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SUMMARY

It is well known that, for estimating a linear treatment effect with constant variance, the optimal design
divides the units equally between the two extremes of the design space. If the dose–response relation
may be nonlinear, however, intermediate measurements may be useful in order to estimate the effects of
partial treatments. We consider the decision of whether to gather data at an intermediate design point: do
the gains from learning about nonlinearity outweigh the loss in efficiency in estimating the linear effect?
Under reasonable assumptions about nonlinearity, we find that, unless sample size is very large, the design
with no interior measurements is best, because with moderate total sample sizes, any nonlinearity in the
dose–response will be difficult to detect. We discuss in the context of a simplified version of the problem
that motivated this work—a study of pest-control treatments intended to reduce asthma symptoms in
children.
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1. INTRODUCTION

1.1. An experimental design problem

It is well known that, when estimating a linear treatment effect with constant measurement variance,
the optimal design is to find the two most extreme points on the design space (e.g. no treatment and some
maximum feasible treatment level) and take half the measurements at each extreme. If the dose–response
relation may be nonlinear, however, intermediate measurements may be useful in order to estimate the
effects of partial treatments. We consider the decision of whether to gather data at an intermediate design
point: do the gains from learning about nonlinearity outweigh the loss in efficiency in estimating the linear
effect? Setting up this problem goes beyond the usual paradigm of optimal experimental design because
we must consider multiple inferential goals.

The decision of how to spread the measurements clearly depends on the sample size—or, equivalently,
the ratio between the treatment effect and the measurement standard deviation. If the sample size is
large enough, then there is power available to estimate a curved dose–response relation. Conversely, with
small sample size, the estimation uncertainty will be so large that, even with intermediate measurements,
any nonlinearity in the dose–response curve will most likely be undetectable, in the sense of being not
statistically significant, in which case it makes sense to devote all data collection effort to the endpoints
so as to estimate the linear trend in the treatment effect most efficiently.

We study this problem by setting up a simple model for a potentially nonlinear treatment effect and
then consider the bias, variance, and mean squared error of various design/estimator combinations (as
in Box and Draper, 1959; Jones and Mitchell, 1978; and Welch, 1983). We find that, with reasonable
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departures from linearity and moderate sample sizes, the simple design with no interior measurements has
lowest mean squared error.

In a mathematical sense, the methods in this paper are straightforward. Our contribution is to use prior
considerations to set up a range of reasonable sample sizes and departures from linearity over which to
compare the competing designs. In addition to the relevance of our particular findings, we hope that this
general approach will be useful in evaluating designs for other statistical problems.

1.2. Motivating application

This research was motivated by a study of an integrated pest management plan for reducing cockroach
infestation and allergic sensitivity for inner-city children with asthma, supervised by Dr Patrick Kinney of
the Division of Environmental Health Sciences at Columbia University.

The treatment intervention, applied to cockroach-infested apartments, involves laying out poison and
then returning a few weeks later to clean the apartment, seal off possible entry points, and instruct the
residents on roach control measures. By far the most expensive part of the treatment is the cleaning and
sealing of the apartment, which requires the services of several laborers for a day, at a total cost of about
$700. The partial treatment would be to do a less effective half-day job.

The plan is to study 36 pairs of children, with a new pair enrolled in the study every 10 days, thus
taking a year for the entire study, which conveniently averages over seasonal effects. In each pair, the
treated child’s apartment gets cleaned immediately and the control child’s is cleaned 8 months later. Units
are followed up from enrollment until 1 year after intervention. The total costs of all the treatments is
small compared to the budget of the entire study, so in our analysis we consider the sample size as fixed
even if some units receive only the half treatment.

The experiment has further complications, but for the purposes of this paper, we consider only the
basic analysis of the randomized experiment comparing outcomes between units. In fact, we consider an
idealized version of this analysis, ignoring covariates such as pairing information, season, and measure-
ments on pre-treatment variables such as the child’s asthma symptoms and apartment infestation level.
This information would be included in a regression model, at which point our results here are relevant if
we take them to refer to the treatment effects conditional on the predictor variables.

Finally, the endpoints of the applied analysis will include immediate outcomes such as cockroach
infestation and indirect outcomes such as the child’s allergic sensitivity and asthma symptoms. For this
paper, we assume that only a single continuous outcome is being measured.

2. MODEL

2.1. Notation

Consider a dose–response of the form g(x), where x can range from 0 (no treatment) to 1 (maximum
possible treatment); see Figure 1. Assume we can afford to take n measurements with independent errors:
yi ∼ N(g(xi ), σ

2), with the treatment levels xi chosen by the experimenter. We consider designs with
n0, n1, n2 measurements at x = 0, 0.5, 1, respectively. The means have independent distributions ȳx ∼
N(g(x), σ 2/nx ).

Our estimands of interest are the full treatment effect,

θ1 = g(1) − g(0),

which we assume is nonzero, and the effect of a half treatment,

θ0.5 = g(0.5) − g(0).
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Fig. 1. Dose–response functions for different values of the nonlinearity parameter δ. If the curve is monotonic in

[0, 1], then δ must be between − 1
2 and 1

2 . If we further assume that the curve is quadratic, then δ must be between

− 1
4 and 1

4 .

It will be useful to define the relative nonlinearity of the treatment effect,

δ = 0.5θ1 − θ0.5

θ1
. (1)

We shall also be working with a quadratic model for the dose–response, which we parameterize as

g(x) = β0 + β1(x − 0.5) + β2(x − 0.5)2. (2)

We assume that we are interested only in estimating efficacy as a function of treatment level x ; we thus
ignore complications, such as multiple outcomes and toxicity, that would introduce other design criteria.

2.2. Designs and estimators

We consider a family of designs, indexed by a weight w between 0 and 1, with measurements at the
two endpoints and the center:

n0 = n1 = (1 − w)n/2, n0.5 = wn. (3)

The special case w = 0 corresponds to the design with all data at the endpoints; w = 1 corresponds to
the (nonsensical) design with all data at the center. We will focus on the designs w = 0 (equal sample
sizes at 0 and 1) and w = 1

3 (equal sample sizes at 0, 0.5, and 1). The symmetry of the problem and the
equal-variance assumption allows us to constrain n0 = n1.

As a function of w, we determine the mean squared errors of the following four estimates of the full
and partial treatment effects, θ1 and θ0.5.
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2.2.1. Linear regression

If we fit a linear regression to the data, the treatment effects are determined directly from the regression
slope, which, from the symmetry of the design, has a least-squares estimate of ȳ1 − ȳ0; thus:

θ̂ lin
1 = ȳ1 − ȳ0

θ̂ lin
0.5 = 0.5(ȳ1 − ȳ0). (4)

2.2.2. Quadratic regression

Fitting a quadratic regression to the three data points is equivalent to estimating g(x) by ȳx for x =
0, 0.5, 1, and thus yields

θ̂
quad
1 = ȳ1 − ȳ0

θ̂
quad
0.5 = ȳ0.5 − ȳ0. (5)

2.2.3. Quadratic-if-significant

A method that mimics standard practice is to fit a quadratic regression and then, if the quadratic term
is statistically significant (that is, more than two standard errors away from 0), use the estimates (5),
otherwise using the estimates (4) based on the linear regression fit. For our symmetric design, the least-
squares estimate of the quadratic term is simply

β̂2 = 2ȳ0 + 2ȳ1 − 4ȳ0.5, (6)

with estimation variance

var(β̂2) = 16

w(1 − w)

σ 2

n
. (7)

The variance in (7) comes from evaluating the variance of (6) with the sample sizes in (3).

2.2.4. Bayesian

Fitting a Bayesian quadratic regression with a prior distribution on the curvature; as discussed in Sec-
tion 3, a normal prior distribution on the nonlinearity parameter δ (see (1)) with mean 0 and standard
deviation 1

4 might be reasonable. Since we are focusing on mean squared error, it makes sense to define
the Bayes estimates of θ1 and θ0.5 as their posterior means.

Computation for this Bayesian model is not trivial; expression (1) is a nonlinear function of the θx s
and thus of the regression coefficients, and so a normal prior distribution on δ is not conjugate to the
normal regression likelihood. Simulation-based computation of this model would be possible, but for the
purposes of this paper it is enough to construct an approximate conjugate prior distribution by plugging
the point estimate θ̂1 = ȳ1 − ȳ0 (note that this is both θ̂ lin

1 and θ̂
quad
1 above) into the denominator of (1) to

yield a prior distribution for 0.5θ1 − θ0.5, which is in fact equal to 1
4 times the quadratic term β2 in (2).

Assuming a N(0, ( 1
4 )2) prior distribution for δ then yields

β2 ≈ N(0, (ȳ1 − ȳ0)
2).

The approximate posterior estimate of β2 is a precision-weighted average and the prior mean, which is
0; thus: estimated (6) from the data

β̂
Bayes
2 = (2ȳ0 + 2ȳ1 − 4ȳ0.5)λ,
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where λ is the Bayes shrinkage factor,

λ = (ȳ1 − ȳ0)
2

(ȳ1 − ȳ0)2 + 16
w(1−w)

σ 2

n

. (8)

The approximate posterior mean estimates are then

θ̂
Bayes
1 = ȳ1 − ȳ0

θ̂
Bayes
0.5 = 0.5β̂1 − 0.25β̂2 = 0.5(ȳ1 − ȳ0) − 0.25(2ȳ0 + 2ȳ1 − 4ȳ0.5)λ.

The Bayes estimate depends on λ and thus σ (see (8)), which can be estimated from the data by the pooled
variance of measurements within the three groups. In our analysis, we shall assume σ is known.

In the special case w = 0, the linear estimate is the only reasonable possibility: the quadratic estimate
of θ0.5 is undefined, and the quadratic-if-significant and Bayes estimates reduce to the linear estimates.

2.3. Computing mean squared errors

We evaluate the designs and estimators by their mean squared errors (mse), which we will express as
multiples of σ 2/n.

As noted above, the estimate for θ1 is simply ȳ1− ȳ0 for all methods; this has a bias of 0 and a variance
(and, thus, mse) of 4

1−w
σ 2/n. Clearly, any motivation for setting w > 0 will come from the estimation of

θ0.5.
The mse of θ0.5 has simple analytic forms for the linear and quadratic estimators. For the linear esti-

mator, the bias is 0.5θ1 − θ0.5 = δθ1 and the variance is 1
1−w

σ 2/n, and so

mse(θ̂ lin
0.5) = δ2θ2

1 + 1

1 − w

σ 2

n
=

(
δ2T 2 + 1

1 − w

)
σ 2

n
.

For the quadratic estimator, the bias is 0 and the variance is 1
w

σ 2/n + 2
1−w

σ 2/n, and so the mse is,
after simplifying,

mse(θ̂quad
0.5 ) = 1 + w

w(1 − w)

σ 2

n
.

The mses of the quadratic-if-significant and Bayes estimators can be most easily evaluated by sim-
ulation. We simply draw 1000 data vectors (y0, y0.5, y1) under the model, with means and variances
determined by g(0), g(0.5), g(1), σ 2/n, and w. Without loss of generality in evaluating mse as a multiple
of σ 2/n, we can set g(0) = 0, g(1) > 0, and σ 2/n = 1. We can then write the dose–response at the
design points as a function of δ and T : g(0) = 0, g(0.5) = (0.5 − δ)T , and g(1) = T , with measurement
variances var(ȳ0) = var(ȳ1) = 2

1−w
σ 2/n and var(ȳ0.5) = 1

w
σ 2/n. Once we have simulated the data, we

compute the estimates from each simulation draw, then compute the mse for each estimate as the mean
squared difference between the estimate and the postulated true value, θ0.5 = (0.5 − δ)T . Note that, in
computing the mse of the Bayes estimate, we are not averaging over the prior distribution or assuming
that it is true.

3. PRIOR INFORMATION

The properties of the estimates depend on the nonlinearity parameter δ = (0.5θ1 − θ0.5)/θ1 and the
ratio of the treatment effect to the estimation uncertainty,

T = |θ1|
σ

√
n.
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What prior information is available on δ and T ?
We first consider δ. If the treatment effect is monotone, then δ must be between − 1

2 and 1
2 (see Figure

1). If we further constrain the treatment effect to be quadratic and monotone in the range (0, 1), then δ

must lie between − 1
4 and 1

4 . The quadratic assumption is stronger than it may seem at first, however,
since the assignment of an intermediate treatment to the value of x = 0.5 is somewhat arbitrary in many
practical examples with qualitative treatments. It also seems reasonable, in the absence of other prior
information, to set a unimodal prior distribution for δ centered at 0. If, for mathematical convenience, we
wish to use a normal prior distribution, it seems reasonable to set the mean to 0 and the standard deviation
at 1

4 (which puts 95% of the prior mass in [− 1
2 , 1

2 ]).

We use our prior inference on δ in two ways. First, it is used in constructing the estimate θ̂
Bayes
0.5 above.

Second, the statistical properties of our estimators under the various designs depend crucially on δ; based
on our prior considerations, we need only consider the range |δ| ≤ 1

2 .
We do not put a formal prior distribution on T , but we shall attempt to get an idea of its order of

magnitude by supposing that the experiment as initially designed (with n0 = n1 = n/2) has a sample size
that is just about large enough that θ1 can be statistically distinguished from zero. Suppose that means
that the absolute value of θ1 is in the range of 2 to 4 times as large as the standard deviation of its estimate.
The variance of the simple estimate of θ1 is 2

n σ 2 + 2
n σ 2 = 4σ 2/n, and so we are assuming

2(2σ/
√

n) < |θ1| < 4(2σ/
√

n);
that is, |T | is between 4 and 8. In other settings, an experiment may be designed to estimate parameters
such as θ1 very precisely, in which case |T | could be much higher than 8.

4. RESULTS

We compute the mean squared errors (mse) of θ̂1 and θ̂0.5, as a function of δ and T , for four de-
sign/estimator combinations: (1) w = 0 (measurements only at the endpoints) with the linear estimator,
(2) w = 1

3 (equal sample sizes at all three design points) with the quadratic estimator, (3) w = 1
3 with

the quadratic-if-significant estimator, and (4) w = 1
3 with the Bayes estimator. For w = 0, only the linear

estimator is possible, since the others use ȳ0.5, which does not exist if w = 0. Conversely, for w = 0, we
need not consider the linear estimator since, if one were planning to use it, there would be no reason to
gather data at the center point.

Figure 2 displays the mses as a function of |δ| ∈ [0, 0.5], for T = 4 and 8, which correspond to a full
treatment effect that is two or four standard deviations away from zero. In reading these graphs, we focus
on the range |δ| ≤ 1

4 , which corresponds to a quadratic and monotone treatment effect.
For T = 4—that is, a treatment effect that is on the border of statistical significance—the w = 0 design

dominates as long as |α| < 0.25. If |α| lies between 0.25 and 0.5, the w = 1
3 design performs better,

but only if the Bayes estimate is used. The quadratic and quadratic-if-significant estimates perform much
worse.

For T = 8, so that the linear treatment effect is clearly statistically significant, the w = 0 design
dominates if |α| < 0.15, and the w = 1

3 with Bayes estimator dominates if |α| lies between 0.15 and 0.5.
As T increases beyond 8, the w = 1

3 design eventually becomes best even for small values of α.
We repeated these calculations for other values of w and found that, when w = 1

3 is preferred to
w = 0, it also does approximately as well as or better than other values of w between 0 and 1

3 . Thus we
are satisfied with treating this problem as a comparison between the two choices of w = 0 and w = 1

3 .
Given these results, we can make some recommendations.

• If the sample size is small, so that the treatment effect is expected to be on the border of statistical
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Fig. 2. Mean squared error (as a multiple of σ 2/n) for four design/estimator combinations of θ̂0.5 as a function of |δ|,
the relative magnitude of nonlinearity of the dose–response. The plots show T = 4 and T = 8, which correspond to
a treatment effect that is two or four standard deviations away from zero. The design w = 0 (all the data collected
at the two extreme points) dominates unless both |δ| and T are large. When the design w = 1

3 (data evenly divided
between the three design points) is chosen, the Bayes estimate has the lowest mean squared error for the range of δ

and T considered here.

significance, then we recommend the simple design with data only at the extreme points. In addition
to providing the best estimate of θ0.5 under the reasonable assumption that |δ| < 0.25, this design
is uniformly optimal for estimating the main treatment effect θ1.

• If the sample size is large enough that the treatment effect can be estimated with high precision, and
the dose–response might be far from linear, then we recommend collecting data at x = 0, 0.5, and
1, and using the Bayes estimate.

• In any case, if the sample size is moderate and measurements are taken at an intermediate design
point, then the Bayes estimate with N(0, ( 1

4 )2) prior distribution on δ is preferable to the quadratic
or quadratic-if-significant estimates. If it is known in advance that the Bayes estimate will not be
used, then we do not recommend collecting data at the intermediate point.

5. CONCLUSIONS

5.1. General recommendations

We have compared two design for estimating the effects of a continuous treatment: the simple two-
point design with data only at the extremes of design space, and a three-point design with data at the
extremes and center of design space. Assuming fixed total sample size and constant measurement vari-
ance, the decision to collect data at an intermediate design point sacrifices efficiency in the estimation
of the full treatment effect, θ1, with the goal of more efficiently estimating θ0.5, the effect of a partial
treatment.

Under reasonable assumptions on the magnitude of the nonlinearity of the dose–response, we find
that, even for the goal of estimating θ0.5, the simple design outperforms the design with intermediate data
unless the nonlinearity is large and the sample size is large enough that the main treatment effect is several
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standard deviations away from 0. Thus, we recommend that the simple design be used unless there is a
large sample size and a suspicion of nonlinearity, in which case the three-point design is superior, as long
as the Bayes estimate is used (as discussed in Section 4).

A natural area of further research is to consider multifactor designs and designs with more than three
treatment levels.

5.2. Application to our example

In the experiment that motivated this project, described in Section 1.2, our sample size was fairly small,
and variability between individuals was large enough that we doubted we would obtain highly significant
treatment effect estimates. Thus, we chose the simple design with no data at the intermediate point. If
the results of our experiment are promising, we may recommend large-scale public intervention to clean
the apartments of inner-city children with asthma. In this case, we would expect different municipalities
and different individuals to apply different levels of treatments (based on budgetary constraints if nothing
else), and a large sample would be available for follow-up at a variety of different treatment levels.
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