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2Keywords: Bayesian estimation, Boolean regression, logical rule analysis,posterior predictive checks1 IntroductionIn many research lines, prediction problems are considered with the predictorsand/or criteria being binary variables. As a result, a number of models andassociated techniques have been developed to examine the relations in thistype of data, including instantiations of the generalized linear model. Forexample, in a logistic regression model with binary variables, the logit ofthe probability that the criterion variable assumes either of the two possiblevalues is a linear function of a number of predictors. In many relevant cases,though, one aims at �nding the su�cient and/or necessary conditions fora criterion to occur, which, as a result, makes the generalized linear modelapproach, which assumes a compensatory association rule, less appropriatefrom a theoretical point of view. In medical diagnoses, for example, assigninga disease to a given patient is often based on considering a list of necessaryand su�cient conditions; as an other example, some theories on categoriesand concepts assume that assignment to a category is based on the presenceof a set of singly necessary and jointly su�cient attributes.In search of necessary and/or su�cient conditions, a Boolean regressionmodel (Van Mechelen, 1988; Van Mechelen & De Boeck, 1990) may be helpfulas it identi�es for a given binary criterion and a given set of binary predictorsa subset of the predictors that are conjunctively (resp. disjunctively) com-bined to predict the value on the criterion variable. Besides applications inthe social sciences (McKenzie, Clarke, & Low, 1992; Ragin, Mayer, & Drass,1984; Van Mechelen & De Boeck, 1990), techniques related to Boolean re-gression have been studied in discrete mathematics and in the context of thedesign of switching circuits in electronics (Biswas, 1975; Halder, 1978; Mc-Cluskey, 1965; Sen, 1983). In the latter publications, more complex rules,such as disjunctive combinations of conjunctions (or vice versa), are alsoconsidered.Boolean regression has initially been formulated as a deterministic model.Existing algorithms for Boolean regression aim at �nding a subset of thepredictors which minimizes the number of prediction errors (Van Mechelen,1988). However, at least three shortcomings go with the approach of �ndinga single best solution: First, in many empirical applications, several di�erentsubsets of the predictors may �t the data (almost) equally well, whereas froma substantive viewpoint they may be quite di�erent. Second, it is not obvioushow to draw statistical inferences about the size of the prediction error asthe prediction error associated with the single best solution probably under-estimates the true model error (because the algorithm aims at minimizingthe number of prediction errors). Third, the deterministic model does notprovide any tools for model checking due to the fact that the model doesnot specify its relation to the data. Hence, a method which gives insight



3in several concurring models and in the level of uncertainty associated withthem, is of great interest.Therefore, the present paper extends the model for Boolean regressionwithin a Bayesian framework. Bayesian statistics can be considered a nat-ural conceptual framework for exploring the likelihood of several possibleconcurring models for a given data set. The model extension presented herefollows the general recipe proposed by Gelman, Leenen, Van Mechelen, andDe Boeck (in preparation), which brings most of the tools that are availablefor stochastic models within the realm of deterministic models (like the modelof Boolean regression).The remainder of the paper is organized as follows: Section 2 recapitulatesthe deterministic model of Boolean regression. In Section 3, the stochasticextension is presented and estimation and checking of the model within aBayesian framework is discussed. In Section 4 an example on de�nitions ofemotions illustrates the application of the new model to real data. Section 5deals with possible extensions and contains some concluding remarks.2 The Deterministic Boolean Regression Model2.1 Model formulationConsider an n � k binary matrix X , which denotes the observations for nunits on k explanatory variables X1; : : : ; Xj ; : : : ; Xk, and a binary vectory = (y1; : : : ; yi; : : : ; yn), which contains the observed values for the n unitson a criterion variable Y . Boolean regression, then, speci�es a parametervector � = (�1; : : : ; �k) with �j 2 f0; 1g (j = 1; : : : ; k) which is subsequentlycombined with X to get a binary vector ŷ = (ŷ1; : : : ; ŷn) of predicted valueson the criterion. Both a disjunctive and a conjunctive variant of the modelexist which di�er in the way that � and X are combined to get ŷ. In aconjunctive model, ŷi � ŷ(�;X)i = Yjj�j=1xij ; (1)whereas in the disjunctive variant:ŷi � ŷ(�;X)i = 1� Yjj�j=1 (1� xij) : (2)Despite their substantive di�erence, conjunctive and disjunctive models aredual models, though: A comparison of Eq. (1) and Eq. (2) shows that ifa conjunctive model �ts some data set X and y then simultaneously thedisjunctive model �ts the complemented data XC and yC , and vice versa,where xCij = 1� xij and yCi = 1� yi (i = 1; : : : ; n; j = 1; : : : ; k). As a result,only one of both variants needs to be considered; in this paper, we focus onthe conjunctive model and, unless otherwise stated, any ŷi is calculated as inEq. (1).



4Boolean regression being a deterministic model does not include a spec-i�cation of the relation between the observed y and the predicted ŷ. Evenmore, strictly speaking, the model requires them to be equal. Hence, when-ever an observation i exists for which yi and ŷi are discrepant (i.e., yi 6= ŷi),the model should be rejected. In practical applications of the model, though,one allows for prediction errors and the model goes with algorithms that aimat �nding � with the minimal number of discrepancies:D(y; �) = nXi=1 [yi � ŷ(�;X)i]2 :2.2 Model estimationTo �nd a � that minimizes D(y; �), two strategies have been proposed. Mostalgorithms (Mickey, Mundle, & Engelman, 1983; Van Mechelen, 1988; VanMechelen & De Boeck, 1990) use a greedy heuristic which initializes theentries in � to 1 and successively changes the value of some entry �j into 0,each time selecting that �j for which the change yields the largest decreasein number of discrepancies, until changing any of the remaining �j 's does notfurther improve the solution.Recently, Leenen and Van Mechelen (1998) have proposed a branch-and-bound algorithm that guarantees that a solution with minimal value onD(y; �) is found. This algorithm passes through a tree, making extensivelyuse of the property that in a conjunctive model changing an arbitrary entry�j from 1 into 0 does not decrease the number of false negatives (a falsenegative being de�ned as an observation i for which the predicted value ŷiequals 0 and the observed value yi equals 1). In many cases, the latter prop-erty allows the algorithm to apply branching and bounding to a large extent,thereby strongly reducing the processing time compared to an enumerativesearch among all possible solutions.2.3 Model checkingThe goodness of �t of the deterministic model can be summarized into anumber of descriptive statistics, including proportion of discrepancies, Jac-card's goodness-of-�t statistic (Sneath & Sokal, 1973; Tversky, 1977), andVan Mechelen and De Boeck's (1990) �̂p, which indicates the amount of pre-dictive gain by knowing the model over a prediction based on the marginalcriterion probability only. However, these statistics are limited in that theyare based on the total goodness-of-�t and do not examine the structure ofthe errors. Also, only rules of thumb are available to decide on whether ornot a solution is \su�ciently good."



53 Bayesian Boolean Regression3.1 Model formulationAllowing for discrepancies reveals the implicit assumption of a stochasticmodel underlying the deterministic model. A natural extension of the modelmay therefore be considered that explicitly includes the possibility of a pre-diction error.The stochastic extension implies the addition of a Bernoulli-like processto the deterministic model, which accounts for the values on the criterionvariable possibly changing from 0 into 1 or vice versa. For this purpose, anew parameter � is added to the model, which is the expected error rate ofthe model and which is assumed to be identical across observations. Hence,for any observation i, it holds that:Pr(yi = ŷij�; �) = 1� �: (3)(In the latter and all following equations, the dependence on X is not explic-itly indicated because the predictor values are considered �xed.) Under localstochastic independence, it further holds that the likelihood of y under thismodel is: p(yj�; �) = �D� (1� �)n�D� :For convenience, D(y; �) is abbreviated to D� in formulas.In a next step, the stochastic model is considered within a Bayesian frame-work, which provides tools for exploring the posterior distribution:p(�; �jy) = p(yj�; �) p(�; �)p(y) : (4)We will assume � and � to have independent and uniform prior distributions.Uniform prior distributions imply a minimal extension of the already exist-ing deterministic model: For, in this case maximizing the likelihood (whichimplies minimizing the number of discrepancies) corresponds to �nding themode of the posterior distribution (Gelman et al., in preparation).As shown in the Appendix, working out the posterior yields:p(�; �jy) = (n+ 1) �D� (1� �)n�D�P#2� 1( nD#) ; (5)where the sum in the denominator is over all 2k values in the parameterspace �. Clearly, evaluating this sum is feasible for small k only.Often, one will be interested in the marginal posterior distribution of the� parameter. Again in the Appendix, it is shown that integrating out � inEq. (5) results in: p(�jy) = 1( nD�)P#2� 1( nD#) : (6)



6The latter implies that two � parameters which are equally discrepant withy have equal posterior probabilities. Furthermore, it follows that if � hasone discrepancy fewer than �� then the ratio of their marginal posteriorprobabilities equals: p(�jy)p(��jy) = n�D�D�� : (7)3.2 Model estimationIn this section we show how one can gain insight in the posterior distributionby drawing simulations with a Gibbs-Metropolis algorithm:Step 0 As an initialization step, m estimates �(s;0) and m estimates �(s;0),(s = 1; : : : ;m), are constructed as follows: �(s;0) is a random binaryvector with Pr(�(s;0)j = 1) = 0.5 (j = 1; : : : ; k) and �(s;0) is given thevalue: �(s;0)  D(y; �(s;0)) + 1n+ 2 :We add 1 in the nominator and 2 in the denominator to avoid initialestimates of � to be 0 or 1 (Gelman et al., in preparation).Step 1 We runm parallel sequences of a Metropolis algorithm, with (�(s;0); �(s;0))as the starting point for sequence s (s = 1; : : : ;m). At each iteration t(t = 1; 2; : : :), the following substeps are executed for each sequence s:1. A candidate value �� is constructed based on the value �(s;t�1)in the previous iteration. Therefore, �rst an integer w(s;t) froma discrete density (e.g., Poisson or binomial) is drawn with therestriction 1 � w(s;t) � k. Next, w(s;t) entries in �(s;t�1) arerandomly selected and subsequently changed (from either 0 into 1or 1 into 0) to obtain ��. As such, w(s;t) represents the number ofentries in �� that are changed from �(s;t�1).This procedure for constructing �� technically corresponds to draw-ing from the following jumping distribution:J(��j�(s;t�1)) = kXw=1 1�kw�p(w);where p(w) is the (truncated) discrete density mentioned above.The jumping distribution returns the probability of considering thecandidate ��, given the value of �(s;t�1) of the previous iteration.Clearly, J is symmetric: J(��j�) = J(�j��) such that the resultingalgorithm is of the Metropolis type.



72. The ratio of the posterior densities, or equivalently, the ratio ofthe likelihoods, is calculated:r = p(yj��; �(s;t�1))p(yj�(s;t�1); �(s;t�1)) = �1� �(s;t�1)�(s;t�1) �D(y;�(s;t�1))�D(y;��) :3. Values are assigned to �(s;t) and �(s;t):�(s;t)  � �� with probability min(1, r)�(s;t�1) otherwiseThe value for �(s;t) is obtained by a draw from a Beta(D(y; �(s;t))+1; n�D(y; �(s;t)) + 1) distribution.These steps are repeated until the m sequences appear mixed. Gelmanand Rubin's (1992)pR̂ statistic may be used as a diagnostic instrumentin monitoring the convergence.Step 2 In order to obtain L posterior simulation draws, the procedure de-scribed in step 1 continues, after convergence of the sequences, foranother L=m iterations. The latter draws in the m sequences arecollected and will eventually constitute the set of simulation drawsf(�(l); �(l)) j (l = 1; : : : ; L)g from the posterior distribution.3.3 Model checkingA natural way for model checking in Bayesian statistics is using posteriorpredictive checks. Therefore, we proceed with the next steps:Step 3 For each of the L posterior simulation draws a replicated data sety(l) is simulated as follows: First, ŷ(l) = ŷ(�(l); X) is computed usingEq. (1), and, subsequently, the n components of y(l) are independentlysimulated from ŷ(l) based on Eq. (3) (with �(l) substituted for �).Step 4 A test variable T (y; �) is de�ned which summarizes some aspect ofinterest of the data or the discrepancy between model and data.Step 5 The realized value T (y; �(l)) for the observed data and the replicatedvalue T (y(l); �(l)) for the replicated data are computed for each of theL simulation draws.Step 6 The realized value and the replicated value are compared to estimatethe posterior predictive p-value as the proportion of the L simulationsfor which T (y(l); �(l)) > T (y; �(l)).The model checking procedure presented here will be illustrated in the ex-ample.



84 Illustrative Application4.1 Problem and DataIn this section we illustrate the new approach by an example in the �eld ofde�ning emotion concepts. According to Wierzbicka (1992, p. 541), emotionconcepts can be de�ned by a set of singly necessary and jointly su�cientsemantic primitives, which are \terms of words which are intuitively under-standable (nontechnical), and which themselves are not names of speci�cemotions or emotional states." Table 1 lists some of the semantic primitivesshe proposed. As her de�nitions of emotions are conjunctive combinationsof semantic primitives, a Boolean regression model may be expected to ap-propriately describe the relation between semantic primitives (as predictors)and an emotion concept (as the criterion). Whereas Wierzbicka deals withexplicit de�nitions (i.e., by experts), the present study considers implicit the-ories in laymen and evaluates whether these implicit theories are conjunctivecombinations of semantic primitives as well.Predictor Semantic primitiveX1 A person did something badX2 I don't want thisX3 I would want to change thisX4 I would want to do something bad to somebodyX5 I feel badX6 Something bad happenedX7 I would want that something didn't happenX8 I can't change the situationX9 Something good happenedX10 I want something like thisX11 I feel goodX12 Somebody did something goodX13 I don't want to change thisX14 I would want to do something good for somebodyTable 1: List of the (noncomplemented) predictors for the Boolean regressionanalyses in the applicationFive �rst-year psychology students of the University of Leuven were eachasked to generate twenty di�erent situations in which they had recently beeninvolved and felt either angry, sad, grateful, or happy. Next, the subjects wereasked to specify for the twenty situations they generated: (1) whether or noteach of 14 semantic primitives in Table 1 was true for the given situation and(2) whether or not they experienced each of the 4 forementioned emotions:anger, sadness, gratitude, and happiness. In the analyses, the 5 � 20 situa-



9tions were concatenated, resulting into n = 100 observations, and both theoriginal and the complemented semantic primitives are included as predic-tors, eventually resulting in 28 predictors (X1; : : : ; X14;:X1; : : : ;:X14) and4 criteria Yangry, Ysad, Ygrateful, and Yhappy. Because the results for both neg-ative emotions, anger and sadness, were very similar, as the results for bothpositive emotions, gratitude and happiness, were, only analyses with angerand happiness are presented in the following sections.4.2 Deterministic analysisOptimal conjunctive logical rules (i.e., with minimal number of discrepan-cies) were found using the previously discussed branch-and-bound algorithm(Leenen & Van Mechelen, 1998). For Yangry, the best logical rule combinesthe complements of the predictors 9, 10, and 14: A person reports (s)he ex-periences anger in a given situation i� \it is not the case that something goodhappened and (s)he does not want something like this and (s)he does notwant to do anything good for somebody." Yhappy on the other hand is bestpredicted by the single predictor 9: A person reports (s)he feels happy i�\something good happened." Table 2 presents some goodness-of-�t indicesfor both optimal rules.Emotion Optimal rule % discrepancies Jaccard index �̂pAnger :X9 ^ :X10 ^ :X14 9 .80 .75Happiness X9 6 .89 .88Table 2: Optimal logical rules for Yangry and Yhappy and associated goodness-of-�t statistics as found by a deterministic analysis4.3 Bayesian analysis4.3.1 Model estimationThe procedure discussed in Section 3.2 was used to simulate the posteriordistribution of (�; �). For each criterion, we ran m = 5 sequences of thedescribed Gibbs-Metropolis algorithm. After convergence, namely when Gel-man and Rubin's (1992) R̂-statistic was smaller than 1.1 for each of theparameters �j (j = 1; : : : ; 28) and �, another 2000 runs in each sequencewere executed, ending up with L = 10000 posterior draws for each criterion.Table 3 gives the marginal distribution of the �-parameters (or, equiva-lently, the conjunctive combinations) for anger and happiness, respectively.The results of the Bayesian analysis show that the rule found by the deter-ministic branch-and-bound algorithm may be one of several \best" solutions:For anger, (at least) �ve di�erent conjunctive combinations have a minimal



10Logical rule Posterior probability % discrepanciesAngry:X10 ^ :X11 ^ :X12 ^ :X14 .189 9:X9 ^ :X10 ^ :X14 .183 9:X9 ^ :X10 ^ :X11 ^ :X12 ^ :X14 .183 9:X9 ^ :X10 ^ :X11 ^ :X14 .166 9:X9 ^ :X10 ^ :X12 ^ :X14 .164 9:X10 ^ :X12 ^ :X14 .019 10:X10 ^ :X11 ^ :X14 .015 10other < :006 � 11HappyX9 .204 6:X4 ^X9 .185 6:X1 ^ :X4 ^X9 .170 6:X1 ^X9 .170 6:X4 ^X11 .030 7:X5 ^X9 .023 7:X1 ^ :X5 ^X9 .017 7:X1 ^ :X4 ^X11 .017 7:X4 ^ :X5 ^X9 .017 7:X4 ^ :X5 ^X11 .017 7X11 .016 7:X1 ^ :X4 ^ :X5 ^X11 .016 7:X1 ^ :X5 ^X11 .016 7:X5 ^X11 .015 7:X1 ^ :X4 ^ :X5 ^X9 .014 7:X1 ^X11 .010 7other < :004 � 8Table 3: Simulated posterior distribution of � for Yangry and Yhappynumber of discrepancies and two have only 1 discrepancy more; for happiness,four conjunctive combinations do equally well and 12 logical rules have 1 dis-crepancy more. (In our example, n = 100, so the % discrepancies in Table 3are equal to the number of discrepancies. In the table, models with the samenumber of discrepancies have di�erent computed posterior probabilities; thisis entirely due to simulation variability.) The wide range of available modelsthat �t about equally well indicates that the stochastic extension can add aconsiderable amount of information to the deterministic analysis, as other-wise only a single rule might be considered. For this particular case, one mayremark that most of the other rules merely add one or more predictors tothe rule found by the deterministic algorithm, which make them less impor-



11tant as the added predictors cannot be considered singly necessary. But eventhen, the Bayesian analysis gives more insight into the uncertainty associatedwith the best solutions and into which other values for � can reasonably beconsidered for the given data set. With respect to the uncertainty associatedwith the models, it was found for anger that � = :100 and for happiness that� = :072.For the criterion anger, only �ve predictors showed up in the conjunctiverules with posterior probability over .10, namely: :X9, :X10, :X11, :X12,and :X14. Similarly, for happiness, the logical rules with highest posteriormass only use a subset of the six predictors :X1, :X4, :X5, X9, X10, andX11. By way of illustration, we discuss the results of a reanalysis of bothcriteria with only the semantic primitives that appeared relevant as predic-tors. This allows us to theoretically compute the posterior distributions andto compare this theoretical distribution with the simulated distribution. Likein the previous analysis, we use m = 5 sequences and, after convergence, wecollect L = 10000 posterior draws for both criteria.Table 4 displays the marginal posterior distribution of � for anger andhappiness respectively, both the simulated and the theoretical posterior dis-tribution. The results show that the simulated distribution is always close tothe theoretical distribution, from which we may conclude that the estimationprocedure works �ne.4.3.2 Model checkingIn this section, the posterior-predictive-check approach is illustrated for check-ing one assumption that implicitly underlies the model applied in the previoussubsection. We assumed that � was constant across observations (see, Eq (3))such that in the study discussed above, no di�erences among the �ve subjectsinvolved are allowed. Or, otherwise stated, the subjects apply the respectivelogical rules with equal accuracy.Individual di�erences in error rate may be quanti�ed by the variancein number of prediction errors between the �ve subjects. Therefore, a testvariable T (y�) is de�ned as:T (y; �) = 5Ph=1 hDh(y;�)20 � D(y;�)100 i25� 1 ;where Dh is the number of discrepancies between the 20-component y and ŷvector of subject h. The larger the variation among subjects, the larger thevalue of T .For both criteria anger and happiness, 10000 replicated data sets y(1); : : : ;y(10000) were simulated as described in Section 3.3 and both the realized valueT (y; �(l)) and the replicated value T (y(l); �(l)) (l = 1; : : : ; 10000) were calcu-lated. Next, posterior predictive p-values were computed as the proportion of



12 Exact SimulatedLogical rule posterior probability posterior probabilityAngry:X9 ^ :X10 ^ :X11 ^ :X12 ^ :X14 .189 .212:X9 ^ :X10 ^ :X11 ^ :X14 .189 .189:X9 ^ :X10 ^ :X14 .189 .189:X10 ^ :X11 ^ :X12 ^ :X14 .189 .178:X9 ^ :X10 ^ :X12 ^ :X14 .189 .170:X10 ^ :X11 ^ :X14 .021 .028:X10 ^ :X12 ^ :X14 .021 .017other < :005 < :003HappyX9 .200 .212:X1 ^X9 .200 .195:X4 ^X9 .200 .192:X1 ^ :X4 ^X9 .200 .190:X1 ^ :X5 ^X11 .015 .019:X4 ^ :X5 ^X9 .015 .019:X5 ^X9 .015 .018:X1 ^X11 .015 .018:X5 ^X11 .015 .017:X1 ^ :X4 ^ :X5 ^X11 .015 .017:X1 ^ :X4 ^X11 .015 .016:X1 ^ :X5 ^X9 .015 .015:X4 ^ :X5 ^X11 .015 .015:X1 ^ :X4 ^ :X5 ^X9 .015 .013X11 .015 .013:X4 ^X11 .015 .012other < :003 < :002Table 4: Exact and simulated posterior distribution of � for Yangry and Yhappyusing relevant predictors onlythe 10000 simulations for which T (y; �(l)) > T (y(l); �(l)). For anger, the pos-terior predictive p-value equals .566 and for happiness, it equals .624, whichis visualized in Figure 1. Figure 1 plots the observed versus the replicatedvalues on the test variable: Roughly half the number of points lie above andhalf the number of points below the �rst bisector. As a result, it is con-cluded that the posterior predictive check provides no evidence for individualdi�erences in accuracy.



13

Figure 1: Plot of the realized T (y; �(l)) versus the replicated T (y(l); �(l)) forthe emotions \happy" and \angry." The x and y coordinates are jittered byadding normal random numbers to each point's coordinates (with standarddeviation .001) in order to display multiple values.5 Concluding remarksIn some cases, one may expect the probability of a false positive to di�erfrom the probability of a false negative prediction error. For example, in amedical context, caution may cause a bias in predicting success on a dan-gerous surgery which makes it unlikely that failure occurs when success waspredicted, whereas the reverse prediction error is (fortunately) more likely.As discussed by Gelman et al. (in preparation), the model can be straight-forwardly expanded by allowing di�erent error rates �0 and �1 for responsespredicted to by 0 and 1, respectively.In contrast with most other Bayesian generalizations of deterministic dis-junctive/conjunctive models (Gelman et al., in preparation), there is for theBoolean regression model no need to restrict � (or �0 and �1) to be smallerthan 0.5. Moreover, allowing � to cover the complete range from 0 to 1 maybe helpful in distinguishing between disjunctive and conjunctive associationrules. From our discussion on the duality of conjunctive and disjunctive rulesin Section 2.1, it is clear that if for each Xj both the original variable Xj andthe complemented variable :Xj are included as predictors then a conjunctiverule with error rate � is formally equivalent with a disjunctive rule with error1� �. The analyses in section 4 for the illustrative example did include forevery predictor both the original and the complemented version and resultedinto values for � that are (considerably) smaller than 0.5. Hence, for thisparticular case a conjunctive rule is found to be more appropriate than adisjunctive one, which is a result that corresponds with earlier theories and



14that was established only a posteriori.As a �nal comment, we note that both the deterministic and Bayesianapproaches for Boolean regression seems to be less useful when the numberof observations is very large. For, it is true in general that the variancein D(y; �) among �, (i.e., di�erences in number of discrepancies associatedwith the respective models) is expected to increase with the number of ob-servations. And more in particular, the di�erence between the best and thesecond best model most likely increases with the number of observations.From Equations (6) and (7), which make clear how the posterior density de-pends on the number of discrepancies, it follows that the larger the numberof observations, the sharper the (marginal) posterior distribution (for �) ispeaked. This implies that if a model � for some data set with, say, n = 1million observations has 10% discrepancies and �� has 10:01% discrepancies,then � has a much higher posterior density than ��. How this �nding canbe reconciled with the intuition that both models should have about equalposterior density, is one of the objectives for further research.
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16Appendix: Deriving posterior distributionsWe �rst work out the prior predictive distribution p(y):p(y) = X#2��Z 10 p(yj#; �)p(#)p(�)d��= X#2��Z 10 �D#(1� �)n�D# 12k 1 d��= X#2��B(D# + 1; n�D# + 1)2k Z 10 1B(D# + 1; n�D# + 1)�D#(1� �)n�D#d��= X#2�� 12k D#!; (n�D#)!(n+ 1)! �= 12k(n+ 1) X#2� 1� nD#�The integral in the third step being equal to 1 as it is the area under a Betadensity.For the posterior distribution of (�; �), we start from Eq. (4):p(�; �jy) = p(yj�; �)p(�; �)p(y)= �D� (1� �)n�D� 12k12k(n+1) P#2� 1( nD#)= (n+ 1) �D� (1� �)n�D�P#2� 1( nD#)To derive the marginal posterior distribution of �, � is integrated out in thejoint posterior distribution for � and � in the formula above.p(�jy) = Z 10 p(�; �jy) d�= Z 10 (n+ 1) �D� (1� �)n�D�P#2� 1( nD#) d�= 1( nD�)P#2� 1( nD#) Z 10 � nD��(n+ 1) �D� (1� �)n�D�d�;the latter integral being 1 as it is again the area under a Beta density.


