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Abstract. Software tools for Bayesian inference have undergone rapid evolu-
tion in the past three decades, following popularisation of the first generation
MCMC-sampler implementations. More recently, exponential growth in the
number of users has been stimulated both by the active development of new
packages by the machine learning community and popularity of specialist
software for particular applications. This review aims to summarize the most
popular software and provide a useful map for a reader to navigate the world
of Bayesian computation. We anticipate a vigorous continued development
of algorithms and corresponding software in multiple research fields, such
as probabilistic programming, likelihood-free inference, and Bayesian neu-
ral networks, which will further broaden the possibilities for employing the
Bayesian paradigm in exciting applications.
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1. INTRODUCTION

In the past three decades, Bayesian inference has es-
tablished itself as a viable alternative to more classical
approaches to statistical inference and is now a must-have
tool for every statistician’s toolbox. Many theoretical and
methodological developments have contributed to the suc-
cess of Bayesian statistics. However, no development has
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been as important for mass adoption as was the emergence
of accessible and robust software.

Our goal with this paper is to introduce the reader to
the history, the state of the art, and the future of software
for Bayesian inference. We aim to provide the reader with
a comprehensive survey of popular software, key devel-
opments in statistics and computing that enabled the soft-
ware, and the limitations and challenges faced. The paper
is aimed both at the Bayesian statistics practitioner and
those that are less familiar with the field and would like
to learn more about the Bayesian inference tasks and the
tools used to solve them.

Before we proceed, we briefly discuss the background
and introduce some basic terminology that we use through-
out the paper.

1.1 Bayesian Inference

The essence of the Bayesian approach to inference is
combining the chosen likelihood p(y|θ) and prior distri-
bution p(θ) of the parameters θ (or the joint distribution
p(θ, y)) with the data y to compute the posterior distribu-
tion of the parameters p(θ|y). We do it with Bayes’ rule:

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫

Ω p(y|θ)p(θ)dθ
∝ p(y|θ)p(θ).

The most common quantities of interest in Bayesian in-
ference are posterior properties of parameters or functions
thereof, which can be expressed in terms of expectations
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over the posterior distribution p(θ|y):

E(g(θ)|y) =
∫
Ω
g(θ)p(θ|y)dθ.

Prior and posterior predictions, model selection, and
other quantities of interest follow a similar pattern. Thus,
the main computational problem of Bayesian inference is
computing integrals.

Our choice of likelihood and prior rarely lead to a closed-
form solution for p(θ|y), which in most cases can only be
evaluated up to a multiplicative constant, and even less
often to a closed-form solution for the integral. Therefore,
computing the quantities of interest is a numerical problem
and is a challenge in itself.

1.2 Software for Bayesian Inference

For our discussion of software for Bayesian inference,
we divide the software components into three groups: the
modeling language, the computation methods, and the
utilities.

1.2.1 Modeling Language We use the term modeling
language in the broadest sense of a component that allows
the user to specify the likelihood, prior, and data (from now
on, we use model to refer to all of these combined). Alter-
natively, Bayesian inference can be done by specifying a
generative model for p(θ, y) instead (see Section 4.3) and
some languages support specifying both. See Appendix for
an illustrative example in different modeling languages.

Every modeling language represents some kind of trade-
off between generality and accessibility. On one end of
the spectrum are expressive languages, such universal
probabilistic programming languages (PPLs), and general-
purpose programming languages like Python. On the other
end we have software that allows for a single model or
a limited number of options. And in between we have
Bayesian inference-specific declarative (for example, Win-
BUGS [74]), imperative (for example, Stan [21]), or
formula-based languages (for example, R-INLA [71] and
rstanarm [6]) that use syntax similar to the formula object
used by generalized linear models (GLMs) in the core R
stats package [121]), etc.

The choice of modeling language more so than any
other component determines the target user. Or, when the
software is designed with a target user in mind, no compo-
nent is more influenced by the requirements of the target
user than the modeling language. And, as demonstrated
by the variety of different modeling languages, Bayesian
inference users are a heterogeneous group and there is no
one-size-fits-all approach.

1.2.2 Computation Methods Once the model is spec-
ified, the next step is to perform the computation of the
posterior and other quantities of interest. Therefore, a com-
plete software for Bayesian inference must implement one
or more Bayesian computation methods.

There is no method that is able to perform practically
feasible Bayesian computation for every model. Therefore,
many different computation methods have been developed,
and each method represents a trade-off between generality
and efficiency. The computation method determines the
class of models that can be computed and usually limits
the software more than the modeling language. That is, it
is not uncommon that the modeling language allows for
the specification of models that the computation method
is not able to compute, not even in theory. And, as a rule,
there always exist models that a computation method will
not be able to deal with in practice, even though it is able
to do so in theory.

In this paper, our treatment of Bayesian computation is
from a Bayesian software perspective: we limit ourselves
to discussing methods that were key for the development
of software for Bayesian inference and listing the methods
implemented in the software. For details about the history
and the state of the art of Bayesian computation, we refer
the reader to [81].

1.2.3 Utilities With utilities, we refer to all software
components that do not fall in to the previous two groups,
but are still common in Bayesian software and convenient
if not essential to the Bayesian inference workflow (for a
detailed treatment of the Bayesian workflow, we refer the
reader to [41, 46]):

• Diagnosing Bayesian computation: Bayesian com-
putation methods can and often do fail to find the
optimum solution or, in the case of Markov chain
Monte Carlo (MCMC), properly explore the poste-
rior distribution. Diagnostics tools are essential to
identifying potential issues before proceeding with
the interpretation of the results. Furthermore, most
key methods are MCMC and therefore sampling-
based and approximate. Approximation error must
also be quantified and included in the interpretation
of the results. Common diagnostics are traceplots,
Monte Carlo standard errors, effective sample size
(ESS), R̂, and simulation-based calibration [115].

• Model validation and comparison: Prior, posterior,
and model visualization, prior and posterior pre-
dictive checks, (approximate) leave-one-out cross-
validation and model evaluation criteria such as
WAIC [134], and computing Bayes factors. The
modeling language determines how easy or diffi-
cult it is to compute these [20]. For example, for
prior and posterior predictive checks we have to
draw samples from the prior p(y) and posterior pre-
dictive distribution p(ynew|y). For Bayes factors we
have to evaluate the marginal p(y) and for cross-
validation we have to evaluate the posterior predic-
tive p(ynew|y).
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• Computation libraries: Matrix algebra libraries, sup-
port for probability distributions and other statistical
computation, support for high-performance comput-
ing, and automatic differentiation (AD) libraries.

• Interfaces: Often, Bayesian software provides the
user with only low-level command-line interface
to the computation, where the data and model are
passed as files. For convenience, interfaces are then
developed that allow the user to access the compu-
tation from a popular higher-level language such as
Python and R.

• Documentation: This includes software documen-
tation, language definition, examples, case studies,
and other material that make it easier to use the
software.

1.3 Scope and Organization

In part, this paper is a survey of the most popular and
historically most relevant software for general-purpose
Bayesian inference. We also include popular software that
serve a more specific purpose. For example, software that
provides only Bayesian computation of a utility or software
that focuses on a more narrow class of models. When it
comes to less commonly used and more specific software,
this paper is biased towards Python and R, the two most
popular languages for data analysis. See Tables 1 and 2 for
an estimate of the relative popularity of Bayesian software
packages for Python and R, respectively.

General-purpose Bayesian computation has had two dis-
tinct periods, each dominated by a certain type of Bayesian
computation and software. From the early 1990s to the
2010s, it was Gibbs sampling and the quintessential repre-
sentative of software is BUGS. From the 2010s up to now,
it is Hamiltonian Monte Carlo (HMC) and the quintessen-
tial representative is Stan. The first part of the remainder of
the paper roughly corresponds to these two periods. In Sec-
tion 2 we describe Gibbs sampling, the typical structure of
Gibbs sampling-based software, and the BUGS language.
We also include software that might have been developed
later but is related to, was inspired by, or is a continuation
of BUGS. Similarly, Section 3 focuses on HMC and Stan.

We dedicate Section 4 to software that we were not
able to meaningfully assign to either of the two periods. It
features software that focuses on computation, software
that targets a more specific class of models, and the latest
developments in Bayesian software and universal PPLs.

We discuss the future of software for Bayesian inference
in Section 5.

2. FIRST GENERATION - GIBBS SAMPLING-BASED

In the period between the early 90s and early 2010s, the
most popular software for general-purpose Bayesian infer-
ence was based on graphical models and Gibbs sampling
as the method of Bayesian computation.

The main assumption of this approach is that the con-
ditional independence between variables in our joint dis-
tribution p(V) = p(θ, y) can be represented by a directed
acyclic graph (DAG), where each variable is represented
by a node and every node is conditionally independent of
all other nodes, given its Markov blanket.

A model that admits such a representation is called a
Bayesian network and is a class of probabilistic graphical
models (see Appendix for an example). The joint distribu-
tion can then be factored as

p(V) =
∏
v∈V

p(v|P(v))

and the full conditional of a node is

(1)

p(v|V/v)∝ p(V)

∝ p(v|P(v))
∏

u∈V:v∈P(u)

p(u|P(u)),

where P(v) are parent nodes of v.
A Markov chain that updates one node at a time using

its full conditional will converge to the posterior distribu-
tion under weak conditions. From a practical perspective,
this means that we only have to be able to iteratively sam-
ple from the full conditionals. Algorithm 1 is a summary
of the Gibbs sampling algorithm. A major appeal of the
algorithm is that there are no algorithm parameters that
need to be tuned, which is a useful property for automated
inference. For the purpose of sampling from a full condi-
tional, a hierarchy of samplers is typically used. Because
the model is stated in a symbolic way, it is straightforward
to check the properties of the full conditional. In most
cases, the more specific the distribution, the more efficient
the sampling algorithm that we can use.

Algorithm 1
k - number of nodes,
p(xj |x−j) - k full conditionals,
x0 - starting value,
m - number of samples
1: procedure GIBBS SAMPLING( )
2: for i← 1 :m do
3: for j← 1 : k do
4: x

(i)
j ∼ p(xj |x

(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j−1 , . . . , x

(i−1)
k )

5: end for
6: i− th sample← x(i)

7: end for
8: end procedure

2.1 BUGS

The quintessential representative of this approach is
BUGS (Bayesian inference Using Gibbs Sampling) [110].
The BUGS project started at the Medical Research Coun-
cil Biostatistics Unit in Cambridge in 1989. The BUGS
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TABLE 1
Total Python Package index (PyPI) downloads for Bayesian inference-related Python packages referenced in this paper for the period between Jan 1
2022 and Dec 31 2022. We obtained the information from the PyPI dataset (bigquery-public-data.pypi). We include matplotlib [63], the most popular
Python package for statistical graphics, as a baseline for comparison. While these counts should in most cases be a reasonable proxy for relative
popularity, we have to keep in mind that users can also download these packages from other sources. Inclusion in other packages and automated

downloads can also bias the results.)

package download count description

matplotlib 339834089 Python plotting package
pystan 30416188 Python interface to Stan, a package for Bayesian inference
cmdstanpy 30061999 Python interface to CmdStan
prophet 12279924 Automatic Forecasting Procedure
tensorflow-probability 10666937 Probabilistic modeling and statistical inference in TensorFlow
arviz 7388303 Exploratory analysis of Bayesian models
pymc3 4278991 Probabilistic Programming in Python: Bayesian Modeling and Probabilistic ML with Theano
pyro-ppl 3383969 A Python library for probabilistic modeling and inference
httpstan 1854832 HTTP-based interface to Stan, a package for Bayesian inference.
emcee 1143412 The Python ensemble sampling toolkit for MCMC
pymc 682274 Probabilistic Programming in Python: Bayesian Modeling and Probabilistic ML with PyTensor
numpyro 566378 Pyro PPL on NumPy
dynesty 277271 A dynamic nested sampling package for computing Bayesian posteriors and evidences.
bambi 125998 BAyesian Model Building Interface in Python
elfi 75236 Engine for Likelihood-free Inference
edward 61403 A library for probabilistic modeling, inference, and criticism
blackjax 42843 Flexible and fast inference in Python
pyjags 20140 Python interface to JAGS library for Bayesian data analysis.
oryx 15550 Probabilistic programming and deep learning in JAX
edward2 11457 Edward2

TABLE 2
Total RStudio [120] CRAN mirror downloads for Bayesian inference-related R packages referenced in this paper for the period between Jan 1 2022
and Dec 31 2022. We used the cranlogs package [27]. We include ggplot2 [135], the most popular R package for statistical graphics, as a baseline

for comparison. While these counts should in most cases be a good proxy for relative popularity, we have to keep in mind that users can also
download these packages from other CRAN mirrors or directly from code repositories. Also, some popular R packages are not available on CRAN,

for example, R-INLA, cmdstanr, the R interface to Stan, or R2MultiBUGS, the R interface to MultiBUGS.)

package download count description

ggplot2 31457872 Create Elegant Data Visualisations Using the Grammar of Graphics
mgcv 1523237 Mixed GAM Computation Vehicle with Automatic Smoothness Estimation
coda 1190640 Output Analysis and Diagnostics for MCMC
rstan 993086 R Interface to Stan
loo 738325 Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models
bayestestR 599283 Understand and Describe Bayesian Models and Posterior Distributions
prophet 338276 Automatic Forecasting Procedure
posterior 314669 Tools for Working with Posterior Distributions
bayesplot 308747 Plotting for Bayesian Models
bnlearn 286003 Bayesian Network Structure Learning, Parameter Learning and Inference
shinystan 272855 Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models
BayesFactor 239538 Computation of Bayes Factors for Common Designs
rjags 228433 Bayesian Graphical Models using MCMC
brms 215302 Bayesian Regression Models using Stan
MCMCpack 186124 Markov Chain Monte Carlo (MCMC) Package
rstanarm 164469 Bayesian Applied Regression Modeling via Stan
bridgesampling 155278 Bridge Sampling for Marginal Likelihoods and Bayes Factors
R2WinBUGS 61926 Running WinBUGS and OpenBUGS from R SPLUS
nimble 36471 MCMC, Particle Filtering, and Programmable Hierarchical Modeling
abc 36251 Tools for Approximate Bayesian Computation (ABC)
R2OpenBUGS 27284 Running OpenBUGS from R
greta 8453 Simple and Scalable Statistical Modeling in R
abctools 6404 Tools for ABC Analyses
EasyABC 5344 Efficient Approximate Bayesian Computation Sampling Schemes
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software evolved into WinBUGS [74, 76, 112], which up-
dated the BUGS language and the sampling algorithms,
and OpenBUGS, a GNU General Public License release
of WinBUGS that also runs on Linux (with some limita-
tions) [111]. BUGS, WinBUGS, and OpenBUGS are no
longer developed, but the BUGS project has inspired other
software, which we discuss at the end of this section. A
detailed history of BUGS is provided by Lunn et al. [75].

The factorization from Eq. (1) is the basis for both the
BUGS language and the Gibbs sampling-based compu-
tation. The BUGS language is a declarative language in
which the user states all the parent-child relationships P(v)
between the variables in the model. See Appendix for an
example of a Bayesian network model in JAGS, a language
which is very similar to WinBUGS.

For sampling from the full conditionals, WinBUGS im-
plements a different approach for each of the following
contingencies [74, Chapter 12.1]:

• Discrete distribution: The inverse CDF method.
• Standard distribution: Standard algorithm for that

distribution.
• Log-concave: Derivative free adaptive rejection sam-

pling [47]. Many standard distributions are log-
concave, including the exponential family. The prod-
uct of log-concave is also log-concave, so it is com-
mon for the full-conditional to be log-concave.

• Restricted range: Slice sampling [91].
• Unrestricted range: Current point Metropolis.

OpenBUGS includes block sampling methods that
jointly sample from groups of nodes that are likely to
be correlated based on the structure of the model. Block
updating solves one of the disadvantages of Gibbs sam-
pling: it is strongly dependent on the parameterization of
the model. If two variables have a high posterior correla-
tion but are updated independently using Gibbs sampling,
then the Markov chain will exhibit high autocorrelation for
both variables. Block updating of correlated nodes solves
this problem, which otherwise falls to the user to solve by
reparameterizing the model.

A strong point of the BUGS PPL is that the distinction
between data and parameters is made at run time, based
on provided observations. Vectors can also be partially
observed, by leaving the unobserved elements unknown
(NA). This simplifies the simulation of draws for poste-
rior checks. Although WinBUGS focuses on Bayesian
networks, there is some limited support for undirected
graphs (factor models) as long as the entire subset of vari-
ables is represented as a single multivariate node so that
their values are sampled jointly. WinBUGS also supports
graphical model specification in plate notation with the
DoodleBUGS editor.

MultiBUGS [54] is a continuation of the BUGS project.
The major contribution of MultiBUGS is that it provides

a more efficient implementation and several paralleliza-
tion techniques. In a multi-core environment, MultiBUGS
can be several orders of magnitude more efficient than
OpenBUGS.

R interfaces are available for WinBUGS, OpenBUGS,
and MultiBUGS: R2WinBUGS [113], R2OpenBUGS
[126], and R2MultiBUGS.1

2.2 JAGS

JAGS (Just Another Gibbs Sampler) [97] is similar to
WinBUGS in its language and computation (see [74, Chap-
ter 12.6] for differences). Unlike WinBUGS and Open-
BUGS, which are written in Component Pascal, JAGS is
written in C++ and portable. This has contributed to its
popularity and the fact that is still being actively developed.
See Appendix for an example of a model written in JAGS.

JAGS (Just Another Gibbs Sampler) is a clone of BUGS
that has a completely independent code base but aims for
similar functionality, although it notably lacks a graphical
user interface (see [74, Chapter 12.6] for a summary of
differences). JAGS is written in C++ and runs on Windows,
MacOS, and Linux. It is published under the GNU General
Public License, version 2. JAGS incorporates a copy of the
R math library, which provides high-quality algorithms for
random number generation and calculation of quantities
associated with probability distributions. The workhorse
sampling method for JAGS is slice sampling [91], which
can be applied to both continuous- and discrete-valued
nodes. The “glm” module of JAGS incorporates efficient
samplers for generalized linear mixed models (GLMMs).
These samplers are based on the principle of data augmen-
tation, a commonly used technique to simplify sampling
from a graphical model by adding new nodes [59]. In this
case, data augmentation reduces GLMMs with binary out-
comes [1, 57, 98] or binary and Poisson outcomes [39]
to a linear model with normal outcomes. This reduction
to a normal linear model allows block updating of all the
parameters in the linear predictor, which is much more
efficient than Gibbs sampling. The underlying engine for
the linear model uses sparse matrix algebra [29], which
handles fixed and random effects simultaneously.

2.3 Nimble

Nimble [30], similar to BUGS, focuses on graphical
models. It is an extension of the BUGS language but also
implements a modeling language embedded in R, both
of which are compiled to C++. Several Bayesian compu-
tation methods are implemented, including Metropolis-
Hastings (MH), Gibbs sampling, and sequential Monte
Carlo (SMC), and the user has the flexibility of assigning
different sampling methods to different nodes. Recently
they have also added support for AD and HMC. See Ap-
pendix for an example of a model written in Nimble’s
R-embedded language.

1https://github.com/MultiBUGS/R2MultiBUGS

https://github.com/MultiBUGS/R2MultiBUGS
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3. SECOND GENERATION - HMC-BASED

The two main drawbacks of the BUGS-like approach
are the limited expressiveness of the language (imperative
language, no local variables, conditional statements...) and
the inefficiency of computation. The single-node explo-
ration of Gibbs sampling is inefficient when the nodes are
highly correlated in the posterior, in particular, when the
dimensionality in terms of parameters is high, it reverts to
random walk behavior [61, 90].

The only MCMC algorithm that theoretically scales
to high dimensions on a broad class of models is HMC.
Introductions to HMC have been provided, for example,
by Neal [89] and Betancourt [10], and a more detailed
mathematical treatment by Betancourt [11].

HMC is a physics-inspired approach to proposing the
next state that uses the gradient of the target density for
a better understanding of its geometry. Hamiltonian dy-
namics consist of a d-dimensional position vector q and a
d-dimensional momentum vector p. The evolution of the
system as a function of “algorithmic time,” t, is determined
by the function H(q, p) (the Hamiltonian) and the ordinary
differential equations:

dqi
dt

=
∂H

∂pi
,

dpi
dt

=−∂H

∂qi
.

To simulate Hamiltonian dynamics, we need to dis-
cretize time with some step size ϵ. The most commonly
used method is the leapfrog symplectic integrator. Hamil-
tonian dynamics have several properties, which are impor-
tant for HMC to work: they preserve the Hamiltonian, they
are reversible, and they are symplectic and thus volume
preserving.

For HMC the Hamiltonian H is typically chosen so that
it is separable: H(q, p) = U(q)+K(p), where U(q) is the
potential energy and K(p) the kinetic energy of the system.
The main idea of HMC is to use the Hamiltonian to define
a joint density of position and momentum:

p(q, p)∝ e−H(q,p) = e−U(q)e−K(p).

Substituting U(q) =− log f(q), where f is proportional
to the density we want to sample from, and use standard
kinetic energy, we get:

p(q, p)∝ f(q)e−
1

2
pTM−1p.

The joint density p(q, p) can be seen as the target density
over the position vector q augmented by an independent
multivariate Gaussian for the momentum vector p, with
mean 0 and covariance M .

Hamiltonian dynamics conserves the Hamiltonian, so
all states on a trajectory will have the same density p(·, ·).
That makes Hamiltonian dynamics suitable for proposing
the next state in an MCMC algorithm, because a trajectory
can propose a state far away in position q from the current

state, but still with acceptance probability 1. To reach ev-
ery possible state, we have to sample a new momentum.
Because the kinetic and potential energy parts of the joint
density are independent and we are sampling from the
actual distribution of momentum p, this sampling leaves
the target distribution invariant. That is, p(q, p) remains
the stationary distribution of the Markov chain. In prac-
tice, however, the leapfrog method, while being a stable
simulation of Hamiltonian dynamics, will not conserve the
Hamiltonian exactly, and there will be relatively small fluc-
tuations. That is why we still have to apply a Metropolis
correction. Putting it all together, Algorithm 2 summarizes
the basic HMC algorithm.

Algorithm 2
f - a function proportional to our target density,
q0 - starting value,
ϵ - step size,
L - number of steps,
M mass matrix,
m - number of samples
1: procedure HMC
2: for i← 1 :m do
3: p∼N(0,M) ▷ resample momentum
4: get (q∗, p∗) with L leapfrog steps of size ϵ from (qi−1, p)

5: α←min
{
1, e−H(q∗,p∗)+H(qi−1,p)

}
6: sample u∼ U(0,1)
7: if u≤ α then ▷ Metropolis correction
8: qi← q∗ ▷ accept transition
9: else

10: qi← qi−1
11: end if
12: end for
13: i− th sample← qi
14: end procedure

The main ideas behind HMC had been known for more
than 20 years before HMC featured in popular Bayesian
software [33]. The key enabler of more automatic use of
HMC was the development of automatic differentiation
(AD; see [5] for an introduction and survey). Simulating
the Hamiltonian dynamics of HMC requires the gradient
of the density and in order for the software to be general-
purpose, we must be able to compute the gradient for any
program the user can code. Of the four general approaches
to computing derivatives, three will not work: manually
deriving them is not practical, numerical differentiation
via finite differences is too unstable due to rounding and
truncation errors and also is slow in high dimensions, and
symbolic differentiation suffers from expression swell and
leads to inefficient code. AD instead exploits the fact that
every program is a composition of elementary operations
and, as long as each elementary operation also implements
a derivative, we can apply the chain rule to derive the
gradient of the composition. This leads to machine level
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precision of gradients. Most modern inference software
implements or imports an AD library. An important limita-
tion of HMC is that it can only be used on smooth spaces.

A challenge in making HMC useful in general-purpose
Bayesian inference is automatically tuning its parameters
(mass matrix, step size, number of steps). HMC-based soft-
ware typically implements one or more warmup phases for
parameter tuning. Software then proceeds with sampling
and the warmup samples are discarded. The key devel-
opment was the no-U-turn sampler (NUTS) [61], which
is, with some modifications, still the core Bayesian com-
putation method in Stan. The basic idea of NUTS is to
have a dynamic number of steps by simulating the Hamil-
tonian trajectory until we detect a turn back towards the
starting state (or reach the maximum number of steps).
While promising alternatives for tuning the number of
steps, including more GPU computation friendly variants
[60, 62], NUTS is still the most common implementation
of HMC and is also available in most modern software for
general-purpose Bayesian inference.

HMC/NUTS admits several specific MCMC diagnostics
[10]: when the step size is too large to capture a feature
of the target density (which can lead to non-negligible
bias), this is likely to manifest as a diverging simulation
which can be detected and we can use a smaller step size;
reaching the maximum number of steps before terminating
the trajectory is an indication of inefficient exploration;
The Bayesian fraction of missing information (BMFI) [9]
quantifies how well momentum resampling matches the
marginal energy distribution and can be used to detect poor
adaptation during warmup or inefficient exploration.

3.1 Stan

Stan [21] is by far the most popular software for general-
purpose Bayesian inference. Stan is implemented in C++,
has a standalone command line interface, but also has ma-
ture interfaces for Python and R (RStan [122], PyStan
[101]) and lightweigt wrappers for Python and R (Cmd-
StanPy [123], CmdStanR [42], BridgeStan 2). There are
also interfaces for most languages that are traditionally
used for data analysis: Matlab (Matlabstan), Julia (Stan.jl),
Stata (StataStan), Mathematica (MathematicaStan), Scala
(ScalaStan), and http request-based interface (httpstan).

While Stan implements black-box variational inference
[69], Laplace approximation, and standard optimization
methods, the core Bayesian computation method is NUTS,
a variant of HMC. Stan has a rich mathematics library with
AD [22], and OpenCL-based GPU support with kernel
fusion [23, 24].

The Stan PPL is an imperative language with which
the user specifies the computation of the (log-)posterior.
A program is divided into blocks, the most important of

2github.com/roualdes/bridgestan

which are data, parameters, and model. See Appendix for
an example of a model written in Stan. The distinction
between data and parameters is made at compile time, so
changing a variable from data to a parameter (or vice versa)
requires moving it from the data to the parameter block
(or vice versa) and recompiling. Notable work on the Stan
language includes SlicStan [51, 52, 53], which contains
several improvements, and translating Stan to Pyro [4].

Because of HMC-based computation, the class of mod-
els that can be fit by Stan are models with a smooth density.
An important omission are models with discrete param-
eters, which currently have to be manually marginalized
out. This means that Stan does not subsume what can
be fit with BUGS and that HMC does not make Gibbs
sampling-based software obsolete. However, empirical ev-
idence suggests that, when applicable, Stan is currently the
go-to software for general-purpose Bayesian inference [7].

The majority of Stan users are not writing the models di-
rectly in the Stan language. There are several popular pack-
ages that provide a simplified formula or options-based
modeling language for a mode specific class of models and
use a Stan backend for modeling and computation: the R
package brms [16] for modeling with hierarchical models;
Prophet [117] implemented in Python [119] and R [118]
for nonlinear time series forecasting with trend, seasonal-
ity, and holiday effects; and the R package rstanarm [6] for
a Bayesian analogue to R lm, glm, aov, etc. Overall, there
are more than 140 R packages built on top Stan, providing
easy to use interfaces for various types of models common
in different applications. The success of these packages is
not only due to Stan, but also due to increasing number of
useful utilities in R, Python, and Julia.

3.2 ADMB

AD Model Builder (ADMB) [38] was the first PPL
based on AD. It is similar to Stan in that data, parame-
ters, and the likelihood and priors are described separately
and that a distinction is made between data and parameters.
ADMB is tailored more to the optimization-based infer-
ence, but also implements MH, Laplace approximation,
and HMC with manual tuning. A third-party implementa-
tion of NUTS for ADMB is available [84].

3.3 PyMC

PyMC [105] is a Python library for Bayesian inference.
It includes HMC, SMC, and black-box variational infer-
ence. It is based on PyTensor,3 a Python mathematics
library that is a fork of Aesara, and continuation of the
no-longer-developed Theano [8], which was the PyMC3
backend up to the current major release 4.0 and the re-
naming to PyMC. The computational graphs in PyMC

3www.github.com/pymc-devs/pytensor

github.com/roualdes/bridgestan
www.github.com/pymc-devs/pytensor
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are transpiled to C-code, Numba, or JAX [15] (a high-
performance AD library for running Pyton/NumPy code
on CPU, GPU, and TPU), which allows for highly opti-
mized code. PyMC syntax is similar to other Bayesian
software PPLs. See Appendix for an example of a model
written in PyMC. The Bambi (BAyesian Model-Building
Interface) package [19] is built on PyMC and designed to
simplify the use of hierachical GLMs.

4. OTHER SOFTWARE

4.1 R-INLA

R-INLA [71, 130] is a popular R package for Bayesian
inference with latent Gaussian models. This class of mod-
els does not require a PPL; instead, the models are spec-
ified with a standard R formula, similar to lm/glm in the
core R stats package [121] and extended formula syntax
for smooths and hierarchical (“random effect”) terms simi-
lar as, for example, in the R package mgcv [137]. Latent
Gaussian models, when the number of hyperparameters is
moderate and some additional assumptions, allow for effi-
cient computation using integrated nested Laplace approx-
imation (INLA) [82, 103, 104], an approximate Bayesian
computation method. For models that meet these criteria,
R-INLA is a very efficient alternative to MCMC methods
and would be difficult to replace. A key feature of R-INLA
is the support for continuous spatial models using the
stochastic partial differential equation (SPDE) approach
[3, 68, 72]. Recently, the model representation has been
improved and the inner Laplace approximation have been
replaced with a variational Bayes correction layer, to fa-
cilitate better scaling properties with respect to data size,
model size, and number of computing cores [44, 131, 132].
This can be expanded to variance, skewness, and to cor-
recting marginals for hyperparameters.

4.2 Universal PPLs

No agreed upon definition of what a universal PPL is
exists. But it is generally accepted that a universal PPL
program can have probabilistic operations anywhere. For
example, that not even the number of random variables
can be determined statically. We will use the notion of
inverting simulators used in [100]; that is, that the user
codes a stochastic simulation and the PPL framework is
able to infer the properties of the simulation given the
observed data.

In this sense, BUGS, Stan, and other languages men-
tioned so far are not universal PPLs; they can be viewed
as Bayesian inference-driven systems that streamline the
Bayesian inference workflow within classes of models for
which inference can easily be automated. Designing a uni-
versal PPL primarily focuses on having a general-purpose
language and then an inference framework that is able to
handle all the algorithms that can be specified. In theory

a universal PPL subsumes Bayesian inference and it is
arguably easier to code a stochastic simulator than it is to
design an appropriate statistical inference. However, it is
not clear if inference can be automated and be efficient
enough for such a broad class of algorithms.

From a Bayesian statistics practitioner’s perspective,
universal PPLs are still more an object of research than
of general practical use. However, there have been many
promising developments. In the remainder of this section
we highlight some of the more popular or recent universal
PPLs. Other relevant related works include early universal
PPL languages Church [50], Venture [79], and Anglican
[128], Julia-based Gen [28], Turing.jl [45] (and its more re-
cent frontend DynamicPPL [116]), and Python-embedded
Edward/Edward2 [129].

4.2.1 Bean Machine [124] is Bayesian software and
a declarative universal PPL embedded in Python with a
PyTorch backend. In essence, Bean Machine allows for a
specification of a distribution over Bayesian networks with
possibly different numbers of variables. While imperative
languages are becoming more common, including the cur-
rently most popular Stan, the authors argue for declarative
PPLs over imperative ones. In particular, that the (possibly
dynamic) dependency structure between variables is more
easily recovered from a declarative model description and
that inference can more easily be adapted to individual
blocks of variables, including second-order methods that
are usually infeasible in higher dimensions. Bean Machine
implements several single-site samplers, NUTS, Newto-
nian Monte Carlo, and black box VI. It allows for blocking
of variables and custom proposers. See Appendix for an
example of a model written in Bean Machine.

4.2.2 Birch [88] is a universal PPL that transpiles to
C++, with GPU support. Users implement the joint dis-
tribution of their model in a generative manner, with a
preference for generic and object-oriented programming
paradigms. Inference methods are based on SMC with
gradient-based kernels. A defining feature of Birch is sup-
port for automatic marginalization and automatic condi-
tioning. Much like AD, these recognize known forms, such
as conjugacies and discrete enumerations, to marginalize
out random variables where possible, and condition them
on later simulations where necessary. The implementa-
tion of these is based on a heuristic known as delayed
sampling [87], which reveals these opportunities during
program execution by deferring the simulation of random
variables for as long as possible. The result is the automatic
enhancement of inference methods with features such as
Rao-Blackwellization [87] and variable elimination [136].
Birch has been demonstrated on problems where the num-
ber of random variables is unknown, such as multi-object
tracking [88] (where the number of objects is unknown),
and statistical phylogenetics [102] (where the number of
extinct side branches of a phylogeny is unknown). See
Appendix for an example of a model written in Birch.
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4.2.3 Pyro [12] is a Python PPL built on the PyTorch
[93] backend. The main computation method in Pyro is
stochastic variational inference, so the software is aimed
at scalable probabilistic machine learning. NumPyro [94]
is a NumPy-based backend for the Pyro PPL that uses JAX
for AD and compilation to CPU/GPU.

4.2.4 Blang [14] is an open source package for approx-
imating posterior distributions over arbitrary spaces, i.e.
Bayesian models containing not only integer and real vari-
ables but also user-defined datatypes such as phylogenetic
trees, random graphs and sequence alignments. The Blang
project includes a standard library of common datatypes
and distributions, written in the Blang language, and ex-
tension points to create new datatypes and associated dis-
tributions. Users can publish versioned Blang packages
containing new datatypes and distributions and import con-
tributed packages and their transitive dependencies. The
Blang language’s scoping rules are used to automatically
detect sparsity patterns and construct a type of graphical
model known as a factor graph. Based on this factor graph,
the posterior distribution is approximated via an adaptive
non-reversible parallel tempering algorithm [114], which
by default is parallelized over the user’s CPU cores, but
can also be distributed over MPI (Message Passing In-
terface) thanks to Blang’s integration with the Pigeons
distributed Parallel Tempering package.4 See Appendix
for an example of a model written in Blang.

4.3 Likelihood-free Bayesian inference

Likelihood-free inference (LFI) methods such as ap-
proximate Bayesian computation (ABC) [108], Bayesian
synthetic likelihood (BSL) [99], machine learning-based
posterior approximations and surrogate likelihood methods
[56, 25] refer to (mostly) Bayesian computation methods
that can be used when it is impossible or infeasible to
evaluate the likelihood function, but a generative simula-
tor model exists. Such methods are popular for example
in astrostatistics, genetics, ecology, systems biology and
human cognition modeling. Engine for Likelihood-Free
Inference (ELFI) [73] is a Python package for LFI that
covers all the main approaches (ABC, BSL and ML-based
methods). ELFI has a modular design that consists of a
DAG-based modeling API and a separate API for infer-
ence, allowing a user to choose flexibly from a selection
of algorithms that generate a sample from the approximate
posterior distribution. Sampling can be done using adap-
tive Importance Sampling or MCMC/HMC, and with or
without the use of a surrogate model for the likelihood
function approximation. The surrogate model emulates a
target function using Gaussian processes (GPs) and active

4https://github.com/Julia-Tempering/Pigeons.
jl

learning (Bayesian optimization). The active learning ap-
proach has been demonstrated to accelerate likelihood-free
inference up to several orders of magnitude. Other general-
purpose ABC packages are Python packages pyABC [106]
and ABCpy [34], and R packages abc [26], EasyABC
[64], and abctools [92] and ABCreg [127]. Neural network
based surrogate models are accessible via Python package
sbi [125] and R package [2] provides a toolbox for BSL.
More detailed surveys of ABC software are provided by
Nunes and Prangle[92] and Kousathanas et al. [67].

4.4 Software that Focuses on Computation

Blackjax5 is a Python library of MCMC methods for
JAX. It works on CPU and GPU, is robust, efficient, and
easily integrates with PPLs that provide densities com-
patible with JAX (TFP, Oryx, NumPyro, Aesara, PyTen-
sor/PyMC).

emcee [36, 37] is a Python implementation of the Affine
Invariant MCMC ensemble Bayesian computation method
[49]. This derivative-free approach is suitable for low-
dimensional problems with black-box likelihoods, which
are common in astrophysics. Another Python package that
is popular in astrophysics is dynesty [109], which imple-
ments dynamic nested sampling [58]

Mamba.jl6 is a Julia package aimed at users who want
to use and develop MCMC methods. It implements several
MCMC methods (HMC, NUTS, Metropolis-within-Gibbs,
etc.) and MCMC diagnostics. Another popular Julia pack-
age that implements state-of-the-art Bayesian computation
methods is DynamicHMC.jl.7

4.5 Other general-purpose software

Other general purpose software includes Infer.NET
[83] is a machine learning library written in C# for the
.NET framework. It facilitates automatic approximate in-
ference for Bayesian networks and Markov random fields.
Bayesian computation is mostly limited to message pass-
ing. TensorFlow Probability (TFP) [31] is a Python library
built on TensorFlow [35]. An example of a PPL with a
very compact syntax is greta [48], a PPL embedded in
R but based on TensorFlow and TFP. While limited in
the Bayesian computation methods provided, it is exten-
sible. See Appendix for an example of a model written
in greta. Oryx8 is a PPL built on top of JAX. Journal of
Statistical Software also recently published a special issue
on Bayesian software [18], which includes some software
covered by this paper and other specialized software.

5https://github.com/blackjax-devs/blackjax
6https://github.com/brian-j-smith/Mamba.jl
7https://github.com/tpapp/DynamicHMC.jl
8https://github.com/jax-ml/oryx/

https://github.com/Julia-Tempering/Pigeons.jl
https://github.com/Julia-Tempering/Pigeons.jl
https://github.com/blackjax-devs/blackjax
https://github.com/brian-j-smith/Mamba.jl
https://github.com/tpapp/DynamicHMC.jl
https://github.com/jax-ml/oryx/
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4.6 Popular utilities and specialized software

CODA [96] is a still popular R package for post-hoc
diagnostics and analysis of MCMC output. ArviZ [70]
is a Python package which provides MCMC diagnostics,
model evaluation, and model validation tools. ArviZ is
backend-agnostic and currently the most popular such tool
in Python. The R package bridgesampling [55] estimates
marginal likelihoods, Bayes factors, posterior model prob-
abilities, and normalizing constants. The R package pos-
terior [17] subsets, binds, mutates, and converts between
formats of MCMC samples and includes lightweight im-
plementations of state-of-the-art posterior inference diag-
nostics. BayesFactor [85] is an R package for computing
Bayes factors for contingency tables, one- and two-sample
designs, one-way designs, general ANOVA designs, and
linear regression. The R package shinystan [43] provides
a graphical user interface for interactive Markov chain
Monte Carlo (MCMC) diagnostics and other tools for an-
alyzing a posterior sample. The procedures in shinystan
are agnostic to what generated the MCMC samples but
with some added functionality for models fit with RStan.
The R package loo [133] performs efficient approximate
leave-one-out cross-validation for Bayesian models fit us-
ing MCMC methods. The R package bayestestR [78] has
tools for dealing with uncertainty and effects in a Bayesian
statistics framework. It is agnostic of the software that
generated the posterior samples and includes MAP es-
timates, measures of dispersion, ROPE, and Bayes fac-
tors. The R package bayesplot [40] has graphing functions
for Bayesian models, including posterior draws, visual
MCMC diagnostics, and graphical predictive checking.
The R package projpred [95] performs projection predic-
tive variable selection for Bayesian generalized linear and
additive multilevel models fit using MCMC methods. The
R package priorsense [66] performs efficient prior and like-
lihood sensitivity analysis for Bayesian models fit using
MCMC methods. MCMCpack [80] is an R package that
implements MCMC-based computation for several statisti-
cal methods. Tools for structural learning and parameter
estimation of Bayesian networks include bnlearn [107],
Bayes Net for Matlab [86], HUGIN [77], VIBES [13],
MSBNx [65], along with commercial tools GEnIe/SMILE
[32] and Netica.9

5. CHALLENGES AND FUTURE PERSPECTIVES

The field of software for Bayesian inference has never
been more active or varied. There are developments in all
directions, providing better tools that allow for more ac-
cessible, robust, or efficient treatment of typical modeling
as well as pushing the boundaries of what can be done.

9https://www.norsys.com/netica.html

Similar to programming languages, where one might
prefer Python for general-purpose programming, R for
data wrangling and visualization, or the emerging Julia for
high-performance data analytics, there is no one-size-fits-
all approach to software for Bayesian inference. Stan is the
typical choice for Bayesian model building and inference,
Pyro or TFP for Bayesian machine learning, and numerous
other tools for more specialized tasks. Such diversity is
understandable, because limiting the tool simplifies it and
allows for more efficient computation. While there has
been some encouraging progress in universal PPLs and
underlying Bayesian computation, it is not yet clear if a
novel trade-off between expressivity and efficiency can be
struck, leading to a third generation of tools.

As a result, users have to either accept the limitations
of their tool of choice to learn how to work with multiple
tools and languages. A natural solution would be to auto-
matically translate between languages or from statistical
notation into code, as illustrated in Appendix A. This is a
difficult problem, because languages differ in expressivity
and even when they exist, automatic translations could
result in inefficient code. Regardless, there appears to be a
relative lack of incentive in this area.

A new PPL is most often learned from model examples
with code and data, or from translations from a language
we are already familiar with. So it is not a surprise that
popular PPLs such as BUGS and Stan have extensive doc-
umentation, including user’s manuals, case studies, and
in the case of Stan, examples of translations from BUGS
to Stan. Popular PPLs are also accessible on all popular
platforms and through major programming languages (typ-
ically standalone with interfaces), have open governance
and an active community that facilitates communication
between users and developers, typically from their genesis.

As the standards for statistical analysis rise, support for
the statistical workflow is also becoming more important.
To an extent, this is already addressed by some excellent
standalone utilities. However, certain parts of the workflow
are more difficult to encapsulate because they rely on the
underlying language or computation. Another issue is that
sometimes it may be difficult to pinpoint from a software
point of view if the analysis is not working as expected,
especially when black-box components are used.

The practical importance of scalability is already ac-
knowledged in modern software for Bayesian inference,
and all popular languages have at least some support for
it, either through third-party or native libraries. Scalability
with respect to data size is today primarily handled with op-
timized matrix algebra computation on massively parallel
devices such as GPUs. We anticipate that this will further
improve with developments in hardware and computation
libraries. Scalability with respect to model size depends
more on the Bayesian computation used. HMC is currently
the state of the art for general-purpose fully-Bayesian com-
putation. Some limitations of HMC, as is the case with

https://www.norsys.com/netica.html
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most other types of general Bayesian computation, can be
overcome with careful reparametrization or by assigning
different computation to different blocks of parameters.
However, there is currently no automated approach to this.
It remains to be seen if and how general-purpose software
(Stan, JAGS, MultiBUGS) will be superseded and what
role will universal PPLs, approximate Bayesian computa-
tion, and SMC play.

APPENDIX A: MODELING LANGUAGE EXAMPLES

In this Appendix, we illustrate several modeling lan-
guages with this example of Bayesian linear regression:

yi|β,α,σ,xi ∼N(βxi + α, σ2), i= 1 . . . n

α∼N(0,52)

β ∼N(0,52)

σ ∼ U(0,10),

where yi is the dependent variable and xi is the predictor.
This model is in the class of Bayesian networks. Its

representation as a graphical model in plate notation is:

yixi

α β σ

i= 1..n

JAGS

model {
for (i in 1:n) {

y[i] ~ dnorm(beta * x[i] + alpha, 1 / (sigma * sigma))
}

alpha ~ dnorm(0, 1 / 25)
beta ~ dnorm(0, 1 / 25)
sigma ~ dunif(0, 10)

}

Nimble

nimbleCode({
for(i in 1:n) {

y[i] ~ dnorm(beta * x[i] + alpha, sd = sigma)
}

alpha ~ dnorm(0, sd = 5)
beta ~ dnorm(0, sd = 5)
sigma ~ dunif(0, 10)

})

PyMC

with Model() as model:
sigma = Uniform("sigma", lower = 0, upper = 10)
alpha = Normal("alpha", 0, sigma = 5)
beta = Normal("beta", 0, sigma = 5)

likelihood = Normal("y", mu = beta * x + alpha,
sigma = sigma, observed = y)

Stan

data {
int<lower=0> n;
vector[n] x;
vector[n] y;

}
parameters {

real alpha;
real beta;
real<lower=0, upper=10> sigma;

}
model {

y ~ normal(beta * x + alpha, sigma);
alpha ~ normal(0, 5);
beta ~ normal(0, 5);

}

Bean Machine

@bm.random_variable
def alpha():

return Normal(0, 5)
@bm.random_variable
def beta():

return Normal(0, 5)
@bm.random_variable
def sigma():

return Uniform(0, 1)
@bm.random_variable
def x(i):

return Normal(0, sigma())
@bm.random_variable
def y():

return Normal(logit = beta() * x + alpha(), sigma())

Birch

alpha ~ Normal(0.0, 25.0);
beta ~ Normal(0.0, 25.0);
sigma ~ Uniform(0.0, 10.0);
y ~ Normal(beta*x + alpha, sigma*sigma);

Greta

alpha <- normal(0, 5)
beta <- normal(0, 5)
sigma <- uniform(0, 10)

distribution(y) <- normal(beta * x + alpha, sigma)

ELFI

def linear_regression(alpha,
beta,
sigma,
x,
batch_size=1,
random_state=None):

x = x.reshape(1,-1)
n = x.shape[1]
random_state = random_state or numpy.random
alpha = numpy.repeat(alpha.reshape(-1,1), n, axis=1)
beta_x = numpy.matmul(beta.reshape(-1, 1), x)
noise = numpy.matmul(

random_state.randn(n, batch_size),
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numpy.diag(sigma)).T
y = alpha + beta_x + noise

return y

m = elfi.ElfiModel()
elfi.Prior(’normal’, 0, 5, model=m, name=’alpha’)
elfi.Prior(’normal’, 0, 5, model=m, name=’beta’)
elfi.Prior(’uniform’, 0, 10, model=m, name=’sigma’)
elfi.Simulator(linear_regression,

m[’alpha’],
m[’beta’],
m[’sigma’],
x,
name=’linreg’)

Blang

model LinRegression {
param GlobalDataSource data
param Plate<Integer> observationPlate
param Plated<RealVar> x

random RealVar alpha, beta, sigma
random Plated<RealVar> y

laws {
alpha ~ Normal(0, 25)
beta ~ Normal(0, 25)
sigma ~ ContinuousUniform(0, 10)
for (Index<Integer> i : observationPlate.indices) {

y.get(i) | beta, alpha, sigma, RealVar x_i = x.get(i)
~ Normal(beta * x_i + alpha, sigma * sigma)

}
}

}
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