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Summary

This paper extends deterministic models for Boolean regression within a
Bayesian framework. For a given binary criterion variable Y and a set of k
binary predictor variables Xi,..., Xy, a Boolean regression model is a con-
junctive (or disjunctive) logical combination consisting of a subset S of the
X variables, which predicts Y. Formally, Boolean regression models include
a specification of a k-dimensional binary indicator vector (61, ...,6;) with
0; = 1iff X; € S. In a probabilistic extension, a parameter 7 is added which
represents the probability of the predicted value g; and the observed value
y; to differ (for any observation 7). Within Bayesian estimation, a posterior
distribution of the parameters (01,...,60, ) is looked for. The advantages
of such a Bayesian approach include a proper account for the uncertainty
in the model estimates and various possibilities for model checking (using
posterior predictive checks). We illustrate in an example using real data.
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1 Introduction

In many research lines, prediction problems are considered with the predictors
and/or criteria being binary variables. As a result, a number of models and
associated techniques have been developed to examine the relations in this
type of data, including instantiations of the generalized linear model. For
example, in a logistic regression model with binary variables, the logit of
the probability that the criterion variable assumes either of the two possible
values is a linear function of a number of predictors. In many relevant cases,
though, one aims at finding the sufficient and/or necessary conditions for
a criterion to occur, which, as a result, makes the generalized linear model
approach, which assumes a compensatory association rule, less appropriate
from a theoretical point of view. In medical diagnoses, for example, assigning
a disease to a given patient is often based on considering a list of necessary
and sufficient conditions; as an other example, some theories on categories
and concepts assume that assignment to a category is based on the presence
of a set of singly necessary and jointly sufficient attributes.

In search of necessary and/or sufficient conditions, a Boolean regression
model (Van Mechelen, 1988; Van Mechelen & De Boeck, 1990) may be helpful
as it identifies for a given binary criterion and a given set of binary predictors
a subset of the predictors that are conjunctively (resp. disjunctively) com-
bined to predict the value on the criterion variable. Besides applications in
the social sciences (McKenzie, Clarke, & Low, 1992; Ragin, Mayer, & Drass,
1984; Van Mechelen & De Boeck, 1990), techniques related to Boolean re-
gression have been studied in discrete mathematics and in the context of the
design of switching circuits in electronics (Biswas, 1975; Halder, 1978; Mc-
Cluskey, 1965; Sen, 1983). In the latter publications, more complex rules,
such as disjunctive combinations of conjunctions (or vice versa), are also
considered.

Boolean regression has initially been formulated as a deterministic model.
Existing algorithms for Boolean regression aim at finding a subset of the
predictors which minimizes the number of prediction errors (Van Mechelen,
1988). However, at least three shortcomings go with the approach of finding
a single best solution: First, in many empirical applications, several different
subsets of the predictors may fit the data (almost) equally well, whereas from
a substantive viewpoint they may be quite different. Second, it is not obvious
how to draw statistical inferences about the size of the prediction error as
the prediction error associated with the single best solution probably under-
estimates the true model error (because the algorithm aims at minimizing
the number of prediction errors). Third, the deterministic model does not
provide any tools for model checking due to the fact that the model does
not specify its relation to the data. Hence, a method which gives insight



in several concurring models and in the level of uncertainty associated with
them, is of great interest.

Therefore, the present paper extends the model for Boolean regression
within a Bayesian framework. Bayesian statistics can be considered a nat-
ural conceptual framework for exploring the likelihood of several possible
concurring models for a given data set. The model extension presented here
follows the general recipe proposed by Gelman, Leenen, Van Mechelen, and
De Boeck (in preparation), which brings most of the tools that are available
for stochastic models within the realm of deterministic models (like the model
of Boolean regression).

The remainder of the paper is organized as follows: Section 2 recapitulates
the deterministic model of Boolean regression. In Section 3, the stochastic
extension is presented and estimation and checking of the model within a
Bayesian framework is discussed. In Section 4 an example on definitions of
emotions illustrates the application of the new model to real data. Section 5
deals with possible extensions and contains some concluding remarks.

2 The Deterministic Boolean Regression Model

2.1 Model formulation

Consider an n x k binary matrix X, which denotes the observations for n
units on k explanatory variables Xi,...,X;,..., X}, and a binary vector
vy = (y1,---,Yi,---,Yn), which contains the observed values for the n units
on a criterion variable Y. Boolean regression, then, specifies a parameter
vector 8 = (01,...,0;) with 8; € {0,1} (j = 1,...,k) which is subsequently
combined with X to get a binary vector § = (¢91,...,yn) of predicted values
on the criterion. Both a disjunctive and a conjunctive variant of the model
exist which differ in the way that # and X are combined to get y. In a
conjunctive model,

9i=9(0,X); = H Tij, (1)

ilo;=1

whereas in the disjunctive variant:

ji =90, X)i=1— [ (1—=y). (2)

jle;=1

Despite their substantive difference, conjunctive and disjunctive models are
dual models, though: A comparison of Eq. (1) and Eq. (2) shows that if
a conjunctive model fits some data set X and y then simultaneously the
disjunctive model fits the complemented data X¢ and y“, and vice versa,
where rg =l-mzjyandyd =1-y (i=1,...,m75=1,...,k). As a result,
only one of both variants needs to be considered; in this paper, we focus on
the conjunctive model and, unless otherwise stated, any y; is calculated as in

Eq. (1).



Boolean regression being a deterministic model does not include a spec-
ification of the relation between the observed y and the predicted . Even
more, strictly speaking, the model requires them to be equal. Hence, when-
ever an observation i exists for which y; and g; are discrepant (i.e., y; # i),
the model should be rejected. In practical applications of the model, though,
one allows for prediction errors and the model goes with algorithms that aim
at finding 6 with the minimal number of discrepancies:

n

D(y,0) =Sy — 50, X)iI*

i=1

2.2 Model estimation

To find a # that minimizes D(y, 8), two strategies have been proposed. Most
algorithms (Mickey, Mundle, & Engelman, 1983; Van Mechelen, 1988; Van
Mechelen & De Boeck, 1990) use a greedy heuristic which initializes the
entries in § to 1 and successively changes the value of some entry 6; into 0,
each time selecting that 6; for which the change yields the largest decrease
in number of discrepancies, until changing any of the remaining 6;’s does not
further improve the solution.

Recently, Leenen and Van Mechelen (1998) have proposed a branch-and-
bound algorithm that guarantees that a solution with minimal value on
D(y,6) is found. This algorithm passes through a tree, making extensively
use of the property that in a conjunctive model changing an arbitrary entry
6; from 1 into 0 does not decrease the number of false negatives (a false
negative being defined as an observation ¢ for which the predicted value g;
equals 0 and the observed value y; equals 1). In many cases, the latter prop-
erty allows the algorithm to apply branching and bounding to a large extent,
thereby strongly reducing the processing time compared to an enumerative
search among all possible solutions.

2.3 Model checking

The goodness of fit of the deterministic model can be summarized into a
number of descriptive statistics, including proportion of discrepancies, Jac-
card’s goodness-of-fit statistic (Sneath & Sokal, 1973; Tversky, 1977), and
Van Mechelen and De Boeck’s (1990) A,,, which indicates the amount of pre-
dictive gain by knowing the model over a prediction based on the marginal
criterion probability only. However, these statistics are limited in that they
are based on the total goodness-of-fit and do not examine the structure of
the errors. Also, only rules of thumb are available to decide on whether or

not a solution is “sufficiently good.”



3 Bayesian Boolean Regression

3.1 Model formulation

Allowing for discrepancies reveals the implicit assumption of a stochastic
model underlying the deterministic model. A natural extension of the model
may therefore be considered that explicitly includes the possibility of a pre-
diction error.

The stochastic extension implies the addition of a Bernoulli-like process
to the deterministic model, which accounts for the values on the criterion
variable possibly changing from 0 into 1 or vice versa. For this purpose, a
new parameter 7 is added to the model, which is the expected error rate of
the model and which is assumed to be identical across observations. Hence,
for any observation 4, it holds that:

Pr(y; = g:|0,7) =1 — 7. (3)

(In the latter and all following equations, the dependence on X is not explic-
itly indicated because the predictor values are considered fixed.) Under local
stochastic independence, it further holds that the likelihood of y under this
model is:
plyld,m) = 7% (1 —m)" = Pe.

For convenience, D(y,#) is abbreviated to Dy in formulas.

In a next step, the stochastic model is considered within a Bayesian frame-
work, which provides tools for exploring the posterior distribution:

_ plyl®,m) p(d,m)
p(0,mly) = o (4)

We will assume 6 and 7 to have independent and uniform prior distributions.
Uniform prior distributions imply a minimal extension of the already exist-
ing deterministic model: For, in this case maximizing the likelihood (which
implies minimizing the number of discrepancies) corresponds to finding the
mode of the posterior distribution (Gelman et al., in preparation).

As shown in the Appendix, working out the posterior yields:

(n+1) 7P (1 —q)n—De

> W)

JEO \DPy

p(0,7ly) = (5)

where the sum in the denominator is over all 2¥ values in the parameter
space O. Clearly, evaluating this sum is feasible for small £ only.

Often, one will be interested in the marginal posterior distribution of the
f parameter. Again in the Appendix, it is shown that integrating out 7 in
Eq. (5) results in:

p(fly) = > (6)



The latter implies that two 6 parameters which are equally discrepant with
y have equal posterior probabilities. Furthermore, it follows that if 8 has
one discrepancy fewer than 6* then the ratio of their marginal posterior
probabilities equals:

pBly) _n—Dy

p(0*|y) Dy-

(7)

3.2 Model estimation

In this section we show how one can gain insight in the posterior distribution
by drawing simulations with a Gibbs-Metropolis algorithm:

Step 0 As an initialization step, m estimates 6(*°) and m estimates 7 (5-0)

3

(s = 1,...,m), are constructed as follows: (> is a random binary
vector with Pr(ﬁgs’o) =1)=05( =1,...,k) and 7(*9 is given the
value:

s,0
s,0) « D(y9(+ ;) + 1
n

We add 1 in the nominator and 2 in the denominator to avoid initial
estimates of m to be 0 or 1 (Gelman et al., in preparation).

7l

Step 1 We run m parallel sequences of a Metropolis algorithm, with (9(5’0) , W(S’O))
as the starting point for sequence s (s = 1,...,m). At each iteration ¢
(t=1,2,...), the following substeps are executed for each sequence s:

1. A candidate value #* is constructed based on the value #(*¢—1)
in the previous iteration. Therefore, first an integer w(**) from
a discrete density (e.g., Poisson or binomial) is drawn with the
restriction 1 < w" < k. Next, w®>? entries in =1 are
randomly selected and subsequently changed (from either 0 into 1
or 1 into 0) to obtain §*. As such, w(®?) represents the number of
entries in #* that are changed from (%!~

This procedure for constructing 8* technically corresponds to draw-
ing from the following jumping distribution:

k
J(0 ey = 50 %pm

where p(w) is the (truncated) discrete density mentioned above.
The jumping distribution returns the probability of considering the
candidate *, given the value of #(5*=1) of the previous iteration.
Clearly, J is symmetric: J(6*|0) = J(0]0*) such that the resulting
algorithm is of the Metropolis type.



2. The ratio of the posterior densities, or equivalently, the ratio of
the likelihoods, is calculated:

D(y,0 V)= D(y,0%)

_ o pyleraty gD
" p(y|flst=1) mls:t=1)) o a(st-1)

3. Values are assigned to #(**) and =(5:):

0* with probability min(1, r)
(s,t) P y ’
0 < { f(s:t=1)  otherwise

The value for 7(*:*) is obtained by a draw from a Beta(D(y, (")) +
1,n — D(y,0*Y) + 1) distribution.

These steps are repeated until the m sequences appear mixed. Gelman

and Rubin’s (1992) \/E statistic may be used as a diagnostic instrument
in monitoring the convergence.

Step 2 In order to obtain L posterior simulation draws, the procedure de-
scribed in step 1 continues, after convergence of the sequences, for
another L/m iterations. The latter draws in the m sequences are
collected and will eventually constitute the set of simulation draws
{(@W, 7Y | (1 =1,...,L)} from the posterior distribution.

3.3 Model checking

A natural way for model checking in Bayesian statistics is using posterior
predictive checks. Therefore, we proceed with the next steps:

Step 3 For each of the L posterior simulation draws a replicated data set
y® is simulated as follows: First, ) = (), X) is computed using
Eq. (1), and, subsequently, the n components of y(!) are independently
simulated from (") based on Eq. (3) (with 7(V) substituted for 7).

Step 4 A test variable T'(y, ) is defined which summarizes some aspect of
interest of the data or the discrepancy between model and data.

Step 5 The realized value T (y, #()) for the observed data and the replicated
value T'(y",61) for the replicated data are computed for each of the
L simulation draws.

Step 6 The realized value and the replicated value are compared to estimate
the posterior predictive p-value as the proportion of the L simulations
for which T'(y®,61) > T(y, D).

The model checking procedure presented here will be illustrated in the ex-
ample.



4 Illustrative Application

4.1 Problem and Data

In this section we illustrate the new approach by an example in the field of
defining emotion concepts. According to Wierzbicka (1992, p. 541), emotion
concepts can be defined by a set of singly necessary and jointly sufficient
semantic primitives, which are “terms of words which are intuitively under-
standable (nontechnical), and which themselves are not names of specific
emotions or emotional states.” Table 1 lists some of the semantic primitives
she proposed. As her definitions of emotions are conjunctive combinations
of semantic primitives, a Boolean regression model may be expected to ap-
propriately describe the relation between semantic primitives (as predictors)
and an emotion concept (as the criterion). Whereas Wierzbicka deals with
explicit definitions (i.e., by experts), the present study considers implicit the-
ories in laymen and evaluates whether these implicit theories are conjunctive
combinations of semantic primitives as well.

Predictor Semantic primitive
X; A person did something bad
X> I don’t want this
X3 1 would want to change this
X, 1 would want to do something bad to somebody
X5 I feel bad
X Something bad happened
X7 I would want that something didn’t happen
Xg I can’t change the situation
Xy Something good happened
X109 I want something like this
X771 I feel good
Xi12  Somebody did something good
X735 Idon’t want to change this
X14 T would want to do something good for somebody

Table 1: List of the (noncomplemented) predictors for the Boolean regression
analyses in the application

Five first-year psychology students of the University of Leuven were each
asked to generate twenty different situations in which they had recently been
involved and felt either angry, sad, grateful, or happy. Next, the subjects were
asked to specify for the twenty situations they generated: (1) whether or not
each of 14 semantic primitives in Table 1 was true for the given situation and
(2) whether or not they experienced each of the 4 forementioned emotions:
anger, sadness, gratitude, and happiness. In the analyses, the 5 x 20 situa-



tions were concatenated, resulting into n = 100 observations, and both the
original and the complemented semantic primitives are included as predic-
tors, eventually resulting in 28 predictors (Xy,..., X14,-X1,...,7X14) and
4 criteria Yangry, Ysad, Yarateful, and Yhappy. Because the results for both neg-
ative emotions, anger and sadness, were very similar, as the results for both
positive emotions, gratitude and happiness, were, only analyses with anger
and happiness are presented in the following sections.

4.2 Deterministic analysis

Optimal conjunctive logical rules (i.e., with minimal number of discrepan-
cies) were found using the previously discussed branch-and-bound algorithm
(Leenen & Van Mechelen, 1998). For Y,u.gy, the best logical rule combines
the complements of the predictors 9, 10, and 14: A person reports (s)he ex-
periences anger in a given situation iff “it is not the case that something good
happened and (s)he does not want something like this and (s)he does not
want to do anything good for somebody.” Yiappy On the other hand is best
predicted by the single predictor 9: A person reports (s)he feels happy iff
“something good happened.” Table 2 presents some goodness-of-fit indices
for both optimal rules.

Emotion Optimal rule % discrepancies  Jaccard index ;\p
Anger _|X9 A\ _|X10 A _|X14 9 .80 .75
Happiness X 6 .89 .88

Table 2: Optimal logical rules for Yangy and Yhappy and associated goodness-
of-fit statistics as found by a deterministic analysis

4.3 Bayesian analysis
4.3.1 Model estimation

The procedure discussed in Section 3.2 was used to simulate the posterior
distribution of (f,7). For each criterion, we ran m = 5 sequences of the
described Gibbs-Metropolis algorithm. After convergence, namely when Gel-
man and Rubin’s (1992) R-statistic was smaller than 1.1 for each of the
parameters §; (j = 1,...,28) and =, another 2000 runs in each sequence
were executed, ending up with L = 10000 posterior draws for each criterion.

Table 3 gives the marginal distribution of the #-parameters (or, equiva-
lently, the conjunctive combinations) for anger and happiness, respectively.
The results of the Bayesian analysis show that the rule found by the deter-
ministic branch-and-bound algorithm may be one of several “best” solutions:
For anger, (at least) five different conjunctive combinations have a minimal
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Logical rule Posterior probability % discrepancies
Angry

_|X10/\_|X11 /\_|X12 /\_|X14 .189 9
_|Xg A _|X10 A _|X14 183 9
= Xg A= Xig A= X11 A=X19 A =Xy 183 9
=Xg A =Xig AN =X11 A—X1s .166 9
=Xg A =Xig A =Xio A X1 .164 9
X0 A X192 A X1y .019 10
= Xig A X131 A X1y .015 10
other < .006 >11
Happy

Xy .204 6
=X4 A Xg 185 6
=X1 A=Xy A Xy 170 6
=X A Xy 170 6
X4 AN X1 .030 7
=X5 A Xg .023 7
=X1 A=X5 A Xy .017 7
X7 A =Xy A X1 .017 7
X4 A —=X5 A Xy 017 7
X4 AN =Xs5 A X1 .017 7
X1 .016 7
_|X1 /\_|X4/\_|X5/\X11 .016 7
=X1 A=X5 A X1 .016 7
=X5 AN X1 .015 7
X1 A =Xy A=X5 A Xy .014 7
-X1 AN X1 .010 7
other < .004 >8

Table 3: Simulated posterior distribution of # for Yangry and Yhappy

number of discrepancies and two have only 1 discrepancy more; for happiness,
four conjunctive combinations do equally well and 12 logical rules have 1 dis-
crepancy more. (In our example, n = 100, so the % discrepancies in Table 3
are equal to the number of discrepancies. In the table, models with the same
number of discrepancies have different computed posterior probabilities; this
is entirely due to simulation variability.) The wide range of available models
that fit about equally well indicates that the stochastic extension can add a
considerable amount of information to the deterministic analysis, as other-
wise only a single rule might be considered. For this particular case, one may
remark that most of the other rules merely add one or more predictors to
the rule found by the deterministic algorithm, which make them less impor-
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tant as the added predictors cannot be considered singly necessary. But even
then, the Bayesian analysis gives more insight into the uncertainty associated
with the best solutions and into which other values for 8 can reasonably be
considered for the given data set. With respect to the uncertainty associated
with the models, it was found for anger that 7 = .100 and for happiness that
m = .072.

For the criterion anger, only five predictors showed up in the conjunctive
rules with posterior probability over .10, namely: =Xg, = X109, = X711, = X2,
and —Xi4. Similarly, for happiness, the logical rules with highest posterior
mass only use a subset of the six predictors =X, X4, = X5, X9, X109, and
X11. By way of illustration, we discuss the results of a reanalysis of both
criteria with only the semantic primitives that appeared relevant as predic-
tors. This allows us to theoretically compute the posterior distributions and
to compare this theoretical distribution with the simulated distribution. Like
in the previous analysis, we use m = 5 sequences and, after convergence, we
collect L = 10000 posterior draws for both criteria.

Table 4 displays the marginal posterior distribution of  for anger and
happiness respectively, both the simulated and the theoretical posterior dis-
tribution. The results show that the simulated distribution is always close to
the theoretical distribution, from which we may conclude that the estimation
procedure works fine.

4.3.2 Model checking

In this section, the posterior-predictive-check approach is illustrated for check-
ing one assumption that implicitly underlies the model applied in the previous
subsection. We assumed that 7 was constant across observations (see, Eq (3))
such that in the study discussed above, no differences among the five subjects
involved are allowed. Or, otherwise stated, the subjects apply the respective
logical rules with equal accuracy.

Individual differences in error rate may be quantified by the variance
in number of prediction errors between the five subjects. Therefore, a test
variable T'(y) is defined as:

Di(y.6) _ D(.0)]>

20 100

5—1

>
It

T(y,0) =

where Dy, is the number of discrepancies between the 20-component y and g
vector of subject h. The larger the variation among subjects, the larger the
value of T'.

For both criteria anger and happiness, 10000 replicated data sets y(*), ...,
y(10000) wore simulated as described in Section 3.3 and both the realized value
T(y,0") and the replicated value T'(y®",8") (I =1,...,10000) were calcu-

lated. Next, posterior predictive p-values were computed as the proportion of
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Exact Simulated
Logical rule posterior probability posterior probability
Angry
= Xg A =X AN X1 A X1o A X1y .189 212
=Xg A =Xig A =X11 A—X1g 189 189
= Xg A X9 A X1y 189 189
= X0 A X111 A=Xq9 A =Xy 189 178
= Xg A X190 A X192 A X1y .189 170
= Xio A X111 A X1y .021 .028
= X9 A X9 A X1y .021 017
other < .005 < .003
Happy
Xy .200 212
=X A Xy .200 195
=X4 AN Xg .200 192
X1 A=Xy A Xy .200 .190
X1 A X5 A X1y .015 .019
=Xy AN X5 A Xg .015 .019
-X5 A Xy .015 .018
=X1 AN X1 .015 .018
=X5 AN X1 .015 .017
X1 AXy A -X5 A X1y .015 .017
X1 A-Xg A X1y .015 .016
-X7 A=X5 A Xy .015 .015
=Xy AN=X5 N X1 .015 .015
X1 A =Xy A =X5 A Xy 015 013
X1 .015 .013
=Xy AN X1 .015 .012
other < .003 < .002

Table 4: Exact and simulated posterior distribution of 8 for Yangry and Yhappy
using relevant predictors only

the 10000 simulations for which T'(y, %) > T'(y",8"). For anger, the pos-
terior predictive p-value equals .566 and for happiness, it equals .624, which
is visualized in Figure 1. Figure 1 plots the observed versus the replicated
values on the test variable: Roughly half the number of points lie above and
half the number of points below the first bisector. As a result, it is con-
cluded that the posterior predictive check provides no evidence for individual
differences in accuracy.
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Figure 1: Plot of the realized T'(y,0")) versus the replicated T'(y",8®") for
the emotions “happy” and “angry.” The x and y coordinates are jittered by
adding normal random numbers to each point’s coordinates (with standard

deviation .001) in order to display multiple values.

5 Concluding remarks

In some cases, one may expect the probability of a false positive to differ
from the probability of a false negative prediction error. For example, in a
medical context, caution may cause a bias in predicting success on a dan-
gerous surgery which makes it unlikely that failure occurs when success was
predicted, whereas the reverse prediction error is (fortunately) more likely.
As discussed by Gelman et al. (in preparation), the model can be straight-
forwardly expanded by allowing different error rates my and m for responses
predicted to by 0 and 1, respectively.

In contrast with most other Bayesian generalizations of deterministic dis-
junctive/conjunctive models (Gelman et al., in preparation), there is for the
Boolean regression model no need to restrict 7 (or 7y and 1) to be smaller
than 0.5. Moreover, allowing 7 to cover the complete range from 0 to 1 may
be helpful in distinguishing between disjunctive and conjunctive association
rules. From our discussion on the duality of conjunctive and disjunctive rules
in Section 2.1, it is clear that if for each X; both the original variable X; and
the complemented variable =X ; are included as predictors then a conjunctive
rule with error rate 7 is formally equivalent with a disjunctive rule with error
1 — m. The analyses in section 4 for the illustrative example did include for
every predictor both the original and the complemented version and resulted
into values for 7 that are (considerably) smaller than 0.5. Hence, for this
particular case a conjunctive rule is found to be more appropriate than a
disjunctive one, which is a result that corresponds with earlier theories and
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that was established only a posteriori.

As a final comment, we note that both the deterministic and Bayesian
approaches for Boolean regression seems to be less useful when the number
of observations is very large. For, it is true in general that the variance
in D(y,f#) among 6, (i.e., differences in number of discrepancies associated
with the respective models) is expected to increase with the number of ob-
servations. And more in particular, the difference between the best and the
second best model most likely increases with the number of observations.
From Equations (6) and (7), which make clear how the posterior density de-
pends on the number of discrepancies, it follows that the larger the number
of observations, the sharper the (marginal) posterior distribution (for 6) is
peaked. This implies that if a model 6 for some data set with, say, n = 1
million observations has 10% discrepancies and 8* has 10.01% discrepancies,
then 6 has a much higher posterior density than 6*. How this finding can
be reconciled with the intuition that both models should have about equal
posterior density, is one of the objectives for further research.
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Appendix: Deriving posterior distributions

We first work out the prior predictive distribution p(y):

r 1
o) = X | [ solo.mpomma
veo L0
—— .
= Z / wDﬂ(lw)"Dﬂ—ldﬂ'}
Qk
seo 70
[B(Dy +1,n— Dy + 1) /1 1 IS D
- a7 (1 — )" F0dr
1%)_ 2k 0 B(D19—|—1,7’l—D19—|—1) ( )
_ Z -iDﬁ!,(’I’LDg)!:|
= 128 (n+1)!

1 1
B 2k(n+1)Z ()

9€@ \Dy

The integral in the third step being equal to 1 as it is the area under a Beta
density.

For the posterior distribution of (8, 7), we start from Eq. (4):

p(yl6, m)p(f, T)
p(y)
aPe (1 — q)n—De 2%

p(0,7y)

To derive the marginal posterior distribution of , 7 is integrated out in the
joint posterior distribution for 6 and 7 in the formula above.

p(6ly) = / p(6,7ly) dn

_ /1 (n+1) 7P (1 —m)" "
0 > )

JeO \Dy

dm

Z(Di)l ./01 <;0> (n+1) 7P (1 —m)"~ Pedn,

JeO (Dﬂ)

the latter integral being 1 as it is again the area under a Beta density.



