the conclusion from our NHSTs discussed above.538

However, the prediction scores additionally reveal that the researchers’ logistic regression model539

surprisingly is a slightly better fit to the experimental data (particularly in terms of ROC). This is540

somewhat surprising, since in most cases we expect a model to do a good job of predicting the data541

7The precision-recall curve is preferred over the ROC curve when the data are imbalanced, typically when there
are many more 0’s than 1’s (see Davis and Goadrich, 2006, for more discussion). This is not the case here, since there
are n1 = 3876 observations in the pilot data and the average decision to cooperate is p1 = 0.53. Compare this to the
experimental data, with n2 = 1192 and p2 = 0.86.
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Fig 8. Prediction scores for Gallup’s Cycle 1 Hypothesis 1.4 that rapidly updating networks support cooperation,
relative to all other conditions.

it was trained with, which would result in cross validation curves that look better then validation542

curves. This indicates that there is less variability in individuals’ behavior in the experimental data543

than in the preregistration data. In a sense, subjects in the Gallup experiment are acting in more544

predictable ways than the subjects in the pilot data. This conclusion is reached through the lens545

of the predictive model—here, logistic regression—and indicates that the experimental data are a546

better fit for this modeling framework (as opposed to the pilot data). That is, the prediction scores547

identify a way in which the underlying DGMs differ; using the notation in Figure 2, the underlying548

DGM for the experimental data, F ′, is more similar to a logistic regression model, f̂ , than the549

underlying DGM for the pilot data, F . And in fact, if we simply examine summary statistics of the550

in-game decisions themselves, we can see the same type of pattern. In Figure 9, we provide boxplots551

of individuals’ average cooperation levels across rounds of the game, where each color corresponds552

to a different link-updating experimental condition. Comparing the preregistration data (top row)553

to the experimental data (bottom row), we see that the boxplots are drastically narrower, especially554

in the fluid network condition, indicating that there is less variability in participant behavior. This555

is not a difference between the two datasets that would have been picked up by the traditional556

prediction score, the p-value for the NHST associated with β4.557

The validation curves themselves vary more, across training sets. This is even more obvious if558

we compare the loss statistics, the AUC statistics for each of the curves in these figures. Again, we559

begin with a visual comparison of the distribution of AUC statistics from cross validation to those560

from validation; see panel III of Figure 8. Some of this could be due to the difference in sample561

sizes, particularly the difference in the sizes of the testing sets. In this analysis, we’ve chosen N/K,562

the size of the training sets, to be 50 observations; thus, with N = 3876 in the pilot data and563

N ′ = 1915 for the resampled experimental data (we need to resample here so that the baseline rate564

is comparable across both datasets), this yields testing sets of roughly 50 and 25 observations for the565

cross validation and validation routines, respectively. The preferred loss statistic will often dictate a566
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Fig 9. Average cooperation levels across rounds of Gallup’s Cycle 1 games.

minimum size for these testing sets. So, here, it is possible that some of this increased variability in567

the validation curves is due to the smaller testing set size. To counter this effect, we could consider568

resampling the experimental data further, to match the size of the pilot data. But this runs the569

risk of going too far in the opposite direction, as resampled data tends to underestimate sampling570

variability.571

In addition to the visual observations above, we could also consider performing some hypothesis572

tests of whether or not the cross-validation loss statistics and the validation loss statistics appear to573

come from the same distribution, indicating that, through the lens of the chosen predictive model,574

the underlying DGMs are indistinguishable. As discussed at the end of Section 3.3, the results of such575

tests should be interpreted cautiously, as the samples of loss statistics are likely correlated and any576

difference between the loss statistics could be of practical significance to substantive researchers.577

In this case, the Kolmogorov Smirnov test statistic for equality of distributions of the weighted578

cross-validation and validation loss statistics is D = 0.325, (p-value = 0.000543),579

We have created similar summary measures for the unweighted version of the prediction scores;580

see panel II of Figure 8. As mentioned earlier, the precision-recall curves are much more sensitive581

to the difference in the baseline rates across the two datasets. This is not an obvious consequence582

of the precision-recall curves themselves, so care must be taken in fine-tuning the prediction scoring583

algorithm (i.e., choosing an appropriate loss statistic and possibly adjusting the resampling method)584

in order to obtain prediction scores that capture interesting features of the underlying DGMs, rather585

than more basic differences of the observed data (e.g., baseline cooperation rates). In this sense, it586

can be helpful to consider competing loss statistics, as shown here with AUC statistics for both ROC587

and precision-recall curves.588
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Overall this application serves as an illustration of how our prediction scoring method can be589

used to evaluate preregistered hypotheses and to enable interesting scientific insights. Here, while590

the NHST confirmed our preregistered hypothesis (the fluid network condition does support coop-591

eration), prediction scoring nicely complemented this analysis by confirming that the DGMs appear592

to be similar and additionally highlighting differences in the underlying DGMs through the lens of593

our logistic regression model: participants in the experimental data acted more predictably than594

participants in the pilot data, particularly in the fluid network condition. In other words, the exper-595

imental data exhibited less variation in participants’ decisions to cooperate over the course of the596

game (after accounting for differences across rounds).597

6. Discussion598

A natural version of the prediction scoring question might be phrased as follows: are these exper-599

iments or realizations products of the same DGM or are they distinct in some way? While this is600

certainly a natural question, it is ill-posed for most experimental research settings. In almost all601

cases, the DGMs do in fact vary across experiments or settings (e.g., from preregistration to ob-602

served data), even if only slightly. Instead, we have focused on answering the following question:603

How much do the data generating mechanisms differ across settings? To this end, our methodology604

provides prediction scores on a continuous scale; these scores can be viewed as estimates of the605

distance between our prior beliefs and reality. Thus, they provide a quantitative measure of how well606

preregistered predictions align with reality rather than relying on the simple binary detection of a607

significant effect.608

This methodology utilizes cross validation and model-based predictions to solve a common prob-609

lem in applied statistics research: the evaluation of differences between DGMs. In practice, the DGMs610

may represent related experiments, different settings or conditions within a single experiment, or611

preregistered hypotheses and realized observational data. We argued that comparing DGMs should612

move away from the simplistic binary question of whether or not the DGMs are equal and instead613

our prediction scores enable a quantifiable measurement of differences between DGMs. In an appli-614

cation to human behavior experiments, we demonstrated how the prediction scores can be used to615

evaluate preregistered hypotheses and for a set of simulated experimental data, we demonstrated616

how these scores can detect important differences between experimental settings. We also provided617

some intuition for the probabilistic behavior of these scores in an asymptotic regime.618

Our application to the NGS2 project highlights the role our proposed prediction scores can play619

in light of the replication crisis. The majority of statistical concerns arising from the replication620

crisis fall into one of the three following topics: (1) selection bias (i.e., only research with small621

p-values is submitted and published), (2) insufficient power (i.e., p-values that correspond to small622

samples are not to be trusted), and (3) how statistical inference differs from scientific inference623

(Colling and Szűcs, 2018). Our prediction scoring methodology attempts to address this third issue624

but cannot fix issues arising from selection bias or insufficient power; these concerns still need to625

be carefully monitored. Much of the discussion around this issue has focused on reconciling the626

questions scientists want answers to with the questions that traditional p-values are equipped to627

provide. The proposed prediction scores are not p-value replacements; they are designed to answer628

yet another sort of scientific question: how do we quantify differences between DGMs? Or in the629

preregistration setting, how do we compare preregistered hypotheses to realized experimental data630

in a meaningful way? At its core, prediction scoring is a method for quantifying the distance between631

competing DGMs, one representing our prior/preregistered beliefs and one representing the realized632

experimental data.633

In the examples in this paper, we focused on (visually) identifying differences between the distri-634

butions of loss statistics. In practice, visual inspection of plots always has a subjective component;635
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these plots also represent empirical samples of the full loss statistic distribution (across infinitely636

many subsampled testing/training sets). Even when the prediction scoring procedure itself is pre-637

registered, this interpretation—which cannot be fully pre-registered because it depends on realized638

experimental data—involves some amount of subjectivity or researcher degrees of freedom. However,639

as mentioned above, our proposed approach is designed not as a p-value replacement but rather as a640

tool to take advantage of the statistical problem presented by the preregistration setting: to provide641

researchers with a method to make these valuable comparisons between pre-experimental data and642

realized observed data in a way that goes beyond simple NHSTs.643

As proposed, our prediction scores are not proper distances. In this sense, we don’t expect them644

to be symmetric. It matters which dataset plays the role of τ (i.e., is used to create a baseline,645

via cross validation) and which plays the role of τ ′ (i.e., is used in validation). In the motivating646

example of the preregistration setting and as discussed in the real data example in Section 5, there is647

a natural directionality. However, in other settings this may not be the case. For more general cases,648

perhaps a symmetrized distance could be created by swapping the roles of τ and τ ′, and averaging649

the resulting sets of scores in some fashion.650

AUC statistics were utilized in all of the case studies investigated here. It is worth noticing651

that the traditional AUC statistic is not defined for datasets consisting of only one observation.652

This means that leave-one-out cross validation is not feasible for this choice of loss statistic. In our653

applications, we accommodated for this by choosing k < n for the k-fold cross validation routines654

in our prediction scoring method; this ensures that there are sufficient data points in the holdout655

sample. Alternatively, other approaches for calculating the ROC or precision-recall curves in small656

sample settings could be incorporated (e.g., Yousef, Wagner and Loew, 2005).657

Both the application and simulated experiments involve rather simple DGMs and predictive mod-658

els (i.e., both involve logistic regression models). This is by design, as we would like to be able to659

verify that the prediction scores are capable of detecting meaningful differences between the DGMs.660

However, we recognize that many applied problems hope to address more complicated DGMs and661

require more complex modeling strategies. This is an important avenue for future research; as dis-662

cussed earlier, prediction scores are well-equipped to evaluate complex DGMs since they do not rely663

on the choice of a single parameter or summary statistic upon which to base the evaluation of dif-664

ferences between the DGMs. For example, in planned future experiments from the NGS2 program,665

researchers have preregistered hypotheses based on Gaussian process models for the DGMs under666

study. We hope to utilize prediction scoring in these settings, both to evaluate the preregistered hy-667

potheses and to uncover interesting differences between experimental settings. For example, in some668

experiments, bots (computer agents whose behavior is algorithmically determined) will participate669

alongside human participants; we hope to use prediction scores to detect scientifically interesting670

differences in the observed (highly nuanced) human behavior patterns between human-only and671

human-and-bot experimental conditions.672
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Data and Code679

Experimental data analyzed in Section 5 is available on the Open Science Framework through as-680

sociated GitHub links (Diego-Rosell, 2017). The simulated data and all code used in this paper are681

available in an additional public Github repository (Smith, 2020).682

Appendix A: The NGS2 Program683

The NGS2 program is a multi-phase methodologically-focused effort to develop a fundamental684

reimagining of the social science research cycle (Nosek et al., 2018). In each phase, distinct research685

teams conducted unique experimental social science studies regarding a shared research question.686

Prior to any data collection, each team was required to document all preregistration materials, in-687

cluding predictions for study outcomes (for more detailed descriptions of each team’s planned and688

completed research, see the preregistration materials which have been made publicly available on the689

Open Science Framework; Nosek et al., 2018). The program also required that each team’s prereg-690

istered hypotheses and resulting final analyses be evaluated by external non-team members, which691

included the authors of this paper. It is precisely in this context that our proposed prediction scoring692

methodology was developed.693

In the first cycle of the program, research teams focused on explaining and predicting the emer-694

gence of collective identities. Collective identity refers to the way individuals perceive themselves in695

their environment with respect to the various groups they may belong to and how they subsequently696

take collective action or display collective behaviors related to this identity. In Section 5, we examine697

how well the preregistered hypotheses align with the realized experimental data from the research698

team led by scientists at Gallup (Diego-Rosell, 2017). The Gallup team’s experiments were designed699

to mimic those of Rand, Arbesman and Christakis (2011); these experiments serve as pilot data and700

helped to formulate the team’s preregistered hypotheses.701

In the second cycle of the program, research teams designed experiments and analyses to study702

the emergence of group innovation in the face of competition. The design of the simulation study703

described in this section is inspired by the proposed Cycle 2 experiments of the research team led704

by scientists at the University of Pennsylvania (Suchow et al., 2017). These experiments examine705

human behavior in the face of computer generated participants.706

Appendix B: Additional background707

In this section, we provide relevant background information on the existing statistical methods708

which motivate our proposed prediction scoring framework, which is fully developed in Section 3.709

As outlined previously, our approach is inspired by existing tools for measuring predictive accuracy710

(Section B.1) and proposes a framework based on cross validation (Section B.2). We also offer a711

discussion of how our proposed approach relates to recent work in algorithm validation (Section712

B.3), which motivates strategies adopted in our proposed framework.713

B.1. Scoring rules714

Scoring rules measure the agreement between a probabilistic forecast (a predictive probability dis-715

tribution over future quantities or events of interest, such as a posterior predictive density from a716

Bayesian analysis) and an observation (Gneiting and Katzfuss, 2014, provides a nice summary of717

recent research in this area). This literature provides a sound framework for comparing probabilistic718

forecasts or predictions (such as from preregistration materials) to observed data, where each com-719

peting forecast could correspond to different modeling choices or assumptions. The diagnostic tools720
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and recommendations for scoring rules—e.g., checking for uniformity in histograms (or empirical721

CDFs, if the sample size is small) of the PIT (probability integral transform) values (this idea can722

be traced as far back as Rosenblatt, 1952; Pearson, 1933, and perhaps earlier)—are predictive and723

thus enable the comparison of non-nested, highly diverse models fit to common data. For example,724

Pers et al. (2009) use strictly proper scoring rules to select between competing machine learning725

models. However, since these tools were developed from the perspective of forecast selection (e.g.,726

choosing the best forecast from among a group of competing forecasts), each set of resulting diag-727

nostic measures is necessarily model-based in that any diagnostic plot or set of scoring rules depends728

on the model assumptions used to create the probabilistic forecast. This complicates the interpreta-729

tion of the scores or diagnostics in regards to true underlying differences between the DGMs, since730

they can detect differences between the DGMs but are also designed to measure differences between731

the model and the DGM, which may be attributable to model fit issues. As mentioned earlier, our732

proposed prediction scoring approach uses cross validation to help normalize for model fit issues,733

and many of the proposed scoring rules could be incorporated in our proposed method.734

B.2. Cross validation735

Cross validation, particularly for Bayesian analyses, has been an active research area in recent736

years. Summary statistics for comparing Bayesian models can be motivated by estimation of out-of-737

sample predictive accuracy (see Vehtari et al., 2012, for a thorough review, from a formal decision738

theoretic perspective), which is one of the goals of cross validation as well. Gelman, Hwang and739

Vehtari (2014) provide a review of some model comparison summary measures, including AIC,740

DIC, WAIC, in the context of Bayesian model comparison. As opposed to exact leave-one-out cross741

validation (LOOCV), each of the Bayesian model summary statistics utilize the full predictive density742

and perform an adjustment (e.g., importance sampling, or division by an appropriate variance)743

to remove the effect of over-fitting, since no data was actually held out. The authors conclude744

the paper by citing cross validation as their preferred method for model comparison, despite its745

high computational cost and requirement that data can be easily partitioned (i.e., partitioning is746

often not straight forward for dependent or hierarchical data). In this line of thought, Vehtari,747

Gelman and Gabry (2017) develop an approximate version of leave-one-out cross validation which748

implements Pareto smoothing of the importance sampling weights to improve robustness to weak749

priors or influential observations. Li et al. (2016) develop a version of cross validation that can750

be applied to models with latent variables, which relies on an integrated predictive density. In751

applications with competing probabilistic forecasts, Held, Schrödle and Rue (2010) compare software752

fitting algorithms using approximate cross validation and many of the diagnostic plots mentioned753

by Gneiting, Balabdaoui and Raftery (2007). Finally, Wang and Gelman (2014) and Millar (2018)754

address the problem of appropriate data partitioning and out-of-sample prediction error estimation755

for multilevel or hierarchical model selection using cross validation and predictive accuracy. Wang756

and Gelman (2014) highlight the fact that model selection can be largely based on the size and757

structure of the hierarchical data.758

This line of research, and its proposed improvements and extensions of cross validation in vari-759

ous Bayesian settings, can certainly be incorporated in the prediction scoring methodology that we760

propose. Our proposed approach expands this literature, from the perspective of the preregistration761

setting; we formalize the use of cross validation to appropriately adjust agreement measures be-762

tween preregistered predictions and realized observations. In other words, we recommend a unique763

combination of cross validation and external validation to provide meaningful prediction scores.764
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B.3. Algorithm checking765

Although perhaps not obvious at first glance, recent proposals for checking algorithms of Bayesian766

model fitting software (Cook, Gelman and Rubin, 2006; Talts et al., 2020) can provide insights in the767

prediction scoring setting. These proposals recommend simulating fake data conditional on random768

draws from the prior distribution, running the model fitting software to obtain draws from the769

posterior distribution, and using a summary measure to diagnose the alignment between posterior770

samples and the random draws from the prior distribution. Based on the self-consistency property771

of the marginal posterior and the prior distribution, these draws should be indistinguishable from772

one another. To diagnose this alignment, Talts et al. (2020) suggest computing rank statistics,773

comparing the random draw form the prior distribution to the posterior distribution based on that774

particular draw. The authors suggest looking at histograms of these quantiles, demonstrating that if775

the software is working correctly, the quantiles should follow a discrete uniform distribution. In the776

prediction scoring setting, we can think of this software-checking methodology as a special case where777

the chosen modeling strategy matches the underlying DGM exactly (i.e., there are no model fit issues778

whatsoever). We will borrow ideas from this methodology, such as the use of empirical quantiles and779

rank statistics to compare DGMs (or distributions) through samples drawn from them.780
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