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Abstract 

Vul et al. claim in their paper that the correlations reported in fMRI studies are 

commonly overstated because researchers tend to report only the highest correlations, or only 

those correlations that exceed some threshold.  Their paper has in a short time given rise to a 

spirited debate about key statistical issues at the heart of most functional neuroimaging studies.  

The debate provides a useful opportunity to discuss core statistical issues in neuroimaging and 

ultimately provides a chance for the field to grow and move forward.  This commentary 

approaches the debate from a fundamentally statistical perspective.  We begin by summarizing 

several of the key points under discussion, followed by our own commentary on these issues 

from a statistical point of view.  We conclude our discussion by contemplating whether it may be 

time to move beyond the correlation and multiple comparisons framework, which is causing so 

much confusion, and instead represent all relevant research questions as parameters in one 

coherent multilevel model.
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Introduction 

With great interest, we have followed the spirited debate raging around the article 

originally entitled, “Voodoo Correlations in Social Neuroscience” by Ed Vul, Christine Harris, 

Piotr Winkielman, and Harold Pashler.  We are pleased that the paper has created such a 

stimulating discussion about key statistical issues that are at the heart of most functional 

neuroimaging studies.  In general, we feel that the debate provides a useful opportunity to 

discuss core statistical issues in neuroimaging and ultimately, we hope it provides a chance for 

the field to grow and move forward.  

Our thoughts on these issues come from a statistical perspective as our training lies 

primarily outside of neuroscience.
1
  However, since the discussion is in essence a statistical one, 

we feel that perhaps we have something to add.  We begin our discussion by summarizing 

several of the key points that have arisen in the debate so far, followed by our commentary on 

the issues from a fundamentally statistical point of view. 

 

A Summary of the Debate 

In their article, Vul et al. point out that the correlations reported in fMRI studies are 

commonly overstated because researchers tend to report only the highest correlations, or only 

those correlations that exceed some threshold.  They suggest that these statistical problems are 

leading researchers, and the general public, to overstate the connections between social behaviors 

and specific brain patterns.  They react particularly strongly to the practice of using a two-stage 

                                                 
1
 Gelman did his Ph.D. thesis work on medical imaging (PET scans) but has published only one 

article in this field, over fifteen years ago.  Lindquist works on fMRI and collaborates with Tor 

Wager, who is a coauthor of one of the articles being discussed here.  We shared drafts of earlier 

versions of this article with Ed Vul, Hal Pashler, Tor Wager, and others, and we do not think our 

affiliation with Wager has biased our assessment here. 
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analysis procedure where the method used to select which voxels should be tested is not 

independent of the tests performed on the resulting regions. 

After appearing online, the paper received a great deal of attention and gave rise to 

multiple responses, several of which were centered on the idea that properly performed 

corrections for multiple comparisons allow researchers to, in large, circumvent the problems 

raised by Vul et al. For example, Jabbi, Keysers, Singer, and Stephan argue that “correcting for 

multiple comparisons eliminates the concern by Vul et al. that the voxel selection ‘distorts the 

results by selecting noise exhibited by the effects being searched for.’”  Huizenga, Winkel, 

Grasman and Waldorp argue that if adequate corrections for multiple comparisons are 

performed, it is not warranted to label high correlations as being “voodoo” and that “the 

correlations simply are high because they survive more conservative thresholds.”  Both Jabbi et 

al. and Huizenga et al. argue that the focus should be on the statistical testing and not on the 

magnitude of the correlations:  as Jabbi et al. write, “the key question is often not how strongly 

the two measurements are correlated, but whether and where in the brain such correlations may 

exist.”  In a separate discussion, Nichols and Poline feel the paper discusses two key points that 

have already received much attention in the literature.  The first is the problem of multiple 

testing and the second is that methods descriptions in neuroimaging papers are confusing or 

incomplete.  Finally, they agree that the focus on correlation itself is problematic, as it entangles 

effect magnitude and significance.   

Finally, Lieberman, Berkman, and Wager defend social neuroscience and argue that 

while they accept that correlations are overstated, the correlations may not be nearly as 

overstated as Vul et al. fear.  In addition, they disagree with the implied claim that the overstated 

correlations have distorted scientists' understanding of social neuroscience research.  They 
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further object to Vul et al.'s focusing on social neuroscience, given that the same statistical issues 

arise in all sorts of brain imaging studies.  Finally, they point out some specific areas where Vul 

et al. mischaracterized the data-analytic methods used in this field. In particular, they react 

strongly to implications that researchers use a two-stage analysis procedure with inferences at 

both steps.  Instead, they write, most researchers use a single-stage test to search for regions 

showing significant non-zero correlation, with a subsequent correction for multiple comparisons. 

While they agree with Vul et al. that massive numbers of tests with multiple comparison 

corrections are not a good way to provide unbiased estimates of the correlation magnitude, they 

claim this is not the purpose of their analysis. 

 

Statistical Thoughts 

The debate so far has raised several interesting statistical questions. The first is the validity of the 

so-called non-independent two-stage analysis procedure criticized by Vul et al. From a 

statistician’s point of view it is hard to disagree with their statement that it is unsound to perform 

a two-stage analysis that tests the significance of nonzero correlation on voxels that were chosen 

simply due to that fact that they exhibited high correlation in the data.  However, it is unclear 

how often this type of analysis is actually used in the literature and quantifying this is beyond the 

scope of our expertise. Lieberman et al. give a compelling argument that it is not common (at 

least in the studies surveyed by Vul et al.), and that most studies first conduct a test of 

significance and thereafter simply report an aggregate correlation value for each region deemed 

significant in the first test.  With proper control for multiple comparisons, this second procedure 

will not change the underlying result that certain voxels exhibited significant nonzero correlation 

in the hypothesis testing framework, but the reported correlation will be radically inflated.   
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This leads us to the next question regarding the interpretation of the reported correlations. 

Researchers often do, as Vul et al. point out, use correlations to summarize their results. 

However, the appropriate guidelines for interpreting these results are often not provided, and 

even if said correlations survived a multiple-comparisons analysis, readers might interpret these 

at face value without understanding the selection issue.  For these reasons, the practice of simply 

reporting the magnitude of the reported correlations is somewhat suspect. The fact that many 

imaging studies are underpowered adds an additional wrinkle, as estimates with relatively large 

standard errors are more likely to produce effect estimates that are larger in magnitude than 

estimates with relatively smaller standard errors; regardless of the true effect size.  Indeed, it is 

well known that with a large enough sample size even very small effects will be statistically 

significant, and statisticians often warn about mistaking statistical significance in a large sample 

for practical importance. However, on a similar note, just because it is difficult to obtain 

statistically significant results in a small sample, this doesn’t necessarily imply that that said 

effects are real and important (Gelman & Weakliem, 2009). Often large estimates simply reflect 

the influence of random variation. This may be disappointing to researchers, since they may 

indicate that even significant findings do not provide strong evidence. However, accurately 

identifying findings that are suggestive rather than definitive still benefits the field. 

The commentary by Nichols and Poline raises an important point regarding the quality of 

the methods sections in neuroscience publications.  It is critical to provide readers with the 

necessary tools needed to correctly interpret the results, and researchers should avoid trying to 

overstate the results in question. Similarly, while statistics provides many useful methods, the 

conclusions are often only as valid as the underlying model assumptions.  If these assumptions 

fall apart, so may the validity of the conclusions being made.  It is therefore important for papers 
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to contain careful descriptions of the assumptions required for the methods they employ and to 

state conclusions in the context of these assumptions.  Readers can then decide on their validity 

and interpret the conclusions of the study in the appropriate context. 

Many of the responses have centered on the multiple comparisons problem and how 

appropriate control of these issues allows one to circumvent the problems outlined by Vul et al.  

Multiple comparisons methods are designed to control the rate of false positives in a setting 

where true effects are zero, but one can certainly imagine situations where this may not actually 

be the most relevant null hypothesis.  There are many factors that affect blood flow in the brain, 

and we probably wouldn’t expect the average scans of two different groups of people to be 

exactly the same.  Hence, if the number of subjects is large enough we would expect to see 

significant correlations over most of the brain, even after proper correction for multiple 

comparisons. For these reasons, it is not clear that the approach based on separate analyses of 

voxels and p-values is optimal, as rejecting the hypothesis of zero correlations may not actually 

be what is most interesting at the end of the day.  What's really of interest is the pattern of 

differences in the brain, and how consistent these patterns are across persons and conditions.  

Related to this point is that, ultimately, when trying to understand differences in brain processing 

between different groups of people (or between people doing different tasks), the maximum 

correlation among voxels is not what you're looking for.  That may be one reason why 

researchers summarize using regions of interest (as discussed in the Lieberman et al. article). 

Vul et al. are correct to warn about overinterpretation of correlations that have been 

selected as the maximum, as the naive reader can see such correlations (and accompanying 

scatterplots) and think that certain personality traits are more predictable from brain scans than 

they actually are.  The fact that certain correlations survive the multiple comparisons procedure 
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is evidence against the hypothesis of zero differences, and does not imply that these correlations 

can be directly interpreted.  

Perhaps the way forward is to go beyond the correlation and the multiple comparisons 

framework, which causes so much confusion.  Vul et al. and Lieberman et al. both correctly 

point out that classical multiple comparisons adjustments do not eliminate the systematic 

overstatement of correlations. Therefore, rather than correcting for problems arising from 

multiple significance tests, perhaps it is more appropriate to represent all relevant research 

questions as parameters in one coherent multilevel model. In other words, rather than correcting 

for a perceived problem, we should just build a more appropriate model from the start. 

A multilevel Bayesian approach using some sort of mixture for the population of voxel 

differences, ideally modeled hierarchically with voxels grouped within regions of interest, would 

help here. These types of models shift estimates and their corresponding intervals toward each 

other through a process referred to as partial pooling (or shrinkage). In contrast, classical 

procedures keep the point estimates stationary and adjust for multiple comparisons by making 

the intervals wider. In this way, multilevel estimates make comparisons appropriately more 

conservative in a data-driven manner. As a result, we can say with confidence that those 

comparisons made with multilevel estimates are more likely to be valid. At the same time this 

adjustment doesn't detract from our power to detect true differences as is often the case in the 

multiple comparisons framework (Gelman, Hill & Yajima, 2009).  

In essence, classical inference only uses information in each voxel to obtain voxel-wise 

effect estimates and their corresponding standard error. A multilevel model recognizes that the 

voxel-wise estimate is ignoring information provided by the other voxels. While still allowing 

for heterogeneity across voxels, the multilevel model also recognizes that since all the voxels are 
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measuring the same phenomenon it doesn't make sense to completely ignore what has been 

found in other voxels. Therefore, each voxel-specific estimate gets shrunk towards the overall 

estimate. The greater the uncertainty, the more it will get pulled toward the overall estimate. The 

less the uncertainty, the more we trust that individual estimate and the less it gets shrunk. This 

process leads to estimates that lie closer together than those obtained using classical analysis. 

Rather than inflating our uncertainty estimates, which doesn't really reflect the information we 

have regarding the effect size, the point estimates are shifted in ways that reflect the information 

we have. It has been recognized (James and Stein, 1960; Efron and Morris, 1975) that partial 

pooling can lead to estimates with better properties than traditional estimators. It should also be 

noted that partial pooling has previously been applied to fMRI time series data in the context of 

the multilevel general linear model (GLM) approach (e.g. Friston et al., 2002 and Friston and 

Penny, 2003).   

At its simplest, the model would have two levels:  a data-level model of the measurement 

of each correlation given the true underlying correlation, and a model of the distribution of 

correlations.  For example, if iρ̂  represents the measurement of the correlation at voxel i and iρ  

the true underlying correlation, we can write ),(~ˆ 2

ρσρρ ii N , and then 10 )1(~ ggi λλρ −+ , 

where 0g  is a distribution with a spike at zero (representing the idea that most correlations are 

expected to be small) and 1g  is a wider distribution representing the correlations that can appear 

in reality. The goal is to estimate λ  and perform inference for individual iρ ’s and for the average 

correlations over regions of interest, all of which can be done within the Bayesian framework 

(Gelman, et al., 2003). 

Detailing out the model above reveals many problems in its simplicity, most notably first 

that the measurements are not independent and second that the correlations are themselves 
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correlated, both spatially and also with regard to the experimental conditions.  The difficulty of 

this sort of modeling is presumably one reason why it is not done in practice. On the other hand, 

if the correlations are to be analyzed, we suspect that a hierarchical mixture model would address 

the multiple comparisons issue (by explicitly estimating the distribution of the correlations) and 

also solve the crude overestimation problem that comes from selecting the maximum. 

We view our suggested hierarchical model for partially pooling correlations not as a 

competitor to a full probability model of the data and data collection process (as in Genovese, 

2000) but rather as a sort of rationalized reconstruction of existing correlation analysis to better 

adjust for the multiplicities in the analysis. 

 

Final Thoughts 

The motivations of Vul et al. in writing their article no doubt included frustration at too-good-to-

be-true numbers which they felt led to exaggerated claims of neuro super-science.  Conversely, 

one of the frustrations of Lieberman et al. is that they are doing a lot more than correlations and 

fishing expeditions--they're running experiments to test theories in psychology and trying to 

synthesize results from many different labs. From that perspective it must be frustrating for them 

to see a criticism that is so focused on correlation, which is really the least of their concerns. The 

frustration was no doubt exacerbated by what they saw as a mischaracterization of their analysis 

techniques. 

It also seems that both sides were irritated by what they saw as giddy press coverage: on 

one side, claims of dramatic breakthroughs in understanding the biological basis of behavior and 

personality; on the other, claims of a dramatic emperor-has-no-clothes debunking.  As scientists, 

most of us welcome press coverage--after all, we think our work is important and we'd like 
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others to know about it--but we are sensitive to uncritical press coverage of work we see as 

flawed.  As applied statisticians, we are happy to see the discussion raised by Vul et al. and their 

correspondents and we hope this will lead to statistical methods that more directly address the 

important research questions in psychology that are being studied by Lieberman et al. and others. 
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