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The derivation of the optimal design for an upcoming toxicoki-
netic study of butadiene in humans is presented. The specific goal
of the planned study is to obtain a precise estimate of butadiene
metabolic clearance for each study subject, together with a good
characterization of its population variance. We used a two-com-
partment toxicokinetic model, imbedded in a hierarchical popu-
lation model of variability, in conjunction with a preliminary set of
butadiene kinetic data in humans, as a basis for design optimiza-
tion. Optimization was performed using Monte Carlo simulations.
Candidate designs differed in the number and timing of exhaled
air samples to be collected. Simulations indicated that only 10 air
samples should be necessary to obtain a coefficient of variation of
15% for the estimated clearance rate, if the timing of those samples
is properly chosen. Optimal sampling times were found to closely
bracket the end of exposure. This efficient design will allow the
recruitment of more subjects in the study, in particular to match
prescribed levels of accuracy in the estimate of the population
variance of the butadiene metabolic rate constant. The techniques
presented here have general applicability to the design of human
and animal toxicology studies.

Key Words: butadiene population toxicokinetics; human inha-
lation experiments; Markov chain Monte Carlo simulations; opti-
mal experimental design.

An individual’s risk from exposure to a metabolically
activated or detoxified agent is defined by the intensity and
duration of internal exposure in combination with physio-
logic and genetic factors that control metabolic enzyme
activity. Individuals with the highest exposure intensity and
the highest rate of activation and/or the slowest deactivation
rates will have the highest levels of the active metabolite,
and over time the highest risk. Consequently, the average
risk per unit of exposure for epidemiologic studies will
depend in part on the population’s distribution of metabolic
phenotypes. Thus, knowledge of human metabolic rates can
be critical to the estimation of risk from occupational and
environmental exposures, and for extrapolating risk from
one population to another. Unfortunately, in most cases,
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these data are unavailable. Animal bioassay data are com-
monly used to estimate the quantitative risks of chemical
exposures and fill the gaps in human data. Animal risks can
be extrapolated to humans using a variety of toxicologic
approaches, most recently physiologic-pharmacokinetic
(PBPK) modeling (National Research Council (NRC), 1994;
Ramsey and Andersen, 1984; Reitz et al., 1988). The com-
mon approach is to “scale-up” rodent models to humans,
making some allowance for species differences in metabolic
rates on the basis of in vitro data (when available). How-
ever, because of differences in metabolism, there can be
considerable interspecies variation in potency in animal
bioassays, which prevents simple extrapolations to humans.
Without human data, it is impossible to determine whether
humans are similar to the most sensitive species, or not.
Consequently, it is important to obtain human metabolic
data to characterize human risks of exposure for prevalent
hazards.

Timed sets of samples of exhaled breath, urine, or blood
during and after a measured exposure are useful to estimate
human metabolic rates. These data can potentially be obtained
by 3 strategies: evaluation of environmentally or occupation-
ally exposed subjects, or laboratory exposures of volunteers.
The first 2 approaches are conceptually possible, but highly
impractical. In the field, it is rarely possible to obtain a tem-
poral control of exposure, or to collect precisely timed series of
biological samples. Properly executed laboratory studies of
brief, low-level exposures can produce high quality data to
estimate apparent metabolic rates and intersubject variability.
These studies must use protocols approved by a human-sub-
jects review committee to insure that risks for the subjects are
minimal. Study approval is possible if several conditions are
met: (1) environmental and occupational exposures to the agent
are common, (2) the lifetime risk of the lab exposure is less
than one per million using standard, most-sensitive species risk
assessment procedures (California Environmental Protection
Agency Air Resources Board, 1992), and (3) volunteers are
fully informed that the exposure may produce a small increase
in their lifetime risk of a health effect.

Our primary goal in this work was to define an efficient
testing protocol for assessing 1,3-butadiene metabolic clear-
ance in human volunteers.

213



214

1,3-Butadiene as a Model Compound

Environmental and occupational exposures to butadiene are
common, because it is a component of urban air pollution
(0.001 ppm) (Mullins, 1990; U.S. Environmental Protection
Agency, 1989), cigarette smoke (2 ppm) (Brunnemann et al.,
1990), and gasoline vapors (0.01 ppm) (Rappaport et al.,
1987), while occupational exposures range from 0.01 ppm to
300 ppm (Fajen et al., 1990). The cumulative exposures range
from 8.8 ppm X h (i.e., 8.8 ppm for 1 h or 4.4 ppm for 2 h etc.)
per year for urban air pollution to 2,000 ppm X h per year for
a 1 ppm average occupational exposure.

Considerable data have been accumulated to suggest that
butadiene is an animal carcinogen, and may be a human
carcinogen. The U.S. EPA classified 1,3-butadiene as a “prob-
able human carcinogen” (Group 2B) on the basis of 2 rodent
inhalation studies, where the rodent exposures ranged from
18,000 to 750,000 ppm X h accumulated in daily exposures
over a year or more (U.S. Environmental Protection Agency,
1985). The International Agency for Research on Cancer
(IARC, 1992) has given 1,3-butadiene a rating of 2A, which is
“probably carcinogenic in humans.” This determination was
based on both animal and epidemiologic studies. Recently,
IARC has re-examined the epidemiologic evidence on buta-
diene and concluded that it was not possible to separate po-
tential effects of styrene and other exposures from those of
butadiene, so the classification was left at 2A. The U.S. Occu-
pational Safety and Health Administration (OSHA) recently
reduced the allowable daily occupational exposure to 2.0 ppm
for 8 h (16 ppm X h) for butadiene. There is considerable
interest in the human risks of butadiene exposures.

The California EPA (1992) performed a population risk
assessment assuming a continuous 1 ppm exposure for 70 years
(6.1 X 10° ppm X h) based on tumor rates for mice, which are
the most sensitive species. The lifetime risk of cancer ranged
from 1.4 X 107" to 0.8. However, if the rat tumor rates are used
instead of the mouse, the lifetime risks are orders of magnitude
lower because of differences in rat and mouse metabolism of
butadiene. Based on in vifro metabolism measurements on
mouse, rat, and human tissue samples, it appears that humans
may be more like rats than mice (Bond et al., 1996; Csanady
et al., 1992; Johanson and Filser, 1996). Thus, it is important
to measure human metabolic rates to assess human risks.

Optimizing Design of Volunteer Exposures to Butadiene

The purpose of the study reported here was to help develop
a human testing protocol that would maximize the precision of
estimates for butadiene metabolic rate and its population vari-
ance, while minimizing the number of breath samples taken
(and specifying their optimal timing). As we sought to expose
the subjects to a minimal risk of toxicity, exposure concentra-
tion and length were not optimized but set, according to criteria
of risk and feasibility. Preliminary experiments in Dr. Chang’s
laboratory, using an approved human subjects protocol, used
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inhalation exposures of 5.0 ppm for 2 h, 10 ppm X h, equiv-
alent to about one day of occupational exposure allowed under
OSHA rules. These data, whose collection is described below,
were used as a training set for our analysis. Taking advantage
of improved analytical sensitivity, the exposure protocol for
the planned experiments has been set to 2.0 ppm for 20 min
(i.e., 0.67 ppm X h). We were left with defining the number
and timing of breath samples for these future experiments. To
that effect, we present a new method for experimental design
optimization, based on Monte Carlo simulations. Our method
has the advantage of following naturally from the Markov
chain Monte Carlo techniques applicable to population phar-
macokinetic models (Bois et al., 1996a,b; Gelman et al., 1996;
Wakefield, 1996).

MATERIALS AND METHODS

Preliminary data. Eight human volunteers were recruited and tested in Dr.
Chang’s laboratory at the National Cheng Kung University, College of Med-
icine, in Taiwan, Taiwan. The tests were conducted, under informed consent,
with an Institutional Review Board-approved human subjects protocol. The
consent form clearly indicated that 1,3-butadiene is a suspected human car-
cinogen and that exposure to it may cause a small increase in the subject’s
lifetime risk of cancer. An inhalation exposure of 5 ppm for 2 h, (i.e.,10 ppm X
hr, equivalent to about one day of occupational exposure allowed under OSHA
rules), was chosen. That exposure was the minimum that could be precisely
measured, and was well below Taiwan’s allowable occupational exposure of
10 ppm per 8-h work day for a working lifetime. The exposure was generated
using a permeation tube, dynamic calibration apparatus (Metronics Assoc. Inc.,
Palo Alto, CA) that is designed to produce parts-per-million concentrations. In
this apparatus, a liquefied calibration gas slowly permeates through the walls
of a Teflon tube, which is sealed with double stainless steel balls at either end
(O’Keefe and Ortman, 1966). The operating temperature is tightly controlled,
so the permeation tube releases gas at a fixed low rate, and can be used as a
primary standard by periodically weighing the tube. After testing the minute
ventilation rate of each subject before experiment, the default flow rate was set
at 11.50 L/min, which included the flow rate of the permeation apparatus (0.18
L/min) and a dilution flow rate of 11.32 L/min. Three permeation tubes were
used in the permeation chamber of the standard gas generator and each
generated 42.5 pg/min at the flow rate of 0.18 L/min. Together with the
dilution flow this gives a final concentration of 5.0 ppm of butadiene. This gas
flowed into a reservoir Tedlar” bag, which provided sufficient capacity to meet
the cyclic demand of the subject’s breathing. To accommodate differences in
the basic ventilation rate of each subject, a bypass was also included to release
excess gas flow before it entered the reservoir bag. The flow rates out of the
standard gas generator and for the dilution system are critical determinants of
the accuracy of the butadiene concentration generated; therefore, the flow rates
were calibrated and measured before and after each exposure experiment.
Additionally, before and after each exposure, an air sample was collected from
the exposure system to measure, by gas chromatography (GC) analysis, the
exact concentration of butadiene being produced. This is a very safe exposure
system, which has little risk of overexposure from errors in dilution or
accidental releases.

Subjects were evaluated by a physician to verify their health and absence of
medical problems that might affect their metabolism, and to verify that they
understood the possible cancer risk. Body weight (Bw) was recorded (Table 1).
No specific dietary information was collected at the time of testing. Subjects
were seated and exposed by facemask. A one-way valve in the mask allowed
the subjects to draw in breathing air with butadiene and to exhale into either a
hood or a 15 L. Tedlar” breath-collection bag. At most, 41 timed one-min
breath samples were collected: 11 during the 2-h exposure (every 10 min); and
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TABLE 1
Physiological Characteristics Measured for Each of the Eight
Human Subjects Studied in Preliminary Experiments

Body weight Minute ventilation Blood/air partition

Subject ID (Bw, kg) rate (K;,, L/min) coefficient (P,,)
A 71 8.4 1.5
B 68 7.1 1.8
C 60 6.0 0.9
D 50 4.5 1.3
E 67.5 7.8 14
F 70 7.8 13
G 64 7.6 1.1
H 48 5.0 1.3

30 during the 57-min post-exposure period (every min for the first 10 min,
every 2 min for the next 20 min, then every 3 min for the remaining 27 min).
Some subjects had less than 41 samples collected (a few sample times were
missed), the lowest number of samples collected was 32. To avoid residual
contamination, different masks were used during exposure and after exposure.
Minute ventilation (K;,) was estimated for each subject by measuring the
volume of breath collected in the breath samples (Table 1). Replicate deter-
minations of K, had a coefficient of variation (CV) of 2%. Immediately after
collection, the breath was drawn from the bag through a tributyl catechol
(TBC, to prevent self-polymerization) treated charcoal tube at 100 ml/min.
Butadiene adsorbed on the charcoal tubes was desorbed with heptane and
analyzed by GC using a flame ionization detector and a 50 m, 0.32 mm, OD
fused silica porous layer open tubular column previously coated with Al,O,/
KCI. The limit of detection was 0.01 ppm in a 10 L breath sample and the
coefficient of variation (mean/SD) was 5.6% for replicate samples.

For each subject, the butadiene blood/air partition coefficient, P,,, was
measured (Table 1) with a method developed by Dr. Chang. A measured
volume of venous blood (approximately 20 ml) was added to a flask with a
septum, two side arms, and a valve in the bottom. A known amount of pure
butadiene was added through a septum, and the flask was equilibrated with
occasional shaking for 30 min at 37°C. Approximately 90% of the blood was
removed and the volume determined. The remaining butadiene was flushed
from the flask with nitrogen, into a TBC-treated charcoal tube, under a flow of
50 ml/min for 40 min. The butadiene collected was measured by the GC
method described above. The partition coefficient was calculated from the
mass of butadiene added (M ,4..), the measured mass of butadiene flushed from
the air and residual blood in the flask (M,,,), the volume of the flask (V,,), and
the volumes of blood added (VB,..,) and removed (VB,,). The mass of
butadiene in the blood removed is M, = M ,y4ed — M+, and the volume of air
in the flask is Vi, = V4 — VB 4. The formula used is:

M,/VB,,
VB(A( ed
<Mm - m(W‘“ - 1) >/VW

Replicate determinations of P,, had a CV of 16%. No compensation was
attempted for variations in blood lipids associated with meals consumed before
the testing was performed. However, the normal Taiwanese diet is a low fat
diet, so the change in blood lipids is likely to have been small.

Py, =

Toxicokinetic/statistical model. A standard two-compartment toxicoki-
netic model was selected to describe the above data and conduct the design
optimization. Preliminary work (not reported) had shown that a two-compart-
ment model in which metabolism took place in the peripheral compartment led
to the same estimates of metabolic rate; that model was therefore not consid-
ered here. In addition, a one-compartment model was unable to correctly
describe the data (this was assessed using the statistical techniques described
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below). We chose the simplest compartmental model able to correctly describe
the data at hand. A discussion of the possible physiological meaning of the 2
compartments is not in order, a priori, and will be presented in the Results
section, on the basis of the posterior parameter values obtained. The model
adopted here assumes that metabolic elimination takes place in the central
compartment (Fig. 1). It corresponds to the following set of differential
equations:

anemra/ _ ch Qperiph Ki/x an/ral
T - Kincinhalr‘d + Ppc Vp - (K(p + Pw> V[. - Kmecm/m/
0Qperipn _ o Qeenrat _ Koy Qi
a T V., P, V,
anemb =K Q
ot met% central (1)

where Q..vq and Q,..,, are the quantities of butadiene in the central and
peripheral compartments, respectively (in mmoles). C,..q is the inhalation
concentration (in mmoles/L); K, is the minute ventilation rate (in L/min); K,
is the rate constant for distribution from the central to the peripheral compart-
ment (in L/min); P, is the peripheral over central partition coefficient (dimen-
sionless); V. and V, are the volumes (in L) of the central and peripheral
compartments, respectively; P, is the central over air partition coefficient
(dimensionless); K., is the butadiene metabolic rate constant (in min"), which
here is the parameter of primary interest. The concentration of butadiene in
exhaled air (in mmol/L) was given by the algebraic equation:

0.7+ Qeentrar

Covhatea = P -V +03 -

Cinnated 2

a c

which assumes a physiological pulmonary dead space of 30%.

Central volume was scaled to body weight, Bw (in kg), and its scaling
coefficient, sc_V,, was the parameter actually estimated:

V.=sc_V.X Bw 3)
It can be noticed, in Equation 1 that P, and V, are not separately identifiable,

and therefore their product was defined as one parameter, P,.V,,.
The above equations were coded for the MCSim simulation software and

Kin
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FIG. 1. Schematic representation of the toxicokinetic 2-compartment
model used. The model parameters are first order rate constants, partition
coefficients and volumes (see text).
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FIG. 2. Graph of the hierarchical statistical model describing dependen-
cies between groups of variables. Symbols are: P, prior distributions; p: mean
population parameters; 3%, variances of the parameters in the population; E,
butadiene exposure concentrations; t, experimental sampling times; 6, un-
known physiological parameters; Bw, body weight, exactly measured; f, PBPK
model; y, measured butadiene concentration (in exhaled air) and measured
values of K, and P,,; 7, variances of the experimental measurements. Square
nodes represent variables of known value; circular nodes represent unknown
variables; the triangle represents the deterministic physiological model.

solved with the Lsodes integrator (Bois and Maszle, 1997; Maszle and Bois,
1993).

The 2-compartment toxicokinetic model was imbedded in a hierarchical
population model (Fig. 2) to describe the various levels of variability present
in the data, according to a population toxicokinetic approach (Bois et al.,
1996b). At the individual level, for each subject, the data (y) consisted of
exhaled air concentrations of butadiene, blood to air partition coefficients, (P,,,
used to estimate P,.), and minute ventilation rate, K;,, all measured experi-
mentally with uncertainty. Body weight, Bw, relatively precisely measured,
was considered as a covariate. The expected values of the exhaled air concen-
trations are a function (f) of exposure level (E), time (t), a set of physiological
parameters of a priori unknown values (6, which includes sc_V., K,,, P,.V,,
K, Ki,,and P,,), and Bw. E, t, 0, and Bw were subject-specific. The function
f was the toxicokinetic model described above. The data collected were also
affected by measurement and modeling errors, which were assumed, as usual,
to be independent and log-normally distributed, with mean of zero and vari-
ance @~ (on the log scale). The variance vector ¢ had three components: o°,
for butadiene exhaled air concentrations, o, for blood over air partition
coefficients, and ¢’ ; for minute ventilation rates.

At the population level, the individual parameters, @, were assumed to be
distributed normally (in log-space) around a population mean m, with popu-
lation variance X°.

The hierarchical population model is symbolically illustrated by Figure 2.
Three types of nodes are featured in the figure: square nodes represent
variables for which the values are known by observation, such as y or Bw, or
were fixed by us, such as E and t, or the priors on ¢, p and 37; circular nodes
represent variables with unknown values, such as 0, o’ L, or 372 the triangle
represents the deterministic compartmental model f.
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An arrow between two nodes indicates a direct statistical dependence
between the variables of those nodes.

The model f was non-physiological and we had no prior information on its
parameters 0. Therefore, uniform (i.e., non informative) prior distributions
were used for the population means m. For the population variances X7,
inverse-gamma priors were used; inverse-gamma priors are standard reference
priors for unknown variances (Bernardo and Smith, 1994). Their shape pa-
rameters were set to 1, and their scales were chosen to correspond to 20% CV
for all parameters, except for K,,.,. CVs of about 20% have been found for
distribution parameters in other studies (Bois et al., 1996a; Gelman et al.,
1996). For K,,,, the scale corresponded to 100% CV, because we expected a
priori the population variability for this parameter to be higher than for the
others, and a factor 2 variability is commensurate with values found in the
literature on variability of metabolic parameters (Bois et al., 1996b). For ¢”;,
we used the standard non-informative prior distribution P(c”;) ~ o”;. The
experimental variances o, and o”; were known a priori (see Preliminary Data
section, above) and set to the corresponding values.

From Bayes’ theorem, the joint posterior distribution of the parameters to
estimate, P(0, o, m, 37 |y, Bw, E, t) is proportional to the likelihood of the
data multiplied by the parameters’ priors:

P(0, 0% n, 22|y, Bw, E, t) ~ P(y|0, 0*, Bw, E. t)

PO p, 22 P(aH) - P(p) - P(2Y. 4

where:

P(0, ¢, m, 2% |y, Bw, E, t) is the joint posterior distribution,

Pyl 0, o?, Bw, E, t) is the likelihood of the data,

P(0| p, X% is the conditional distribution of @, given p and X7,

P(0%), P(n), and P(2?) are the prior distributions (as specified above) for
o’, p. and X7, respectively.

The likelihood term was given by the lognormal measurement model:

log(y) ~ N'(logf (0, Bw, E, t), ? )

Current standard practice in Bayesian statistics is to summarize a compli-
cated high-dimensional posterior distribution (such as that given by Eq. 4) by
random draws from the conditional distribution of each individual model
parameter, given the other parameters (Smith and Roberts, 1993). This can be
shown equivalent, at equilibrium, to random draws from their joint posterior
distribution (Smith and Roberts, 1993). By conditional independence argu-
ments, the conditional distributions of individual model components are sim-
pler than Equation 4:

P(0|o* p, X% y,Bw,E, t) ~ P(y|0, 6>, Bw,E, t)- P(0|pn, 2% (6)
P(n|6, 6% 2%y, Bw, E, t) ~ P(0|pn, %) - P(p) @)
P(2% 0, 0% p,y, Bw, E, t) ~ P(0, p, 2% - P(2?) (8)

P(a?| 0, n, 2%y, Bw,E, t) ~ P(y|0, 0% Bw,E, t)- P(¢®) (9)

Each term on the right can be numerically evaluated, given the distributional
assumptions listed above. We used Metropolis-Hasting sampling to update
each parameter in its turn (using Eqs. 6-9), therefore performing a random
walk through the posterior distribution. This iterative sampling belongs to a
class of Markov chain Monte Carlo (MCMC) techniques that has recently
received much interest (Gelfand and Smith, 1990; Gelman, 1992; Gelman and
Rubin, 1996; Gilks et al., 1996; Wakefield et al., 1994). Two independent
Markov chain Monte Carlo runs were performed for each computation. Con-
vergence was monitored using the method of Gelman and Rubin (1992). Once
a posterior sample of parameter values is obtained, further simulations can then
be performed to compute, under specified conditions, posterior distributions of
estimands of interest (e.g., a total quantity of metabolites formed).
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Optimal design determination. The Harvard School of Public Health
Institutional Review Board has approved, for our planned study, a protocol
similar to the one used for preliminary experiments. The planned exposure
level was reduced to 2 ppm for 20 min (instead of the 5 ppm for a 2-h exposure,
used here). This exposure represents an inhalation dose similar to that received
during everyday life from exposure to urban air pollution, passive cigarette
smoke, gasoline vapors, and automobile exhaust. Subjects will be paid a
nominal amount (equal to 6 h of a laboratory technician’s salary) to compen-
sate for the discomfort of the procedure, time required, and any travel ex-
penses. The study has been approved by the Institutional Review Board
because (1) the planned exposures will be in the range of everyday ambient
inhalation doses, (2) they will be below the allowable occupational exposures,
(3) the subjects will be well informed about the carcinogenic potential of
1,3-butadiene and its resulting risk (less than 1/ 10° based on California EPA
methodology, extrapolating from the mouse, the most sensitive species), and
(4) data about human metabolism of 1,3-butadiene are critically needed for
population risk assessments of ambient and occupational exposures.

We were faced with the problem of defining the number and timing of breath
samples for the planned experiments. The method used to optimize that part of
the design is based on decision theory, as presented for example by Miiller and
Parmigiani (1995): the goal of collecting and analyzing data is to make
decisions. Such decisions may range from addressing an estimation problem
under squared error loss (the usual least-square estimation) to recommending
a certain treatment in clinical settings. Each decision has a payoff, and any
rational decision-maker should take the decision leading to maximum payoff.
That payoff depends on some set of unknown quantities, 0, taking values in a
set of possibilities ® and having a priori distribution I1. In our case, one can
think of the payoff as “being right about the value of K,,,,” of the decision as
“publishing that K, is equal to 0.1,” and of @ as being the true value of K,,,,.
In scientific research, experiments are typically conducted to gain additional
knowledge of 6. The usual sequence of actions in an experiment is:

1. Choose a design e among all possible experiments;

2. Conduct the experiment and observe data y’. The data are assumed to
have as probability model (i.e., error model) f.(y'/0);

3. Make a final decision d, knowing y’, to report 0, as value for 0, so as to
maximize the payoff U(e, d, 0). The payoff can be, for example, inversely
proportional to the square of the difference between 6, and 6.

In addition, recruiting subjects and collecting data involve costs, which may
depend on the design, as well as on @ or y’. The cost function is C(e, y’, 6).
From a theoretical point of view, consistent with the expected utility principle
(Bernardo and Smith, 1994), the optimal experiment is that which maximizes
the function:

Ule) = f [Ule,d, 0) = Cle.y’, 0)]dP(0.y") (10)

where P, is the joint distribution of y” and 6. The interpretation of U(e) is quite
simple: it is the expected value, over all possible parameter values and data
outcomes (i.e. future observations) of the net utility (cost subtracted) of
performing experiment e.

Cost depends on the number of recruited subjects and on the number of
measurements made. We chose here to neglect costs because we wanted to
focus on the scientific question of precisely identifying K. As a utility
function we chose:

Ule.d, 0) = — (log K., — E[log K,,..| 0])* (1)
where E(-) denotes mathematical expectation. This corresponds to measuring
utility by the opposite of the variance of the parameter of interest, K,,,, (i.e., the
smaller the variance of K, the greater the utility of the design). We evaluated
the expected utility U(e) in Equation 10 by averaging over the distribution of
0 given y’ and averaging over the distribution of y’ given ¢ and 0. We did the
averaging by simulation (randomly sampling from the distributions and form-
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ing the sample averages). The analysis of the preliminary data by MCMC
simulations provided us with a set of parameter vectors sampled from their
joint posterior distribution. Those vectors were used to simulate datasets for the
range of possible future experiments. Using each dataset, we then obtained an
updated posterior variance for K,,,. Finally the average K,,, variance, over all
datasets (according to Eq. 10), was used to select the most informative
experiment, i.e. the one leading to the smallest estimation variance.

More precisely, N parameter sets (8") (corresponding to “individuals”) were
generated by sampling one random parameter vector from N(uw.2?), for each of
N pairs of w and 3’ obtained by the MCMC sampling. Half of N 6’ vectors
were then used as input to the model to create as many predicted datasets (y’).
Each dataset included the same number M of data points, obtained along a grid
of time values (#;,j = 1 ... M). Simulated experimental noise was added to the
predictions data as specified by the measurement error model (Eq. 5) and N/2
estimates of experimental variance, obtained by MCMC sampling.

Even along a small grid of design points, the number of possible combina-
tions can be enormous (e.g., there are 1,099,511,627,776 possibilities with 40
points). To avoid searching the entire design space, our algorithm proceeded
heuristically, along 2 directions: forward or backward (Atkinson and Donev,
1992). In the “forward” mode, the algorithm started with no points in the
design, i.e. from the prior knowledge. The criterion variance s° (variance of
K,.) was directly obtained from 6’ since K, was included in 6" (if the
variance of a model prediction were of interest, the model should first be used
to compute those predictions for each 6’). At the next step, each possible
position, j, of a design point along the time-grid was examined for its potential
at reducing the criterion variance. For each design point j and each dataset y’,
the variance estimate was computed by importance reweighting (Bernardo and
Smith, 1994), given the corresponding datum y’;. The reweighted estimate of
variance for any variable ¢ (model parameter or prediction) is given by:

N
2= Do = @)° (12)
where the average is:
N
$=Drie; (13)
the importance weights are:
N
r=L/ 2L (14)

where L, is the likelihood of the datum y’; given 6';, under the lognormal
measurement model (Eq. 5). The variance estimates obtained were averaged
over all N/2 datasets, according to Equation 10. The point giving the lowest
variance for K, was selected and definitely included in the design, closing that
step. The algorithm then went on to determine the best time point for a second
position and so on, iteratively, until all candidate design points were included.
In the “backward” mode, all time points were included at start and the
algorithm removed sequentially the least informative points, until the null
design was reached.

The MCSim software (Bois and Maszle, 1997; Maszle and Bois, 1993), has
been extended to perform the above calculations and was used throughout.

RESULTS

Adjustment of the Population Model to Butadiene Data

To parameterize the butadiene population pharmacokinetic
model, two Markov chains of 50,000 iterations each were run.
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10’ TABLE 2
Subject 3 Summary Statistics for the Posterior Distributions of the Pop-
. . . e e ulation Geometric Means, p, and Geometric Standard Deviations,
 ° e ‘ 3 (See Fig. 2 and Corresponding Text), Derived from Analysis of
_5 2 i the Preliminary Experiments
£g |
ST 100 \ Model parameter” wh 3°
8z
88 sc_V. 0.0813 (1.09) [0.0693, 0.0983] 1.17 (1.05) [1.09, 1.33]
gg K, 1.21 (1.08) [1.03, 1.42] 1.17 (1.05) [1.09, 1.30]
2 % PV, 31.5 (1.08) [27 .4, 36.6] 1.15 (1.04) [1.09, 1.27]
B__:_ K, 0.239 (1.20) [0.165, 0.350] 1.63 (1.14) [1.35, 2.26]
g K, 0.373 (1.06) [0.330, 0.423] 1.18 (1.05) [1.11, 1.33]
10 P, 1.24 (1.10) [1.03, 1.51] 125 (1.07) [1.13, 1.46]
“ Units: see text.
o ‘50 100 " 150 200 ” Summary statistics given: geometric mean (geometric standard deviation)
[2.5th percentile, 97.5th percentile].
Time (min)
FIG. 3. Evolution in time of butadiene concentration in exhaled air for

subject 3 (preliminary experiments). Exposure was to 5 ppm for 2 h. The solid
lines correspond to the maximum posterior probability fit and to 10 other fits
from randomly-sampled parameter sets. The data are represented by circles.

After 10,000 iterations, the trajectory of each parameter started
to oscillate randomly around a mean value, and these oscilla-
tions had stabilized to a stationary distribution. The Gelman-
Rubin convergence diagnostic less than 1.01 for all parameters,
meaning that we would have expected to achieve at most 1%
reduction in variance by continuing the simulations. One in 40
of the last 40,000 simulations of 2 chains were recorded,
yielding 2,000 sets of parameter values from which the infer-
ences and predictions presented in the following were made.

Figure 3 presents, for an individual (subject A), the model-
predicted time course of butadiene exhaled air concentration,
overlaid with the measured values. Predictions were made with
the parameter set of highest posterior density, and with 10
parameter sets randomly sampled from their joint posterior.
The fit was excellent, and the same was observed for all
subjects. The residuals appeared evenly spread in log-space,
indicating that the log-normal error model was reasonable and
that little modeling error was present (observed and predicted
data values differ on average by only 6%, and at most by 25%).
Visual inspection of the residuals did not show any evidence of
autocorrelation between them. In this extended design, data
sampling was thorough and left little room for model uncer-
tainty. A two-compartment model appeared sufficient to de-
scribe those data. The posterior geometric mean of the mea-
surement SD for butadiene concentrations, o,, was 1.077
(% 0.0036), corresponding to a CV of 7.7%. That estimate was
close to the reported assay error of 5.6%.

Posterior Parameter Distributions

The joint distribution of all population and individual pa-
rameters was obtained in output of the MCMC simulations.

This allowed consideration of marginal distributions (distribu-
tions of the parameters considered individually), but also of
correlations of any order. Summary statistics for the population
parameters means, u, and geometric standard deviations, 2., are
presented in Table 2. The volume of the central compartment
represented only 8% of the body weight on average. This was
close to volume of blood in the body. Distribution to the
peripheral compartment was fast (corresponding to a half-life
of 0.6 minutes). It is difficult to comment on the product P,.V,
because of its composite nature; given its value (about 30), the
peripheral compartment might correspond to the extra-vascular
space, with large volume, partition coefficient lower than 1 and
a fast exchange rate with blood. The metabolic elimination rate
constant corresponded to a half-life of about 3 min. Variability
across the 8 individuals was estimated to be 17% CV for sc_V.
and K,,, 15% for P,.V,, and 50% for K,,,. Table 3 presents the
posterior distribution of K., for each subject (distributions for
the other parameters are not presented). These K, values
correspond to clearances of about 1.4 L/min (95% confidence
interval: 045 — 4.1). For all model parameters, individual

TABLE 3
Summary Statistics of the Posterior Distributions for Individual
K,.. Values, in Min™ (Determined from the Preliminary Experi-
ments)

Geometric Geometric 2.5th 97.5th
Subject mean SD percentile percentile

A 0.284 1.12 0.223 0.350
B 0.200 1.13 0.154 0.252
C 0.198 1.26 0.121 0.292
D 0.249 1.13 0.194 0317
E 0.206 1.16 0.153 0.270
F 0.194 122 0.125 0.267
G 0.270 1.14 0.204 0.346
H 0273 1.12 0219 0.340
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estimates were clustered around the corresponding population
values, without “outliers”. Uncertainties (in terms of CV)
amounted to 2% to 25% approximately, most of the CVs being
close to 10%. Parameter estimates were therefore quite precise
with such an extended design. There were however, very large
correlations between parameter estimates for any given indi-
vidual (correlation coefficients ranging in absolute value from
0.52 to 0.94 were found between sc_V., K,,, P,.V,, and P,,).
However, K,,,, estimates were not strongly correlated to other
parameters (correlation coefficients ranging from —0.07 to
0.32).

Optimal Design of the Butadiene Experiments

Our interest resided in optimizing the design of butadiene
exposure experiments. The optimization criterion chosen was
minimization of the expected posterior variance of the param-
eter K, (in log space), for a random individual. Butadiene
exposure length and concentration were set to 20 minutes, and
2 ppm, respectively. These choices were dictated by safety
reasons (subjects have no benefits in being exposed to buta-
diene) and analytical considerations (resulting concentrations
in exhaled air must be detectable).

A prior sample of 1,000 parameter vectors, describing “fu-
ture” individuals, was obtained by sampling from 1,000 pairs
of w and X, population parameters drawn by MCMC sampling
(see above). Body weights were randomly drawn from a log-
normal distribution with geometric mean 70 kg and geometric
standard deviation 1.2, truncated at =2 SDs. This prior sample
represents our knowledge of the population before the new
(coming) experiments.

We discretized experimental time along a grid of 20 possible
values. Time points were at 2, 5, 10, 15, 19, 21, 22, 24, 26, 28,
32, 38, 44, 50, 56, 62, 68, 80, 92, and 104 minutes after start
of exposure. The final time was set with regard to the detection
limit of the analytical method. Predictive datasets were ob-
tained using half of the prior parameter vectors. Each of these
datasets represents a possible response of new individuals in
the future study. This allowed us to assess whether the optimal
design was stable across subjects. Experimental noise was
simulated according to a lognormal distribution, using a geo-
metric SD of 1.077, as estimated by MCMC sampling (see
above).

Given the stochastic noise present in the optimization re-
sults, we first wanted to assess their stability with respect to
prior sample size. Obviously high sample sizes are preferable,
but the computational burden increases in proportion. A first
set of optimizations was performed, recruiting prior samples of
either 250, 500, or 1000 parameter sets. Figure 4 presents the
evolution of the estimation SD (square root of the variance) in
log-space for K,,, as locally optimal points were progressively
included in the design. We present the SD, rather than the
variance, for easier interpretation of the figure. The results
were similar for sample sizes of 500 and 1000; with 250

0.60

0.40
0.30 |

0.20 |

Standard Deviation of Kmet

0.10

0.00 T T [l T T T ' T ' T T ' T T T

Number of Sampling Points Included

FIG. 4. Evolution of K, estimation SD (in log space), for a random
individual, as locally optimal sampling time points are progressively included
in the design (forward optimization). Results are given for 3 prior sample sizes.

vectors the SD was consistently underestimated (in comparison
to estimates obtained with 500 or 1000 parameter sets). Note
that the starting SD is quite high, close in fact to the population
SD given in Table 2, since it represents uncertainty about the
K,.. of an individual not yet observed. The lowest SD achiev-
able with such an experiment appeared to be 0.10 (which
corresponds to a CV of 10%) (Fig. 4), close to what was
obtained in the preliminary experiments. After adding 10 sam-
pling times, 90% of the potential reduction in SD was achieved
(corresponding to a CV of 15%). The corresponding results for
backward optimization are similar (data not shown). The re-
sults appeared reasonably stable and a sample size of 500 was
chosen for all subsequent simulations. Note that the average
value of K,,,, did not change in those simulations, since no new
experimental data were brought in, but only model-simulated
“data”.

Given that a 10-point design was nearly optimal, the ques-
tion remained as to which time points should be selected. The
answer is given by the consideration of plots such as Figure 5.
The expected estimation variance associated with each design
point is presented at each step of the forward optimization
procedure (i.e. when progressively including locally optimal
points). When no point had yet been included (step 1), the 6th
point (time 21 min, just after end of exposure) lead to the
lowest estimation variance (about 0.15). That point was there-
fore chosen and included in the proposed design (Note that the
next best points at step 1 were at later times). At step 2,
interestingly, early time points were clearly preferred. At step
3, the last point lead to the lowest variance and was included.
Table 4 gives the order of inclusion of the various time points
in the first 10 steps. From consideration of the above, we
propose for the coming experiments to sample exhaled air at 2,
5, 10, 15, 19, 21, 22, 28, 38, and 104 min after the start of
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FIG. 5. Expected estimation variance associated with each design time
point, for the first 10 steps of the forward optimization algorithm (at each step,
the optimal time point is included in the proposed design). Gaps correspond to
already included points.

exposure. This design, which should lead to an estimation CV
of 15%, is about evenly distributed in time; the times brack-
eting the end of exposure are definitely needed and sampling
during exposure should be very informative.

The proposed sampling schedule was tested by simulating
experimental data at the specified time points and fitting the

TABLE 4
Order of Inclusion of Candidate Time Points by Forward
Optimization of Planned Butadiene Experiments

Step Included time point (min) Resulting variance Resulting SD
1 21 0.158 0.397
2 19 0.0878 0.296
3 104 0.0679 0.261
4 5 0.0501 0.224
5 38 0.0375 0.194
6 2 0.0279 0.167
7 15 0.0241 0.155
8 10 0.0211 0.145
9 22 0.0186 0.136

10 28 0.0165 0.128

toxicokinetic model using MCMC sampling. The aim of these
simulations was to check if, under realistic conditions, the
estimation SDs of K, for future subjects would indeed be low
(or at least close to those obtained with a dense sampling
schedule in preliminary experiments). Data for several “normal
subjects” were simulated as above, as well as data for “patho-
logical subjects,” with metabolic rates twice as high as for the
normal subjects. All simulated subjects were introduced in the
population model, together with the 8 subjects of the prelimi-
nary experiments. Figure 6 presents for the 8 actual subjects,
10 ’normal” and 10 “pathological” simulated subjects, the
resulting K, estimates. The optimal 10-point sampling sched-
ule lead to estimation SDs comparable to those obtained using
the preliminary 40-point sampling schedule (which lead to CVs
of about 15% for K,,.,). Note that K,,, for “pathological sub-
jects” (fast metabolizers) had lower SD than for “normal sub-
jects” (low metabolizers). For the simulated subjects the figure
also indicates the position of the true” value of K,,, (the value
used to simulate the subjects). The estimate was usually close
to the true value, except for the 2 subjects whose K,,, is far
lower than those for the rest of the population (a condition
which, we just mentioned, leads to a low precision of esti-
mates).

Figure 7 presents expected sample-based estimates of the
CV of the population variance of K,,, (in log-space) together
with an analytical approximation: Given the distributional as-
sumptions of our population model, if the K,,,, values of indi-
viduals were known perfectly, the posterior density of the
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FIG.7. Relationship between the planned study sample size and the CV of
the population variance K,,, (in log-space). The circles are estimates obtained
by MCMC sampling of simulated experiments; the solid line is an analytical
approximation.

population variance of K, (in log-space) would follow an
inverse-gamma distribution with a CV of 1/n/2+1, n being
the number of subjects recruited. A “1” appears in the denom-
inator because we are setting to 1 the shape parameter of the
prior distributions for population variances (corresponding to
vague prior distributions). In fact, the subjects’ K,,, are af-
fected by uncertainty, but the approximation is reasonable
within the range presented, even if slightly underestimating.
According to the figure, with 40 subjects a CV of 25% should
be achieved. One hundred subjects would bring this value
down to 20%. The CV of the corresponding SD for K,,,, in
log-space, would be about half of that value, and hence close
to 10%.

DISCUSSION

In the introductory section, it was noted that knowledge of
human metabolic rates is critical to the estimation of risk from
occupational and environmental exposures, and for extrapolat-
ing risk from one population to another. We are interested in
more than just an estimate of the average human metabolic
rate. There is evidence for butadiene that both formation and
deactivation of epoxy metabolites are mediated by enzymes
whose activity is determined by the individual’s genotype
(Carriere et al., 1996; Hassett et al., 1994). Thus, the average
risk per unit-of-exposure for epidemiologic studies of petro-
chemical workers will depend on the population’s distribution
of metabolic genotypes.

It is not straightforward to obtain in vivo human metabolic
data for both ethical and practical reasons. An alternative
approach could be in vitro studies of enzyme activity in tissue
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slices, microsomes, or short-term cell cultures. These are suit-
able for performing comparisons when differences are large,
such as cross-species differences in microsomal and cytosolic
enzyme activities (Csanady et al., 1992). However, as noted by
Guengerich (1996), all in vitro approaches have limitations in
replicating in vivo metabolism. Metabolism depends on both
the intrinsic reaction rate(s) of the enzyme(s) involved and on
the amount of enzyme protein. Humans have a variety of
intrinsic, genetically-determined enzyme rate capabilities. An
individual’s basic genetic capability is further modified by
concurrent intake of alcohol, drugs, or foods, etc. The occur-
rence of such modifications in a population is difficult to
evaluate by in vitro tests. A population-based collection of
tissue samples would be necessary to characterize this varia-
tion, which is impractical and would not provide good esti-
mates of the total rates. Since we wish to estimate the distri-
bution of human metabolic rates to project population risks
from exposure, it seems most appropriate to conduct efficient,
short-duration laboratory exposures on a relatively large num-
ber of subjects. It is important that human testing be as efficient
as possible, so that the risk to the volunteers is minimized. This
means that the smallest possible exposure is used in the tests,
the smallest number of subjects are tested, and the smallest
number of sample time points is used that will efficiently
estimate individual metabolic rates. Resolution of these con-
siderations depends on the pharmacokinetics of the agent,
measurement capabilities, and statistical factors.

The Bayesian approach with Monte Carlo simulation is an
ideal means to optimize a measurement strategy to assess any
one of the parameters of a pharmacokinetic model of human
exposure to an environmental agent. Pilot data, with oversam-
pling of time points during and after exposure, provided the
input information for both the prior estimates of the model
parameters and a test of the model’s predictive capability. In
particular, this work brings together for the first time, to our
knowledge, a Bayesian population toxicokinetic analysis, and a
simulation-based approach to optimal design. The population
approach enables an easy summarizing of the population, the
straightforward generation of simulated individuals, and the
assessment of the behavior of precision in variance estimates
(Bois et al., 1996a.b; Fanning et al., 1997; Gelman et al., 1996;
Jonsson et al., 1997; Wakefield et al., 1994). It is easy in this
framework to account for the uncertainty about measured co-
variates, such as minute ventilation or blood to air partition
coefficient. Their measurements were treated as data, with
known measurement SDs. The fits obtained with a 2-compart-
ment model are excellent (among the best we have seen).
Advantage of the 2-compartment model are obvious: it is
simple, scientifically economical, quickly computed, and gives
estimates of total metabolic clearance. This 2-compartment
model does not describe a terminal elimination phase which
would be controlled by the slow release of butadiene from the
fat, but this phase would start beyond the measurements ana-
lyzed here. By not explicitly considering butadiene redistribu-
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tion to body fat, we may have slightly overestimated metabo-
lism. However, this potential bias is expected to be small
because blood flow to the fat represents only a few percent of
cardiac output and there was no observable slow-compartment
contribution to the washout. Given a relative blood flow of 6:1
for the liver versus the fat, and a high extraction for butadiene,
the metabolic rate might be at most overestimated by about
17%. Arguably, retention in fat could bear more on the total
amount butadiene metabolized, independently of metabolic
rate, and should be considered if cancer risk assessment, for
example, was the objective of the analysis. We purposefully
limited ourselves to the estimation of metabolic clearance,
given the data at hand, which was our research objective. We
also did not need to extrapolate to other species, other routes of
exposure, or another dose range. Would that be the case, a
PBPK model could be used for optimal design determination.
Some approaches require linearized models (Mentré et al.,
1997), in contrast, our method would still be applicable in the
case of a complex nonlinear model.

Classical approaches to design tend to be the exclusive realm
of biostatisticians and specialized software (Beatty and Piegor-
sch, 1997). We hope to make the technique more widely
accessible, in particular to toxicologists interested in modeling.
Our method is strongly model-based rather than databased.
Model-based approaches (Atkinson et al., 1993; Burstein et al.,
1997; D’Argenio, 1981, 1990; Kashuba et al., 1996; Palmer
and Miiller, 1998) are very flexible, because they allow the
predictive design of experiments; preliminary data are needed
to define a reasonable model, but it is then possible to optimize
the design of any experiment susceptible to be simulated by the
model. On the other hand, data-based approaches (Mager and
Goller, 1998; Mahmood, 1998; Pai et al., 1996; Tse and
Nedelman, 1996) trim down already-performed experiments
through bootstrap or similar techniques; they are less sensitive
to modeling errors, but also less powerful. Note that not only
times, but also doses, or exposure length could be optimized by
our method. In the case presented here, those variables were set
based on safety considerations. Note also that the reduction in
variance of a “useful prediction” could have been chosen as
optimization criterion, instead of the variance of a crucial
model parameter (K,,,). Such a prediction, relevant to cancer
risk, could be the amount of metabolites formed during the last
h of an 8-h exposure. We could also have computed a global
criterion, such as Shannon information (Merlé and Mentré,
1995; Polson, 1992). The choice of criterion should be dictated
by the ultimate goal of the planned studies. In addition, in this
analysis the balancing of costs and benefits was done infor-
mally. We did not need to formally put costs and benefits on a
common utility scale. A complete cost function could be spec-
ified if formal cost minimization or more sophisticated decision
making was requested (Wakefield and Racine-Poon, 1995).
Cost functions could be used in particular if the simultaneously
sampling optimization of several output variables (e.g., ex-
haled air, venous blood, and urine) was sought. A valuable
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aspect of optimal design might actually be the opportunity it
gives to think about sophisticated utility functions: consider-
ing, for example, balancing the cost of the planned experi-
ments, the expected benefits to society, and the potential risk
incurred to the study subjects...

The forward and backward optimizations used here are
heuristic approaches and are not guaranteed to give the very
best results. A global optimization on all possible time point
combinations would be required for that, but the resolution of
such large problems is still an open question, and in any case
very difficult (Atkinson and Donev, 1992). Forward and back-
ward optimizations gave the same results in our problem,
which reassures us that the results are reasonable and close to
optimal. One of the drawbacks of our approach is the noise
induced by the stochastic nature of the algorithm. Conse-
quently, points offering an almost equal reduction of variance
at a given step can be chosen quite randomly. The path leading
to an optimal design might be missed in some cases. However,
the size of the sample used can always be increased as com-
puting power expands. In fact, there should be a set of near
optimal designs to choose from, and the path to them does not
need to be unique. It might actually be better to think in terms
of informative design “regions,” as the examination of variance
profiles as in Figure 5 reveals. In the case studied, the most
informative region for the elimination rate appears to be the
discontinuity at the end of exposure. The early exposure period
and the final portion of the elimination phase come next. Of
those 3 periods, only the last one is usually considered as
useful, on the basis of simple sensitivity analysis. Our approach
takes into account the entire statistical framework used to
derive estimates of the metabolic elimination rate constant (in
particular the strong estimation covariances) and leads to
somewhat different results. It should be noted that the form of
the error distribution is of importance in determining the op-
timal design, since points determined with precision will tend
to be preferred. We used a log-normal error model here, which
fits the preliminary data very well. It is possible that a refined
model, with a constant error term added (implying a detection
limit), would be slightly better suited to the prediction of the
low-concentration, short-exposure experiments envisioned.
Using alternative error distributions can easily be accommo-
dated by our approach.

An important finding from these simulations is the descrip-
tion of the diminishing returns for increasing the number of
sampling time points. As expected, large increases in numbers
are needed to reduce the coefficient of variation of the esti-
mated metabolic rate constant below 10%. This value is close
to what is expected given the estimation covariances and
practical limits to measurements. However, until this study, the
quantitative relationship between number of samples and pre-
cision was not known, because it is not determined by the
simple 1//n expression. The data presented here showed that
relatively small numbers of data points, about 10, can provide
precise estimates (i.e., with a 13% CV) of the apparent first
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order metabolic rate for butadiene oxidation. Actually, addi-
tional simulations (data not shown) indicated that if higher
precision were needed, a design with two 10 min exposure
periods and 30 sampling times can achieve an estimation
CV 9%.

Analysis of the pilot data gave an indication of the variabil-
ity among individuals to be expected in butadiene metabolism
for an ethnic Chinese group. This variability amounts to a 50%
CV. Broader populations including other ethnic backgrounds
may be expected to show more variation as a result of differ-
ences in enzyme genotypes. With genotypic data, it becomes
possible to define the characteristic population rate parameter
for a genotype, and to determine if rates are significantly
different between different genotypes or ethnic groups (Jon-
sson et al., 1997). At this point, it will be useful to take
advantage of PBPK modeling to compensate for differences in
body size, body fat, inhalation rates, and blood partition coef-
ficients.

It is tempting to take advantage of the proposed reduction in
cost of individual experiments to include more subjects in the
study, with the aim of increasing the precision of the popula-
tion estimate of K,,. Our results show that, with up to a
hundred subjects in the study, a 20% CV can be obtained on
the population variance of K, (this is a 10% CV for the
estimation SD). Recruitment of about 50 subjects would yield
a CV already close to those values. Again, given the limit to the
precision of individual K,,, estimates, there should be a lower
limit to the precision achievable for the estimate of popula-
tion’s variability. We did not formally optimize the design with
the objective of precision of population variance, but instead
decoupled the optimization of design for individual-specific
K,.. and their population variance. This decoupling should
have little implications here. However, a global approach
would be more elegant, and we need to explore ways to
implement the full population approach in simulation-based
design optimization.

Many issues in designs routinely used in toxicology (air-
chamber or gavage experiments) remain to be investigated. It
would be interesting to see if some aspects of the optimal
design for butadiene carry for other compounds, or to ask, for
example, whether exhaled air sampling can replace blood-
sampling altogether. Many experimenters are performing many
similar experiments in animals and humans and all should
benefit from the availability of a simple, almost automatic
method for design optimization.
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