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Abstract

We consider inference from non-random samples in data-rich settings where high-

dimensional auxiliary information is available both in the sample and the target popu-

lation, with survey inference being a special case. We propose a regularized prediction

approach that predicts the outcomes in the population using a large number of aux-

iliary variables such that the ignorability assumption is reasonable and the Bayesian

framework is straightforward for quantification of uncertainty. Besides the auxiliary

variables, inspired by Little & An (2004), we also extend the approach by estimating

the propensity score for a unit to be included in the sample and also including it as a

predictor in the machine learning models. We find in simulation studies that the regu-

larized predictions using soft Bayesian additive regression trees yield valid inference for

the population means and coverage rates close to the nominal levels. We demonstrate

the application of the proposed methods using two different real data applications, one

in a survey and one in an epidemiologic study.
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Statement of significance: We propose Bayesian machine learning model-based meth-

ods for estimating population quantities using non-random samples in data-rich settings

where high-dimensional auxiliary information is available both in the sample and the

population. We use Bayesian Additive regression trees (BART) and soft Bayesian ad-

ditive regression trees (SBART) to predict survey outcomes in the population, with

the Bayesian framework straightforward for quantification of uncertainty. We further

extend the trees-based estimators by also including the estimated propensity score

of inclusion as a covariate to make them doubly robust to either model misspecifica-

tion. Using simulation studies, we show that our proposed methods effectively reduce

selection bias in the non-random sample and yield efficient estimates of population

quantities, with close to the nominal level coverage rate. SBART performs better than

BART and is, therefore, recommended. Including the estimated propensity score fur-

ther reduces bias and improves efficiency in the BART estimator but the improvement

over SBART is not obvious. However, the propensity score does provide protection

against model misspecification in SBART when important predictors are omitted in

the outcome models. Using our proposed methods, we can quantify and correct differ-

ences between population and a survey, a randomized trial, or an epidemiologic study.

Keywords: Bayesian machine learning; High-dimensional auxiliary variables; Non-

random samples; Probability and non-probability surveys; Propensity score; Soft Bayesian

additive regression trees.

1 Introduction

Inference about a target population based on sample data relies on the assumption that

the sample is representative or can be adjusted to account for non-representativeness.
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Unfortunately, random samples are often not available in real data problems. Therefore,

there is a need to generalize inference from an available non-random sample to the target

population of interest. For example, randomized controlled trials (RCTs) are considered a

gold standard to estimate treatment effects, but in the presence of varying treatment

effects, the measured effects can only be formally generalized to the participants within the

trial. Recent evidence has indicated that subjects in RCTs can be much different from

patients in routine practice. Such concern among clinicians about the external validity of

RCTs has led to the underuse of effective treatments (Rothwell 2005). This highlights the

importance of generalizing treatment effect of RCTs to a definable patient population.

Survey sampling is a field that specifically deals with inference on populations from

samples, which can be viewed as a special case of generalizing inference. In the past several

decades, large scale probability surveys have suffered increasingly high nonresponse rates.

Probability surveys with low response rates are often non-representative, which challenges

the validity of survey inference. In the meanwhile, recent development of information

technology makes it increasingly convenient and cost-effective to collect large numbers

samples with detailed information via online surveys and opt-in panels. These

non-probability samples can be highly non-representative due to selection bias. Statistical

methods that can effectively correct for the selection bias are needed, and can take

advantage of the large amounts of auxiliary information that are typically available with

such data (Baker et al. 2013).

Classical weighting methods in the survey literature such as weighting, poststratification,

and raking can correct non-representativeness of survey samples with respect to a small

number of discrete auxiliary variables (Deming & Stephan 1940, Valliant 1993). However,

when the number of adjustment variables is large or sample size with in cells is small, such

weighting methods can yield highly extreme weights and highly variable estimates of
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population quantities. Alternatively, prediction using an outcome model can be used

(Smith 1983). Wang, Rothschild, Goel & Gelman (2015) demonstrates, in an example of

public opinion modeling during an election campaign using non-representative voter

intention polls on the Xbox gaming platform, that multilevel regression and

poststratification (MRP) can be used to generate accurate survey estimates from

non-representative samples using population distributions of auxiliary information. Their

estimates are in line with the forecasts from leading poll analysts. Kim, Park, Chen & Wu

(2021) propose a mass imputation approach using generalized linear models that combines

a non-random sample with a reference probability survey to obtain valid inference of

population quantities. Elliott & Valliant (2017) review the pseudo-weighting and

model-based prediction approaches in non-probability surveys and discussed the pros and

cons of each approach.

In recent years, population data of high volume, variety, and velocity have become

increasing available, with examples including administrative data or electronic medical

records. Such data contain detailed individual level information and can be used to

generalize inference of non-random samples to their target populations. Although

poststratification, raking, and MRP methods can improve representativeness in the

presence of a small number of discrete auxiliary variables, they can run into problems in

high-dimensional settings. In this paper, we study the problem of inference for non-random

samples when there exist external population data containing individual level auxiliary

information with high dimensionality. These samples can be convenience samples or

probability samples that are effectively non-random due to severe nonresponse or sampling

frame undercoverage.

With high-dimensional auxiliary variables, Bayesian machine learning techniques have been

shown to be effective in improving statistical inference in missing data and causal inference
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(Hill 2011, Tan, Flannagan & Elliott 2019, Hahn, Murray & Carvalho 2020). Specially, Hill

(2011) demonstrated the use of Bayesian additive regression trees (BART) to produce more

accurate estimates of average treatment effects compared to propensity score matching,

propensity-weighted estimators, and regression adjustment when the response surface is

nonlinear and not parallel between treatment and control groups. Tan, Flannagan & Elliott

(2019) demonstrated, in the presence of missing data, that BART reduces bias and root

mean square error of doubly robust estimators when both propensity and mean models

were misspecified. In survey sampling, Rafei, Flannagan & Elliott (2020) used BART to

estimate pseudo-weights for non-probability samples and showed that BART provided

further reduction in bias compared with conventional propensity adjustment method.

Rafei, Flannagan, West & Elliott (2021) further applied this approach to extend doubly

robust adjustment in non-probability surveys to protect against model misspecification.

Inspired by these works, we propose Bayesian machine learning model-based methods and

extensions for estimating population means using non-random samples.

Inference from non-random samples is of great importance. The methods developed in this

paper can be applied not only in the context of survey inference but also in more general

settings, such as RCTs and epidemiological observational studies. Using auxiliary

information and the proposed Bayesian machine learning methods, we can quantify and

correct differences between a population and participants in a survey, a randomized trial,

or an epidemiologic study (Stuart, Cole, Bradshaw & Leaf 2011, Keiding & Louis 2016).

We evaluate the proposed methods using simulation studies and demonstrate their

applications in a mental health survey of Ohio Army National Guard service members and

a non-random sample from an epidemiologic study using electronic medical records of

COVID-19 patients.
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2 Methods

2.1 Notation and background

Let U be a finite population of size N and s be a non-random sample of size n from the

population. In the sample s, information on the outcome of interest y, discrete auxiliary

variables Z and continuous auxiliary variables X were collected. In addition, data from

the population U (e.g. census, administrative data, or electronic medical records) is also

available with the same set of auxiliary variables Z and X measured for all units in the

population. Figure 1 illustrates the scenario under consideration, with population data on

the left and the sample data on the right. Without loss of generality, we consider a

continuous variable of interest y with the estimand of interest being the finite population

mean Q(y) = 1
N

∑
i∈U yi.

When the dimensions of Z and X are small, poststratification, raking, and MRP can be

applied by first discretizing the continuous auxiliary variables X as X∗ using quantiles.

Using the joint distribution of discrete auxiliary variables (Z,X∗), poststratification

partitions the population into J disjoint poststrata with U =
⋃J

j=1 Uj of size Nj and the

sample into subsamples with s =
⋃J

j=1 sj of size nj for the jth poststratum,

correspondingly. With respect to the poststrata, the finite population mean can be

rewritten as

Q(y) =
1

N

J∑

j=1

∑

i∈Uj

yi =
1

N

J∑

j=1

Njθj , (1)

where θj =
1
Nj

∑
i∈Uj

yi is subpopulation mean of poststratum j. With the assumption that

the sample units in each poststratum are representative of population units in that

poststratum, the poststrata means are estimated using corresponding subsample means

6



Figure 1: Population U and non-random sample s with shared discrete auxiliary variables
Z and continuous auxiliary variables X as well as outcome y measured only in s.

θ̂j = ȳj =
1
nj

∑
i∈sj

yi. The poststratification (PS) estimator takes the form

Q̂PS =
1

N

J∑

j=1

Nj ȳj =
1

N

∑

i∈s

wiyi, (2)

where wi = Nj/nj for i ∈ sj is the poststratification weight assigned to sample unit i in

poststratum j which is inverse proportional to the sampling fraction nj/Nj. The

poststratification estimator could be numerically unstable when such partition results in

small cells in the sample: small nj and large weights wj.

Alternatively, raking generates weights wi to match successively the marginal (rather than

the joint) distributions of (Z,X∗) via iterative proportional fitting. The raking weighted

estimator takes the form

Q̂R =
1

N

∑

i∈s

wiyi, (3)

with wi denoting raking weights. Raking weights could be highly variable, so the resulting

weighted estimators could be inefficient. Also, raking may have convergence issues as the

number of auxiliary variables increases.

Gelman (2007) reviews the PS estimator from a model-based perspective, in which a
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regression model is specified for the conditional distribution of the outcome given the

discrete auxiliary variables: p(y|z,x∗). For units in the same poststratum j, the auxiliary

variables have the same values (zj,x
∗

j) and, under a specified model, the outcome y has

poststratum specific means θj = E(y|zj,x
∗

j), j = 1, . . . , J . And estimating θj based on the

fitted model leads to the regression and poststratification (RP) estimator

Q̂RP =
1

N

J∑

j=1

Nj θ̂j, (4)

where, θ̂j = Ê(y|zj,x
∗

j). As a special case, specifying a saturated regression model

(including all possible interactions terms) allows J poststratum specific means, leading to

the least-squares estimators θ̂j = ȳj =
1
nj

∑
i∈sj

yi. As a result, Q̂RP = Q̂PS.

From the model-based perspective, the problem of unstable estimates due to small cells in

poststratification can be viewed as a model fitting problem due to model complexity. Such

perspective motivates using alternative modeling techniques to improve estimation. Instead

of using classical saturated regression models, multilevel regression and poststratification

(MRP) uses hierarchical regression models to achieve stable estimates. Both main effects

and interaction terms could be specified as multilevel random effects so that information

across poststrata can be partially pooled in the model fitting procedure (Gelman & Little

1997). MRP improves efficiency in the population mean estimation than poststratification

and raking when data are sparse in some poststrata.

Still, it is challenging to perform MRP in high-dimensional setting, especially in the

presence of a large number of noise variables not associated with y, because a parametric

form needs to be specified for the multilevel regression. Also, continuous auxiliary variables

need to be discretized before modeling.
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The model-based RP approach can also be viewed as a prediction approach, and the RP

estimator in (4) can be rewritten as

Q̂RP =
1

N

J∑

j=1

Nj θ̂j =
1

N

J∑

j=1

∑

i∈Uj

θ̂j =
1

N

J∑

j=1

∑

i∈Uj

Ê(yi[j]|zj,x
∗

j) =
1

N

∑

i∈U

Ê(yi|zi,x
∗

i ), (5)

where Ê(yi[j]|zj,x
∗

j) is a predictive value of y for unit i in poststratum j based on model

p(y|z,x∗) and the value is constant over all i within the same poststratum. This

perspective motivates the use of modern statistical techniques for generalization of

inference via valid predictions of the outcomes in the population. Specifically, the classical

regression models in regression and poststratification can be replaced by any regularized

prediction method that achieve stable estimates while including high-dimensional

covariates. Such models also allow modeling the continuous X directly.

2.2 New Approach: Regularized Prediction

The regularized prediction approach for the data setting in Figure 1 relies on the following

assumptions: (A1) unit-level auxiliary information is available for the target population of

interest; (A2) the sampling mechanism is ignorable (Gelman et al. 2014), i.e., the sample

inclusion indicator I and the outcome variable y are independent given the set of auxiliary

variables (Z,X); and (A3) the sample and the population have the same ranges of values

for the auxiliary variables. Assumption A3 cannot be satisfied by scenarios where the

ranges of auxiliary variables in the population are out of ranges of those in the sample,

where extrapolation is required. In addition, the performance of the regularized prediction

approach largely depends on how well the prediction model is fit, and thus flexible models

without clear model misspecification are desired.
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2.2.1 BART and Soft BART Prediction

In the current setting, the conditional distribution of a continuous outcome given the

high-dimensional auxiliary variables p(y|z,x) can be modeled using Bayesian additive

regression trees (BART) (Chipman, George & McCulloch 2010) or soft Bayesian additive

regression trees (SBART) (Linero & Yang 2018).

For continuous outcomes, BART and SBART assume Gaussian noise and model the

location parameter using a non-parametric sum-of-trees structure, allowing both discrete

and continuous auxiliary variables

y = G(z,x) + ǫ =
M∑

m=1

g(z,x;Tm,µm) + ǫ, ǫ
i.i.d.
∼ N(0, σ2), (6)

where M is fixed number of trees in the sum-of-trees structure, Tm is the m-th binary tree

with µm being the parameters associated with the terminal nodes, and g(·) is the function

assigning µm according to (z,x). The sum-of-trees structure naturally handles

high-dimensional auxiliary variables without specifying a parametric form, accounting for

categorical variables, continuous variables and possible interactions. In the Bayesian

framework, quantification of uncertainty is naturally characterized by the posterior and

posterior predictive distributions.

In BART, g(·) is a deterministic function and the potential effect of continuous predictors,

either linear or nonlinear, is approximated by step functions generated by cutting the

continuous predictor at various splitting points in different trees. Regularization priors are

specified on p(Tm), p(µm|Tm), p(σ) such that each single tree Tm is a weak learner. Such

specification aims at preventing the individual tree effects from unduly influential and

achieving stable predictions, with automatic default specifications facilitating easy
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implementation. For p(Tm), the prior is specified by three aspects: (i) the probability that

a node is nonterminal, (ii) the distribution on the splitting variable assignments at each

interior node, and (iii) the distribution on the splitting rule assignment in each interior

node, conditional on the splitting variable. For p(µm|Tm) and p(σ), conjugate normal

distributions and inverse chi-square distributions are specified.

In SBART, g(·) associates the values of covariates with a probabilistic (instead of

deterministic as in BART) path down the tree, with certain probability going left at each

node. With such modification, a particular set of values of (z,x) is associated with a

certain terminal node with certain probability, obtained by averaging over all possible

paths. Unlike hard decision trees in BART where each terminal node is constrained to

influence the regression function locally, the soft decision trees in soft BART allow each

terminal node to impose a global effect on the function. This global effect of local terminal

nodes enables the soft decision trees to borrow information adaptively across different

covariate regions. Sparsity-inducing priors are specified to achieve a balance between sparse

and non-sparse settings.

In practice, cross validation could be applied to determine the number of trees M and the

hyperparameters in the Bayesian priors. Linero & Yang (2018) develop default prior

specification with M = 50 which performs universally well in all the 10 benchmark datasets

considered in the paper. In this paper, we consider M = 50 for BART and SBART in the

simulation studies and applied examples. The BART and SBART prediction estimators of

finite population mean, Q̂BART and Q̂SBART, are obtained with the following steps.

Step 1 Model p(y|z,x) using BART or soft BART, y = G(z,x) + ǫ, ǫ ∼ N(0, σ2) with

corresponding Bayesian priors.

Step 2 Obtain posterior distributions of Q(y) = 1
N

∑
i∈U yi using Markov chain Monte
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Carlo (MCMC) simulations. Specifically, in MCMC iteration t,

1. draw G(t), σ(t)|yi∈s, zi∈U ,xi∈U

2. compute θ̃
(t)
i = G(t)(zi,xi) for i ∈ U

3. obtain Q̂
(t)
(S)BART = 1

N

[∑
i∈U θ̃

(t)
i +

(∑
i∈s yi −

∑
i∈s θ̃

(t)
i

)]
, using the observed yi

in the sample and the predicted values for the population units that are not in

the sample.

Step 3 Obtain Q̂(S)BART: point estimates using (posterior) median of Q̂
(t)
(S)BART with

credible intervals constructed using quantiles splitting the tails of posterior

distribution equally.

In some cases, inference on subpopulation means are also of interest, which can be obtained

via modification of item 3 in Step 2, restricting the average to predictions and observed

outcomes in the corresponding subpopulation Ω ⊂ U and subsamples s ∩ Ω,

Q̂
(t)
Ω,(S)BART = 1

NΩ

[∑
i∈Ω θ̃

(t)
i +

(∑
i∈s∩Ω yi −

∑
i∈s∩Ω θ̃

(t)
i

)]
.

2.2.2 BART and Soft BART Propensity Prediction

In the missing data literature, Little & An (2004) proposed including the logit-transformed

response propensity score as a covariate using splines in the imputation models. This

response propensity prediction method yields robust estimates of sample means when the

imputation model is misspecified. Tan, Flannagan & Elliott (2019) extended the method of

Little & An (2004) by using BART to fit both the imputation model and the response

propensity model. They found that adding BART-estimated propensity score in the BART

imputation model reduced bias and root mean square error and improves confidence

interval coverage rates in the mean estimation.
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Inspired by this, we extend the BART and SBART prediction with a two-step approach.

First, we estimate sample inclusion propensity using a propensity model. We code the

sample inclusion indicators I = 1 for the units in the sample and I = 0 for the rest of the

units in the population. The estimated propensity score π̂ = Pr(I = 1|z,x) can then be

obtained via modeling p(I|z,x) using probit Bayesian additive regression trees (Chipman

et al. 2010). Next, we model p(y|z,x, π̂) by additionally including π̂ as a covariate in BART

or SBART model with the rest of the steps being the same as Section 2.2.1. The detailed

steps of obtaining the BART propensity (BART-P) prediction estimator Q̂BART-P and the

SBART propensity (SBART-P) prediction estimator Q̂SBART-P are outlined as follows.

Step 1 Model p(I|z,x) with probit BART and estimate π̂ using posterior mean

Step 2 Obtain the (S)BART-P prediction estimator for finite population mean

• model p(y|z,x, π̂) using (S)BART, y = G(z,x, π̂) + ǫ, ǫ ∼ N(0, σ2)

• estimate θ̃
(t)
i = G(t)(zi,xi, π̂i)

• Q̂
(t)
(S)BART-P = 1

N

[∑
i∈U θ̃

(t)
i +

(∑
i∈s yi −

∑
i∈s θ̃

(t)
i

)]

• Q̂(S)BART-P: point estimates using (posterior) median of Q̂
(t)
(S)BART-P with credible

intervals constructed using quantiles splitting the tails of posterior distribution

equally.

BART-P and SBART-P prediction methods are expected to be doubly robust (Long, Hsu

& Li 2012): as long the mean model for either the outcome or the propensity model is

correctly specified, a consistent estimator of the population mean is obtained.
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3 Simulation Studies

3.1 Simulation Design

Artificial populations with size N = 3, 000 were simulated. For each unit i in the

population, a total number of p binary auxiliary variables and r continuous variables were

generated. The p binary variables {Zil}l=1,...p were obtained with zil = I(wil < ul), where

{wil}
i.i.d
∼ N(0, 1) and ul

i.i.d
∼ U(−0.4, 0.4), so that Pr(Zil = 1) falls in the range (0.34, 0.66),

l = 1, . . . , p. The r continuous {Xil}l=1,...r were generated independently from Unif(0, 1).

Samples of size n = 600 were drawn from the populations with inclusion probability

π = Pr(I = 1|z,x) as a function of the auxiliary variables x and z. We considered the

following four simulation scenarios:

S1 Low-dimensional auxiliary variables (p = 3, r = 1) with higher inclusion

propensity at the lower tail of X1. The outcome values {yi}i=1,...,N were

generated using an additive model: y = 26.81− z1 − 2z2 − 3.5z3 − 25(x1 − 0.75)2 + ǫ,

ǫ ∼ N(0, 32), and the samples were selected with probabilities

π ∝ logit−1[−13.66 + 0.5z1 + z2 + 1.75z3 + 12.5(x1 − 0.75)2]. Consequently, units with

x1 falling between 0.5 and 1 were undersampled.

S2 High-dimensional auxiliary variables (p = 30, r = 10) with higher inclusion

propensity at the lower tail of X1. Same y and π models as S1, but add noise

auxiliary variables {Zl}l=4,...,30 and {Xl}l=2,...,10 that are not associated with y or π.

S3 High-dimensional auxiliary variables (p = 30, r = 10) with the assumption

A3 violated. Same as S2, but change the signs of the coefficients in the model for π

to result in small π for some population units:
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π ∝ logit−1[4.01− 0.5z1 − z2 − 1.75z3 − 12.5(x1 − 0.75)2]. Units with x1 ≤ 0.25 had

lower probability of inclusion, and x1 in the population could be outside the range in

the sample.

S4 High-dimensional auxiliary variables (p = 30, r = 10) with more complex

models and the sample has sparse data at the tails of two continuous

variables that are not associated with y. The outcomes {yi}i=1,...,N were

generated using

y = 36.81−z1−2z2−3.5z3−10Z1z2−9(x1−0.75)2−16z3(x1−0.75)2+ ǫ, ǫ ∼ N(0, 32),

with samples selected using

π ∝ logit−1[3.27−0.5z1−z2−1.75z3−2z1z2−4(x3−0.75)2−3z3(x3−0.75)2−(x5−0.75)2].

Units at the lower tails of X3 and X5 had lower probability of inclusion, and thus x3

and x5 in the population could be outside the ranges in the sample. But different

from the scenario S3, X3 and X5 were not associated with y.

Figure 2 shows the scatterplots of y against the continuous variable X1 in Scenarios S1–S3

and against both X1 and X3 in Scenario S4. In each plot, the simulated population is

overlaid with a selected sample. Population units with lower values of X1 were more likely

to be selected into samples in Scenarios S1–S2, less likely to be selected in S3, and equally

likely to be selected in S4. Scenarios S3–S4 were designed to examine how the regularized

prediction methods are sensitive to the assumption A3 in Section 2.2. Specifically, the

values of some continuous variables (X1 in Scenario S3 and X3 and X5 in Scenario S4) in

the population could be outside the range of those in the sample. In Scenario S3, the out of

range variable X1 is also associated with y. In Scenario S4, the out of range variables X3

and X5 are not associated with y, but X1, the variable associated with y, had the same

range of values between the sample and the population.

For each scenario, 500 replicates of simulation were conducted, with point and interval
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Figure 2: Scatterplots of outcomes y versus continuous auxiliary variables of units in the
population (in gray dots) and a selected sample (in red diamonds) for (a) Scenario S1–S2,
(b) Scenario S3, (c) Scenario S4.
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estimates of finite population mean computed for each. The Bayesian additive-trees-based

methods used all available auxiliary variables, as it is unknown which variables are involved

in the true data generating process in practice. For scenario S1 with low-dimensional

auxiliary variables, the trees-based methods were also compared to the PS and raking

estimators using all four available variables with X1 discretized using tertiles in PS and

using quintiles in raking. Raw estimates were also calculated using sample means.

3.2 Simulation Results

The performance of point estimates are evaluated with empirical bias and empirical root

mean square error (RMSE), summarised in Table 1. Scenarios S1–S3 share the same

outcome model, the same outcome values {yi}i=1,...,N and the same ground truth for the

finite population mean defined as Q = 1
N

∑N

i=1 yi. The empirical coverage rates and average

widths of 80% and 95% probability intervals are visualized in Figure 3. Two horizontal

dash lines denote the nominal levels of 0.8 and 0.95, respectively. The y-axis shows

coverage rate and the x-axis shows average width. Estimators with coverage rates close to

the nominal level lines and also small in the average interval widths are desired. The raw

estimates ignoring selection bias are off the chart, leading to confidence intervals with 0%

coverage rates, therefore, not shown in Figure 3.

In scenario S1, where the weighting methods are feasible, raking is less biased as well as

more efficient than poststratification (PS). This is because raking maintains more

information from the continuous variable X1 by discretizing X1 using quintiles as compared

to tertiles in PS, and raking implicitly assumes an additive propensity model while PS

assumes an interaction model. Both PS and raking generate confidence intervals with

coverage rates lower than the nominal levels, with raking yielding shorter intervals but
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Method
S1 S2 S3 S4

Q = 19.88 Q = 27.74

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
raw −2.99 2.99 −2.99 2.99 2.43 2.43 3.13 3.14
PS* −0.37 0.43
raking** −0.16 0.22
BART −0.08 0.17 −0.17 0.22 0.37 0.43 0.07 0.17
BART-P −0.06 0.18 −0.12 0.20 0.30 0.38 0.06 0.17
SBART −0.08 0.17 −0.10 0.19 0.24 0.32 0.04 0.16
SBART-P −0.07 0.18 −0.10 0.19 0.24 0.32 0.04 0.16

*PS is based on Z1, Z2, Z3 and X1 discretized using tertiles
**Raking is based on Z1, Z2, Z3 and X1 discretized using quintiles.
The standard errors of empirical bias from 500 simulation replicates are < 7.5 × 10−3 for
all methods

Table 1: Simulation results: empirical bias and RMSE of various methods in estimating
population means, from 500 simulation replicates, for each simulation setting
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Figure 3: Simulation results - empirical coverage rates of 80% and 95% probability intervals
(with the horizontal dashed lines denoting the nominal levels) against average probability
interval widths, from 500 simulation replicates, for each simulation setting.
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higher coverage rates. BART and SBART both outperform the weighting methods by using

the continuous form of X1, generating credible intervals with coverage rates close to the

nominal levels. BART and SBART perform similarly, as all auxiliary variables are relevant

in this low-dimensional setting. Including propensity score in BART and SBART leads to a

small bias reduction which is offset by efficiency loss, indicated by slightly higher RMSE

and slightly wider credible intervals. The coverage rates of both 80% and 95% probability

intervals of the four additive-trees-based estimators are close to the nominal levels.

Scenario S2 differs from scenario S1 by adding irrelevant auxiliary variables. PS and raking

are not feasible due to high-dimensionality. Units with X1 falling between 0.5 and 1.0 have

lower selection probabilities than those with X1 in between 0 and 0.5 as shown in

Figure 2(a). All the additive-trees-based methods yield much smaller bias and RMSE than

the raw estimate. BART has the shortest interval widths but also lower than nominal level

coverage rates for both 80% and 95% probability intervals. Including propensity score in

BART reduces bias and RMSE and fixes credible interval coverage. SBART outperforms

BART with lower bias, lower RMSE and close to nominal level probability interval

coverage. SBART-P does not improve over SBART.

Scenario S3 differs from scenario S2 in the direction of selection bias. Moreover, because π

was negatively associated with (X1 − 0.75)2, the units in the lower tail of X1 (e.g.

X1 < 0.25 in Figure 2(b)) have even smaller inclusion probabilities than the units in the

upper tail of X1 in scenario S2. Consequently, there are sparse data in the lower tail of X1

and the samples may not cover the entire range of X1 in the population. That is, the

assumption A3 is violated. In this setting, although the additive-trees-based methods yield

much smaller bias and RMSE than the raw estimate, neither performs well as in Scenario

S2. The empirical coverage rates for both BART and SBART are lower than the nominal

levels due to bias in the estimation. By including propensity score, BART-P improves
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credible interval coverage as well as bias and RMSE than BART, but does not fix the

undercoverage issue. SBART yields smaller bias and RMSE and better coverage rate than

BART. Similar to Scenario S2, including propensity score does not improve SBART

estimate. The findings suggest that both (S)BART or (S)BART-P are sensitive to the

assumption A3 in Section 2.2, when the out-of-range variables are also associated with the

outcome variable y.

In scenario S4, both BART and SBART perform well with small bias and RMSE and close

to nominal level coverage rate. SBART yields slightly smaller bias, smaller RMSE, and

better coverage rate than BART. Including the propensity score slightly reduces bias and

improves coverage rate in BART. Although there are sparse data in the lower tails of X3

and X5, these two X variables are not associated with y, and thus such biased selection did

not yield poor performance of the additive-trees-based methods like in Scenario S3. Both

BART and SBART estimators are robust to the violation of assumption A3 when the

out-of-range variables are not associated with y.

3.3 Comparison of BART and SBART Predictions

We took a further investigation to compare the performance of BART and SBART in

scenario S3, where the assumption A3 is violated and neither BART nor SBART performs

well with BART performing worse than SBART. We consider two random samples from

the population. For sample I, data are sparse at the lower tail of X1, while, for sample II,

no data are available at the lower tail, X1 < 0.2. The top panels I(a) and II(a) of Figure 4

shows the population in gray dots, with sample I and II in red, respectively. For a closer

examination of the data at the lower tail of X1, we restrict to a subset with Z2 = Z3 = 0

and focus on the lower tail with X1 < 0.3. The middle panels I(b) and II(b) show the
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population and corresponding sample data in this restricted subgroup. Finally, the bottom

panels I(c) and II(c) plot the population units of y in this subgroup (gray points) overlaid

by the posterior means of the location parameters, G(Z,X), of each population units

estimated using BART and SBART as shown using red pluses and blue crosses,

respectively. Panel I(c) shows that both BART and SBART fit the data well within the

region X1 > 0.2 where sample data are available. However, the SBART fit the data much

better than BART when X1 < 0.2 where sparse data are available. The estimated posterior

means of the location parameters based on SBART are also less noisy, due to the

sparsity-induced priors that tend to exclude the noise auxiliary variables in model fitting.

Panel II(c) shows that both models fail to produce valid predictions in the region X1 < 0.2

where there is no sample data available. In the simulation study, about 5% of the 500

simulated samples do not include units with X1 < 0.1 and one third include fewer than 10

units with X1 < 0.2. SBART outperforms BART in all simulation scenarios considered and

is, therefore, recommended.

4 Applied Examples

We demonstrate the application of the proposed methods using real data from two different

studies. The first application example deals with a mental health survey assessing

psychiatric disorders among the Ohio Army National Guard (OHARNG) service members.

The second application is in a clinic setting where it is of interest to generalize inference on

COVID-19 patients when clinical outcomes are only available in a subset of patients.
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Figure 4: Two selected samples I and II from the population in Scenario S3: (a) Scatterplots
of y versus X1 with the population in gray dots and a selected sample in red diamonds; (b)
Scatterplots of y versus X1, restricted to Z2 = Z3 = 0 and X1 < 0.3 (c) Scatterplots of
y versus X1 in the subpopulation, overlapped with posterior means of G(Z,X) estimated
from the BART and SBART models based on the whole sample.
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4.1 Ohio Army National Guard Survey of Mental Health

The Ohio Army National Guard (OHARNG) Mental Health Initiative is a

population-based observational survey study for estimating the prevalence and identifying

correlates of mental illness and health service use among the OHARNG service members.

The study population of the baseline survey is defined as all N = 12570 soldiers who served

in the OHARNG between June 2008 and February 2009. A survey sample with n = 2562

service members was selected. The study was designed as a probability survey, but the

sample was subject to serious selection bias due to nonresponse and undercoverage of

sampling frame. In this analysis, we are interested in estimating the mean trauma score

among the OHARNG service members using the selected sample. Auxiliary information is

available at individual level for the entire study population, including age (17–24 yr, 25–34

yr, 35+ yr), sex (male, female), race (white, black, other), rank (enlisted, officer), marital

status (married, non-married), and years of service (in years). We apply the proposed

trees-based methods to correct the discrepancy between the sample and the population.

Although the indicator variable I is not observed for the population units, we matched the

sample and the population units using the five categorical and one continuous auxiliary

variables. Once the indicator variable I was created, for BART-P and SBART-P, the

propensity models were built using probit BART.

Before modeling, we followed standard practice and applied the log(y + 1) transformation

to trauma scores. Distributions of the only continuous variable, years of service, and the

estimated propensity score π̂ in the sample and population were checked to avoid

prediction failure due to sparse data at the tails (see Figure S1 in the Supplementary

Materials). After fitting the models, we performed posterior predictive checks (Gelman

et al. 2014, chapter 6) based on the following test quantities: (a) T1(y) = ȳ, (b)

T2(y) =
1

n−1

∑n

i=1(yi − ȳ)2, and (c) T3(y, G, σ) = 1
n

∑n

i=1

(
yi−θi
σ

)2
, where θi = G(zi,xi).
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The test quantities catch different aspects of the data, with T1(·) and T2(·) measuring the

location and variability of the survey outcome while T3(·) measuring the discrepancy

between the survey outcome and fitted distribution. In each MCMC iteration t, the

realized test quantities Ti(y, G
(t), σ(t)) under the observed data and predictive test

quantities Ti(ỹ
(t), G(t), σ(t)) under the simulated data were computed and compared, with

ỹ(t) drawn from the posterior predictive distribution. For each quantity Ti(·), a Bayesian

posterior predictive p-value can also be computed, which is defined as the probability that

the predictive test quantity is greater than the realized test quantity, evaluated over the

posterior distribution. The Bayesian p-value measures the discrepancy between the

observed data and the posterior predictive distribution in the aspect characterized by T (·).

A Bayesian p-value close to 0.5 indicates a predictive distribution close to the observed

data, while a Bayesian p-value near 0 or 1 correspond to data in the tails of the posterior

distribution, thus representing a misfit to the model. Figure S2 in the Supplementary

Materials shows the posterior predictive graphics checking and corresponding p-values for

SBART. All four Bayesian methods, BART, BART-P, SBART, and SBART-P, yielded

fitted models with posterior predictive p-values close to 0.5, indicating predictive

distributions that covered the observed data.

We compare the results of proposed Bayesian methods with the raw estimates in estimating

the mean trauma score on the log scale, with point estimates and 95% probability intervals

visualized in Figure 5(a). The Bayesian estimates of mean trauma score are lower than the

raw unadjusted estimates. BART and SBART yield similar results, as this is a

low-dimensional setting with one continuous auxiliary variable and the benefit of soft

decision trees is not so obvious. Including propensity scores do not lead to much change in

the estimates. We recommend reporting the estimates using SBART for this problem.
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Figure 5: (a) Point estimates and 95% probability intervals of mean log(trauma score +
1) among soldiers who served in the OHARNG between June 2008 and February 2009 (b)
Point estimates and 95% probability intervals of mean prolongation among all patients and
patients with age ≥ 80 years old, comparing raw sample means, SBART with baseline QTc
and treatment (SBART-subset), and SBART with all auxiliary variables (SBART-all).

4.2 New York City COVID-19 Study

The first positive case of COVID-19 was confirmed in New York City on March 1, 2020. By

May, the city had more cases than any country other than the United States. The urgent

need for therapeutic agents has resulted in repurposing and redeployment of experimental

agents. Hydroxychloroquine, combined with azithromycin, was administered to patients

with COVID-19 without robust evidence supporting its use, with the U.S. Food and Drug

Administration (FDA) issuing an emergency use authorization (EUA) to allow doctors to

begin treating patients with hydroxychloroquine in hospitalized settings outside clinical

trials on March 28, 2020. This EUA was later revoked as of June 15, 2020, following a

randomized clinical trial in hospitalized patients that showed no benefits and reports of

serious heart rhythm problems along with other safety issues. Both hydroxychloroquine

and azithromycin are characterized as definite QTc prolongers that increase risk of sudden

cardiac deaths.
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Between March 1 through May 1st, 2020, 470 patients were admitted to Columbia

University Irving Medical Center and treated with hydroxychloroquine (H+) or

hydroxychloroquine combined with azithromycin (A+H+) (Rubin et al. 2021+). We are

interested in estimating the mean QTc prolongation, defined as difference in QTc measures

between day 2 and day 0, of all the 470 COVID-19 patients who received H+ or A+H+

treatments. Although all patients have baseline ECG measurements of QTc, only 244 of

them have ECG QTc measurements on Day 2 of medication. These 244 patients formed a

non-probability sample of the target population of all 470 patients. To improve the

estimation for the population mean of QTc prolongation using the 244 patients, we also

obtained the data of all 470 patients on their demographic characteristics and relevant

biomarkers from electronic medical records (EMRs). Patients in the sample are linked to

the population data in the EMRs and the propensity model was built using probit BART.

Exploratory analysis indicates a strong negative association between prolongation and

baseline QTc measurement, that patients with higher baseline QTc are less likely to have

ECG QTc measurement on Day 2, and similar ranges for values of baseline QTc

measurement and the estimated propensity score between the sample and population,

demonstrated in Figure S3 in the Supplementary Materials. Other auxiliary variables

include treatment (H+, A+H+), demographic characteristics, including gender, age (in

years), race (white, black, other), BMI (log scale), along with 7 biomarkers. We used the

recommended method SBART for two estimands of interest: (i) the mean QTc

prolongation among all 470 patients, and (ii) the mean QTc prolongation among the 87

(out of 470) patients who were over 80 years old. We compared two SBART models, with

the first model only including baseline QTc and treatment (SBART-subset) and the second

model including all covariates (SBART-all). SBART-P performs similarly to SBART and is

not presented here.
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As is visualized in Figure 5(b), SBART yields lower estimates of mean QTc prolongation

compared to the raw estimates ignoring selection bias, for both estimands of interest. For

estimand (i), including baseline QTc and treatment in SBART leads to obvious drop in the

mean prolongation estimates from a raw estimate of 18.9 (95% CI : 14.8, 23.0) milliseconds

to 16.7 (95% CI : 13.7, 19.7) milliseconds. Additionally adding other auxiliary variables

does not lead to further obvious change in the estimates.

For estimand (ii), estimates can be readily obtained by restricting the calculation to

predicted and observed prolongation for patients over 80 years old, without additional

computation for model fitting. Similar to the estimate among all patients, SBART yields

smaller estimates and shorter probability intervals than the raw estimator. Although the

mean prolongation estimate is higher among this subgroup of patients than all patients

using the raw estimator, the estimates are similar using SBART.

5 Discussion

We consider generalization of inference on a descriptive estimand from a non-random

sample to a target population in data-rich settings where high dimensional auxiliary

information is available in both the sample and population, with survey inference being a

special case. Existing methods such as poststratification, raking, and MRP are challenging

or infeasible due to high dimensionality, and the need to discretize continuous auxiliary

variables before applying such methods leads to loss of information. To address such issues,

we propose a regularized prediction approach by modeling the conditional distribution of

the outcomes given the high-dimensional auxiliary variables using Bayesian machine

learning techniques. In this paper, we specifically consider BART and soft BART which
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handles both discrete and continuous auxiliary variables as well as potential interactions.

Besides the auxiliary variables, we also consider modified methods that estimates the

propensity score for a unit to be included in the sample and also include the estimated

propensity score as a covariate in the BART and soft BART model.

Artificial data simulation studies demonstrate that the Bayesian additive-trees-based

methods outperform poststratification (PS) and raking in low-dimensional settings where

PS and raking are feasible, as the regularized additive trees better use information in the

continuous auxiliary variables and avoid model overspecification. The Bayesian

additive-trees-based methods also yield valid inference in high-dimensional settings when

PS and raking are not feasible, as long as selection bias does not result in sparse data

points at the tails of some continuous auxiliary variables that are predictive of the survey

outcome variable y. In high-dimensional setting with sparse signals, SBART, with soft

decision trees and sparsity-inducing priors, is less biased and more efficient than BART. In

challenging settings where the additive-trees-based methods underperform, including

propensity score in BART could reduce bias and improve credible interval coverage while

such benefit is not obvious for SBART. Therefore, the soft BART prediction method is

recommended for generalization of inference with high-dimensional auxiliary variables. The

soft BART better uses information in the continuous auxiliary variables and more

effectively regularize the effect of irrelevant noise auxiliary variable. As is demonstrated in

the OHARNG mental health study and the COVID-19 study, the proposed methods could

be applied in both surveys and more general settings, with estimands being overall

population as well as subpopulation quantities.

The Bayesian additive-trees-based methods need to be used with caution. Both BART and

soft BART prediction fail when selection bias results in no data points at the tails of the

continuous covariates that are associated with the outcomes. Such prediction failure cannot
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be fixed via robust methods involving propensity scores. Therefore, for important

continuous variables associated with the outcomes, the range and distribution in the sample

and population need to be checked before using the methods. In some cases, transformation

on such auxiliary variables could be applied to improve prediction at the tails. However, as

we showed in the simulation Scenario S4, the proposed methods can still work well when

the sample does not contain data points at the tails of the continuous variables that are

not associated with the outcomes even those these variables are associated with selection.

We performed a series of sensitivity analyses under the simulation Scenario S2 (see Table

S1 in the Supplementary Materials). First, we modified scenario S2 to allow all the

auxiliary variables to be correlated. All four additive-trees-based methods perform well,

with SBART yielding smaller bias and closer to the nominal level coverage rate than

BART. Second, we assessed whether our proposed methods are robust to the positivity

assumption, allowing some population units to have zero chance of being selected. The

analysis suggests that the positivity assumption is not necessary for the proposed methods

as long as the three required assumptions in Section 2.2 are satisfied. Third, we evaluated

the robust property of the (S)BART-P approach by excluding the important continuous

variable X1 from the additive-trees-based predictive models for y. The analysis shows that

now (S)BART performs poorly due to omitting an important predictor of y, but the

(S)BART-P are robust to the model misspecification and perform well. Last, we examined

the impact of using estimated propensity scores by recomputing the (S)BART-P estimators

in scenario S2 by replacing the estimated propensity score with the true propensity score in

the data simulation. The new estimators have similar bias, RMSE, and coverage rate of

95% probability interval as the (S)BART-P in Scenario S2.

Linking sample and population units is not easy in a high-dimensional setting if the

inclusion indicator I is not available. However, data or record linkage techniques have been
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well developed and are widely available nowadays (Bohensky et al. 2010). Although data

linkage may be associated with errors if the sample and population data do not

consistently record information from the same cases (e.g. rounding errors for continuous

variables), the impact of such errors on our proposed methods is rather limited for two

reasons. First, our goal is to use data linkage for creating the sample inclusion indicator I

and estimating the propensity score. As long as the sample units have a close match to the

population units (i.e., the values of the auxiliary variables in the sample units are close to

the values of the linked population units), the estimates of propensity score would be close

enough to the estimates without linkage errors. Second, the estimated propensity score is

only used as a predictor in the predictive models of our proposed methods, so minor

measurement error would have limited impact on our estimates of population quantities,

especially given that the SBART approach with and without including the propensity score

lead to similar estimates of population quantities.

The paper assumes that unit-level auxiliary information is available for all the units in the

target population. This is the case for our two application examples. In the era of data

science, high-dimensional population data become more widely available and accessible.

Such data can include administrative records and electronic medical records. Whether an

external dataset can be treated as the population data used in our methods largely

depends on the target population of interest, and thus the population data should be

chosen carefully. The proposed methods can also be naturally extended to handle the

setting where unit-level population data are not available. When high-dimensional

auxiliary variables are available in a reference probability survey, a two-step approach can

be used (Rafei, Flannagan, West & Elliott 2021). The outcome variables can be first

predicted based on the SBART model and the complex survey design information can then

be applied to the predicted values of the outcome variables in the reference survey to

obtain population inference. The resulting variance estimation needs to account for not

30



only the uncertainty in the predictive models but also the sampling error in the reference

probability survey. Alternatively, synthetic populations can be generated using the weights

in the reference survey when the population is not extremely large (Zangeneh & Little

2015, Dong et al. 2014). The problem of combining non-random samples with a reference

probability survey is also discussed by other researchers.

The key assumption for the validity of prediction inference is that the sampling mechanism

is ignorable. That is, the sample inclusion indicator I and the outcome y are independent

given all the available auxiliary variables (Z,X). The ignorable assumption is reasonable

when there include a large number of auxiliary variables, hence the need for statistical

methods that can adjust for a high-dimensional (Z,X). However, when the population

data do not contain enough auxiliary information, the sampling mechanism can be still

informative even after adjusting for all available auxiliary variables. If that happened,

simply assuming the non-informative sampling mechanism may lead to misleading results.

The advantage of BART in estimating propensity score and handling missing data and

causal inference problems has been elucidated in other papers (Tan et al. 2019, Rafei et al.

2020, Kern et al. 2016, Wendling et al. 2018). However, Soft BART (SBART) is less known

or used in the survey literature. SBART outperforms BART in all the simulation scenarios

and is recommend for use in the prediction inference. When the same list of auxiliary

variables are available in fitting additive-trees-based models for both y and I, SBART-P

does not improve over SBART. However, if some key variables predictive of y are omitted

from the pool of candidate variables for fitting the model for y, the SBART-P can offer

protection from model misspecification in SBART. Finally, although we consider BART

and SBART in this paper, the regularized prediction approach is general and any Bayesian

machine learning techniques that achieve valid predictions could be applied.
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