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Abstract1

We describe a numerical scheme for evaluating the posterior moments of Bayesian2

linear regression models with partial pooling of the coefficients. The principal analyt-3

ical tool of the evaluation is a change of basis from coefficient space to the space of4

singular vectors of the matrix of predictors. After this change of basis and an analyt-5

ical integration, we reduce the problem of finding moments of a density over k + 26

dimensions, to finding moments of a 2-dimensional density, where k is the number of7

coefficients. Moments can then be computed using, for example, MCMC, the trape-8

zoid rule, or adaptive Gaussian quadrature. An evaluation of the SVD of the matrix9

of predictors is the dominant computational cost and is performed once during the10

precomputation stage. We demonstrate numerical results of the algorithm.11

Keywords Bayesian Regression · Singular Value Decomposition · Marginalization ·12

Fast Algorithms13

1 Introduction14

Linear regression is a ubiquitous tool for statistical modeling in a range of applications15

including social sciences, epidemiology, biochemistry, and environmental sciences16

(Gelman et al. 2013; Gelman and Hill 2007; Greenland 2000; Merlo et al. 2005;17

Bardini et al. 2017).18

A common bottleneck for applied statistical modeling workflow is the computa-19

tional cost of model evaluation. Since posterior distributions in statistical models are20

often high dimensional and computationally intractable, various techniques have been21

used to approximate posterior moments. Standard approaches often involve a vari-22

ety of techniques including Markov chain Monte Carlo (MCMC) or using a suitable23

approximation of the posterior.24
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In this paper, we describe an approach for reducing the computational costs for a25

particular class of regression models — those that contain parameters θ ∈ Rk such26

that θ has a normal prior and normal likelihood. These models represent only a subset27

of regression models that appear in applications. We focus our attention in this paper28

on normal-normal models because they have well known analytical properties and29

are more computationally tractable than the vast majority of multilevel models. A30

broader class of models, including logistic regression, contain distributions that are31

less amenable to the techniques of this paper and will require other analytical and32

computational tools. Mathematically, marginalization of normal-normal parameters33

is well-known and has been applied to the posterior by, for example, Lindley and34

Smith (1972). Our contribution is to provide a stable, accurate, and fast algorithm for35

marginalization.36

The primary numerical tool used in the algorithm is the singular value decomposi-37

tion (SVD) of the data matrix. As a mathematical and statistical tool, SVD has been38

known since at least 1936 (see Eckart and Young (1936)). Use of the SVD as a practical39

and efficient numerical algorithm only started gaining popularity much later, with the40

first widely used scheme introduced in Golub and Kahan (1965). Due in large part to41

advances in computing power, use of the SVD as a tool in applied mathematics, statis-42

tics, and data science has been gaining significant popularity in recent years, however43

efficient evaluation of SVDs and related matrix decompositions is still an active area44

of research (see Hastie et al. 2015; Halko et al. 2011; Shamir et al. 2016).45

Similar schemes to ours are used in the software packages lme4 (Bates et al. 2015)46

and INLA (Rue et al. 2017). There are several differences between the problems they47

address and their computational techniques, and those that we shall discuss here. While48

lme4 finds maximum likelihood and restricted maximum likelihood estimates, our goal49

is to find posterior moments. The software package INLA uses Laplace approximation50

on the posterior for a general choice of likelihood functions, whereas our algorithm51

is focused on fast and accurate solutions for only a particular class of densities: those52

with normal-normal parameters.53

The approach presented in this paper analytically marginalizes the normal-normal54

parameters of a model using a change of variables. After marginalization, posterior55

moments can be computed using standard techniques on the lower-dimensional den-56

sity. In particular, for a model that contains k + 2 total variables, k of which are57

normal-normal, our scheme converts the problem of evaluating expectations of a den-58

sity in k + 2 dimensions to finding expectations of a 2-dimensional density. After59

marginalization, we evaluate the 2-dimensional posterior density in O(k) operations.60

We illustrate our scheme on the problem of evaluating the marginal expectations61

of the unnormalized density62

q(σ1, σ2,β) = σ
−(k+1)
1 σ−n

2 exp

(

− γ (log(σ1))
2 −

σ 2
2

2
63

−
‖Xβ − y‖2

2σ 2
2

−
‖β‖2

2σ 2
1

)

, (1)64
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A fast regression via SVD and marginalization

where γ > 0 is a constant, σ1, σ2 > 0, and β ∈ Rk . We assume that X is a fixed65

n × k matrix, y ∈ Rn is fixed, and the normalizing constant of (1) is unknown. For66

fixed n, k ∈ N, the algorithm is nearly identical when X is an n × k matrix to when67

X is a k × n matrix. In the case where k % n, Kwon et al. (2011) also use SVD for68

marginalization. There are three main distinctions between their method and ours. (i)69

Our method applies to n × k matrices X for k < n and k > n. (ii) We use the SVD70

to analytically compute conditional second moments with respect to β, not only first71

moments. (iii) While they use MCMC for computing posterior moments, we use a72

high-order quadrature scheme.73

Using the standard notation of Bayesian models, density q is the unnormalized74

posterior of the model75

σ1 ∼ lognormal(0,
√

γ )

σ2 ∼ normal+(0, 1)

β ∼ normal(0, σ1)

y ∼ normal(Xβ, σ2).

(2)76

In Appendix A, we include Stan code that can be used to sample from density (1) using77

MCMC. We also include Stan code that samples from the marginalized 2-dimensional78

posterior obtained via the algorithm of this paper.79

Statistical model (2) is a standard model of Bayesian statistics and appears when80

seeking to model an outcome, y, as a linear combination of related predictors, the81

columns of X . In Gelman and Hill (2007), these models are described in detail and82

are used in the estimation of the distribution of radon levels in houses in Minnesota.83

See (Dias et al. 2013; Rover et al. 2020) for further examples.84

Density (1) is also closely related to posterior densities that appear in genome-wide85

association studies (GWAS; see Zhu and Stephens 2017; Meuwissen, et al. 2001;86

Azevedo et al. 2015) which can be used to identify genomic regions containing genes87

linked with a specific trait, such as height. Using the notation of (1), each row of matrix88

X corresponds to a person, each column of X represents a genomic location, entries89

of X indicate genotypes, and y corresponds to the trait. Due to technical advances in90

genome sequencing over the last ten years, it is now feasible to collect large amounts91

of sequencing data. GWAS models can contain data on up to millions of people and92

often between hundreds and thousands of genome locations (see Linner et al. 2019).93

As a result, efficient computational tools are required for model evaluation.94

The number of operations required by the scheme of this paper scales like O(nk2)95

with a small constant. The key analytical tool is a change of variables of β such that96

the terms,97

−
1

2σ 2
2

‖Xβ − y‖2 −
1

2σ 2
1

‖β‖2, (3)98

in (1) are converted to a diagonal quadratic form in Rk . After that change of vari-99

ables, expectations over q are analytically converted from integrals over Rk+2 to100

integrals over R2. The remaining 2-dimensional integrals can be computed to high101

accuracy using classical numerical techniques including, for example, adaptive Gaus-102

sian quadrature or even the 2-dimensional trapezoid rule.103
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The tools used in this paper to evaluate the expectations of (1) can also be used104

in the evaluation of expectations of multilevel and multigroup posterior distributions105

including, for example, the two-group posterior of the form,106

q(σ1, σ2, σ3,β) = exp

(

−
1

2σ 2
1

‖Xβ − y‖2

−
1

2σ 2
2

k1
∑

i=1

β2
i −

1

2σ 2
3

k1+k2
∑

i=k1+1

β2
i

)

,

(4)107

where X is a n × k matrix, y ∈ Rn , k1 and k2 are non-negative integers satisfying108

k1 + k2 = k, and σ1, σ2, σ3 > 0.109

The structure of this paper is as follows. In the following section we describe the110

analytic integration that transforms (1) from a k + 2-dimensional problem to a 2-111

dimensional problem. Section 3 includes formulas that will allow for the evaluation112

of posterior moments using the 2-dimensional density. In Sects. 4 and 5 we provide113

formulas for evaluating covariances of (1). In Sect. 6, we discuss the numerical results114

of the implementation of the algorithm. Conclusions and generalizations of the algo-115

rithm of this paper are presented in Sect. 7. Appendix A provides Stan code that can116

be used to sample from (1), and Appendix B includes proofs of the formulas of this117

paper.118

2 Analytic integration of ˇ119

In this section, we describe how we analytically marginalize the normal-normal param-120

eter β of density (1). We include proofs of all formulas in Appendix B.121

We start by in marginalizing β using a change of variables that converts the quadratic122

forms in (1) into diagonal quadratic forms. The resulting integral in the new variable,123

z, is Gaussian, and the coefficients of zi and z2
i are available analytically. The change124

of variables is given by the right orthogonal matrix of the singular value decomposition125

(SVD) of X . That is, we set126

z = V tβ (5)127

where the SVD of X is128

X = U DV t . (6)129

We define λi to be the i th element of the diagonal of D. The elements of diagonal need130

not be sorted. After this change of variables, we obtain the following identity for the131

last two terms of (1). A proof can be found in Lemma 5 in Appendix B.132

Formula 2.1

−
1

2σ 2
2

‖Xβ − y‖2 −
1

2σ 2
1

‖β‖2

= a0 +
k

∑

i=1

a2,i

(

zi −
a1,i

2a2,i

)2

+
a2

1,i

4a2,i

(7)133
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A fast regression via SVD and marginalization

where134

a2,i =
λ2

i

2σ 2
2

+
1

2σ 2
1

, (8)135

a1,i =
wi

σ 2
2

, (9)136

and137

a0 = −
yt y

2σ 2
2

(10)138

where139

w = V t Xt y. (11)140

After performing the change of variables z = V tβ and using (7), we now have an141

expression for density (1) in a form that allows us to use the well-known properties of142

a Gaussian with diagonal covariance. The following identity uses these properties and143

provides a formula for analytically reducing expectations of (1) from integrals over144

k +2 dimensions to integrals over 2 dimensions. After the formula is applied, we have145

a new density, q̃ , over only 2 dimensions. See Theorem 1 in Appendix B for a proof.146

Formula 2.2 For all σ1, σ2 > 0 we have147

∫

Rk
q(σ1, σ2,β)dβ = q̃(σ1, σ2) (12)148

where q̃(σ1, σ2) is defined by the formula149

q̃(σ1, σ2) = σ
−(k+1)
1 σ−n

2 exp

(

− γ log2(σ1) −
σ 2

2

2
150

+ a0 +
k

∑

i=1

a2
1,i

4a2,i

) k
∏

i=1

1
√

2a2,i

(13)151

where a2,i is defined in (8), a1,i is defined in (9), a0 is defined in (10), and γ is a152

constant.153

In (58) we provide a formula for q̃ in the case where both scale parameters have154

half-normal priors.155

Remark 1 Certain Bayesian models might contain correlated priors on β that will156

result in posteriors such as (28) of Sect. 4. For such models, we perform the change157

of variables that uses the fact that two diagonal forms over β can be simultaneously158

diagonalized.159

We include in Fig. 1 a plot of the density of q as a function of σ1 and β1 for fixed σ2160

and randomly chosen X and y. Figure 2 shows a plot of q as a function of σ2 and β for161

fixed σ1. Figure 3 provides an illustration of q̃ , obtained after the change of variables162

and marginalization described in this section.163
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P. Greengard et al.

Fig. 1 Density of q (see (1)) with respect to σ1 and β1, where γ = 8, n = 100, k = 10, and data were
randomly generated

Fig. 2 Density of q (see (1)) with respect to σ2 and β1, where γ = 8, n = 100, k = 10, and data were
randomly generated

3 Evaluation of posterior means164

Now that we have reduced the k + 2-dimensional density q to the 2-dimensional165

density q̃ , it remains to recover the posterior moments of q using q̃ . We first observe166

that moments of σ1 and σ2 with respect to q are equivalent to moments of σ1 and σ2167

over q̃ . That is,168

Eq(σ1) = Eq̃(σ1) (14)169

and170

Eq(σ2) = Eq̃(σ2). (15)171
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A fast regression via SVD and marginalization

Fig. 3 Log density of q̃ (see (13)) using the same q as Fig. 1, where n = 100, k = 10, and data were
randomly generated

As for moments of β, we use (13) and standard properties of Gaussians to obtain172

the following formula.173

Formula 3.1 For all σ1, σ2 > 0,174

∫

Rk
zi q(σ1, σ2,β)dβ =

a1,i

2a2,i
q̃(σ1, σ2) (16)175

where q is defined in (1), q̃ is defined in (13), a2,i is defined in (8), and a1,i is defined176

in (9).177

As an immediate consequence of (16), we are able to evaluate the posterior expectation178

of z as an expectation of a 2-dimensional density:179

Eq(zi ) = Eq̃

(

a1,i

2a2,i

)

. (17)180

We then transform those expectations back to expectations over the desired basis, β181

using the matrix V computed in (6). Specifically, using linearity of expectation and182

(17), we know183

Eq((β1, . . . ,βk)
t ) = Eq(V V t (β1, . . . ,βk)

t )184

= VEq(V t (β1, . . . ,βk)
t )185

= VEq((z1, . . . , zk)
t )186

= VEq̃

((

a1,1

2a2,1
, . . . ,

a1,k

2a2,k

)t)

. (18)187
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4 Covariance of ˇ188

In addition to facilitating the rapid evaluation of posterior means, the change of vari-189

ables described in Sect. 2 is also useful for the evaluation of higher moments.190

Equation (7) shows that after the change of variables from β to z, the resulting191

density is a Gaussian in z with a diagonal covariance matrix. Additionally, for each192

zi , using Eq. (7) and standard properties of Gaussians, we have the following identity.193

Formula 4.1 For all σ1, σ2 > 0, we have194

∫

Rk
(zi − µzi )

2q(σ1, σ2,β)dβ = (2a2,i )
−1q̃(σ1, σ2) (19)195

where µzi is the expectation of zi , q̃ is defined in (13), and a2,i is defined in (8).196

The second moments of the posterior of β are obtained as a linear transformation of197

the posterior variances of z. In particular, denoting the expectation of z by µz , we have198

E(ββ t ) = V V t
E(ββ t )V V t

199

= VE(zzt )V t
200

= V (E((z − µz)(z − µz)
t ) + µzµ

t
z)V t (20)201

We observe that due to the independence of all zi ,202

E((z − µz)(z − µz)
t ) (21)203

is diagonal and we can therefore evaluate the k ×k posterior covariance matrix of β by204

evaluating var(zi ) and µzi for i = 1, ..., k and then applying two orthogonal matrices.205

Specifically, combining Formula 4.1, (17), and (20), we obtain206

cov(β) = VEq̃

(

(

(2a2,1)
−1, ..., (2a2,k)

−1
)t

)

V t
207

+ V Eq̃

(

a1,i

2a2,i

)

Eq̃

(

a1,i

2a2,i

)t

V t − µβµt
β . (22)208

5 Variance of !1 and !2209

Higher moments of σ1 and σ2 with respect to q can be evaluated directly as higher210

moments of σ1 and σ2 with respect to q̃ . That is, for all j ∈ {2, 3, ..., }, we have211

Eq((σ1 − µσ1)
j ) = Eq̃((σ1 − µσ1)

j ) (23)212

and213

Eq((σ2 − µσ2)
j ) = Eq̃((σ2 − µσ2)

j ). (24)214

123

SPI Journal: 180 Article No.: 1135 TYPESET DISK LE CP Disp.:2021/7/29 Pages: 20 Layout: Small-Ex

A
u

th
o

r 
P

ro
o

f



un
co

rr
ec

te
d

pr
oo

f

A fast regression via SVD and marginalization

In particular, for j = 2, we obtain215

varq(σ1) = varq̃(σ1) (25)216

and217

varq(σ2) = varq̃(σ2). (26)218

Algorithm 1: Evaluation of posterior expectations of normal-normal models

1 Compute SVD of matrix X
2 Compute w (see (11))

3 Compute V t 1 (see (9))
4 Construct evaluator for density q̃ of (13)

5 Evaluate first and second moments with respect to q̃: Eq̃ (σ1), Eq̃ (σ2), Eq̃ (
a1,i

2a2,i
)

6 Compute E(β) via formula (18)

6 Numerical experiments219

Algorithm 1 was implemented in Fortran. We used the GFortran compiler on a 2.6220

GHz 6-Core Intel Core i7 MacBook Pro. All examples were run in double precision221

arithmetic. The matrix X and vector y were randomly generated as follows. Each entry222

of X was generated with an independent Gaussian with mean 0 and variance 1. The223

vector y was created by first randomly generating a vector β ∈ Rk , each entry of224

which is an independent Gaussian with mean 0 and variance 1. The vector y was set to225

the value of Xβ + ε where ε ∈ Rn contains standard normal iid entries. We generated226

y this way in order to ensure that the E(βi ) were not all small in magnitude. We set227

γ of (1) to 8 for all subsequent experiments and note that in practice the value of γ228

would be set according to some problem-specific knowledge.229

In Table 1 and Fig. 5, we compare the performance of Algorithm 1 to two alter-230

native schemes for computing posterior expectations — one in which we analytically231

marginalize via Eq. (12) and then integrate the 2-dimensional density via MCMC232

using Stan. In the other, we use Stan’s MCMC sampling on the full k + 2 dimensional233

posterior. When using MCMC with Stan, we took 10,000 posterior draws. In Table 1234

and Fig. 5 we denote Algorithm 1 by “SVD-Trap”. The algorithm that uses Stan on235

the marginal 2-dimensional density is labeled “SVD-MCMC”, and “MCMC” corre-236

sponds to the algorithm that uses only MCMC sampling in Stan. We observe that both237

the time for evaluation and the accuracy is drastically improved when using Algorithm238

1 over full MCMC and MCMC with marginalization. In particular, for large n, the239

algorithm of this paper is faster by a factor of thousands compared to full MCMC via240

Stan.241

In the appendix, we include Stan code to sample from the marginal density q̃ of242

(13).243
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Table 1 Accuracy of evaluation
of expectations of q (see (1))
using three different algorithms:
(i) SVD-Trap: Algorithm 1 of
this paper, (ii) SVD-MCMC:
marginalization with MCMC
integration of q̃ using Stan, and
(iii) MCMC: full MCMC
integration of q using Stan

n k SVD-Trap SVD-MCMC MCMC
max error max error max error

100 100 0.9 × 10−14 0.4 × 10−4 0.1 × 10−1

200 100 0.9 × 10−14 0.3 × 10−2 0.8 × 10−2

500 100 0.9 × 10−13 0.2 × 10−2 0.8 × 10−2

1000 100 0.2 × 10−13 0.6 × 10−3 0.7 × 10−2

5000 100 0.4 × 10−13 0.2 × 10−3 0.3 × 10−2

10,000 100 0.2 × 10−13 0.4 × 10−3 0.2 × 10−2

Table 2 Scaling of computation times for evaluation of expectations of q (see (1)) using Algorithm 1

n k max error precompute time (s) integrate time (s) total (s)

50 5 0.22 × 10−13 0.01 0.01 0.02

100 10 0.26 × 10−13 0.02 0.01 0.03

500 20 0.30 × 10−13 0.04 0.01 0.05

1000 50 0.34 × 10−13 0.09 0.03 0.12

5000 100 0.37 × 10−13 0.29 0.05 0.34

10000 500 0.26 × 10−13 14 0.3 14.2

10,000 1000 0.39 × 10−13 54 0.6 54.5

Remark 2 In the numerical integration stage of algorithm 1, we use the trapezoid244

rule with 200 nodes in each direction. See Sect. C for a brief description of the 2-245

dimensional trapezoid rule. Because the integrand is smooth and vanishes near the246

boundary, convergence of the integral is super-algebraic when using the trapezoid rule247

(see Stoer and Bulirsch 1992). A rectangular grid with 200 points in each direction248

is satisfactory for obtaining approximately double precision accuracy. In problems249

with large numbers of non-normal-normal parameters, MCMC algorithms such as250

Hamiltonian Monte Carlo or other methods can be used.251

In Tables 1 and 2, n and k represent the size of the n × k random matrix X .252

The column labeled “max error” provides the maximum absolute error of the expec-253

tations of σ1, σ2, and βi for i ∈ {1, 2, . . . , n}. The true solution was evaluated using254

trapezoid rule with 500 nodes in each direction in extended precision.255

In Table 2, “Precompute time (s)” denotes the time in seconds of all computations256

until numerical integration. These times are dominated by the cost of SVD (36). The257

total time of the numerical integration in addition to the matrix-vector product (18) is258

given in “integrate time (s).” The final column of Table 2, “total time (s)”, provides259

the total time of precomputation and integration.260

Notably, Table 2 demonstrates that the dominant cost of the algorithm of this paper is261

the SVD in the precomputation stage. Additionally, even for large regression problems262

with 10,000 observations and 1000 predictors, evaluation time is under a minute.263
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A fast regression via SVD and marginalization

Fig. 4 Scaling of computation
times for evaluation of posterior
expectations of q (see (1)) using
Algorithm 1 as a function of k
with n = 10,000

100 101 102 103

10−1

100

101

102

k
ti

m
e

(s
)

Timings for n = 10, 000

Fig. 5 Scaling of computation
times for evaluation of posterior
expectations of q (see (1)) as a
function of sample size n with
k = 100. The three algorithms
comapred are (i) SVD-Trap:
Algorithm 1 of this paper, (ii)
SVD-MCMC: marginalization
with MCMC integration of q̃
using Stan, and (iii) MCMC: full
MCMC integration of q using
Stan

102 103 104

10−1

100

101

102

103

n

ti
m

e
(s

)

Timings for k = 100

SVD-Trap
SVD-MCMC

MCMC

7 Generalizations and conclusions264

In this paper, we present a numerical scheme for the evaluation of the expectations of a265

particular class of distributions that appear in Bayesian statistics; posterior dsitributions266

of linear regression problems with normal-normal parameters.267

The tools used in the numerical scheme of this paper generalize to several related268

classes of distributions that appear frequently in Bayesian statistics. We list several269

examples of posterior densities whose expectations can be evaluated using this method.270

1. The choice of priors for σ1, and σ2 in this document were log normal and half-271

normal. This choice did not substantially impact the algorithm and can be generalized.272

Adaptive Gaussian quadrature (see, e.g. Trefethen 2020) can be used for the numerical273

integration step of the algorithm for a more general choice of prior on σ1 and σ2.274
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2. Regression problems with multiple groups such as the two-group model with pos-275

terior276

exp

(

−
1

2σ 2
1

‖Xβ − y‖2 −
1

2σ 2
2

k1
∑

i=1

β2
i −

1

2σ 2
3

k1+k2
∑

i=k1+1

β2
i

)

(27)277

where X is a n × k matrix, y ∈ Rn , and k1 and k2 are non-negative integers satisfying278

k1 + k2 = k.279

3. Regression problems with correlated priors on β:280

exp

(

−
1

2σ 2
2

‖X1β − y‖2 −
1

2σ 2
1

‖X2β‖2

)

(28)281

For regression problems with large numbers of non-normal-normal parameters,282

marginal expectations can be computed using, for example, MCMC in Stan. For such283

problems, the algorithm of this paper would convert an MCMC evaluation from k +m284

dimensions to m dimensions, where k is the number of normal-normal parameters.285

Acknowledgements The authors are grateful to Ben Bales, Bob Carpenter, and Mitzi Morris for many286

useful discussions.287

A Code288

The following Stan code allows for sampling from the distribution corresponding to289

the probability density function proportional to (1).290

data {291

int n;292

int k;293

vector[n] y;294

matrix[n,k] X;295

}296

parameters {297

real<lower=0> sigma1;298

real<lower=0> sigma2;299

vector<offset=0, multiplier=sigma1>[k] beta;300

}301

model {302

y ˜ normal(X*beta, sigma2);303

beta ˜ normal(0, sigma1);304

sigma1 ˜ lognormal(0, 0.25);305

sigma2 ˜ normal(0, 1);306

}307

The following Stan program samples from the marginal density q̃ (see (13)). The308

data input yty corresponds to yt y of (10), lam is the vector of singular values of X ,309
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and w is the vector w in Eq. (11). We include R code for computing yty, lam, and w310

after the following Stan code.311

functions {312

real q_tilde_lpdf(real sig1, real sig2, vector w,313

vector lam, real yty, int k,314

int n) {315

vector[min(n,k)] a2 = lamˆ2/(sig2ˆ2) + 1/(sig1ˆ2);316

real sol = sum(wˆ2 ./a2)/2/sig2ˆ4 - sum(log(a2))/2317

-yty/(2*sig2ˆ2);318

sol += -min(n,k)*log(sig1) - n*log(sig2);319

return sol;320

}321

}322

data {323

int n;324

int k;325

vector[min(n,k)] w;326

vector[min(n,k)] lam;327

real yty;328

matrix[min(n,k),k] V;329

}330

parameters {331

real<lower=0> sigma1;332

real<lower=0> sigma2;333

}334

model {335

sigma1 ˜ q_tilde(sigma2, w, lam, yty, k, n);336

sigma1 ˜ lognormal(0, 0.25);337

sigma2 ˜ normal(0, 1);338

}339

generated quantities {340

vector[k] beta;341

{342

vector[min(n,k)] zvar = 1 ./(2*(lamˆ2 ./(2*sigma2ˆ2)343

+ 1/(2*sigma1ˆ2)));344

vector[min(n,k)] zmu = w./sigma2ˆ2 .* zvar;345

vector[min(n,k)] z =346

to_vector(normal_rng(zmu, sqrt(zvar)));347

beta = V * z;348

}349

}350

The following is a sample of code from R that can be used for the precomputation351

stage of Algorithm 1.352

udv <- svd(X)353
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V <- udv$v354

lam <- as.vector(udv$d)355

w <- t(V) %*% t(X) %*% y356

w <- as.vector(w)357

yty <- t(y) %*% y358

yty <- yty[1]359

B Proofs360

In this appendix, we include proofs of the formulas provided in this paper. For increased361

readability, this appendix is self-contained.362

B.1 Mathematical preliminaries and notation363

In this section, we introduce notation and elementary mathematical identities that will364

be used throughout the remainder of this section.365

We define C ∈ R by the Eq.366

C =
∫

σ1∈R+

∫

σ2∈R+

∫

β∈Rk
q(σ1, σ2,β)dβdσ2dσ1, (29)367

and define E(σ1), E(σ2), and E(βi ) by the formulas368

E(σ1) =
1

C

∫

σ1∈R+

∫

σ2∈R+

∫

β∈Rk
σ1q(σ1, σ2,β)dβdσ2dσ1, (30)369

E(σ2) =
1

C

∫

σ1∈R+

∫

σ2∈R+

∫

β∈Rk
σ2q(σ1, σ2,β)dβdσ2dσ1, (31)370

and371

E(βi ) =
1

C

∫

σ1∈R+

∫

σ2∈R+

∫

β∈Rk
βi q(σ1, σ2,β)dβdσ2dσ1 (32)372

for i ∈ {1, 2, . . . , k}.373

We provide algorithms for the evaluation of (29), (30), (31), and (32).374

We will be denoting by 1 the vector of ones375

1 = (1, 1, . . . , 1)t . (33)376

We denote the i th component of a vector v by vi .377

The following two well-known identities give the normalizing constant and expec-378

tation of a Gaussian distribution.379

Lemma 1 For all σ > 0 we have380

√
2πσ =

∫

R

e
−(β−µ)2

2σ2 dβ (34)381
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Lemma 2 For all µ in R and σ > 0, we have382

µ
√

2πσ =
∫

R

βe
−(β−µ)2

2σ2 dβ (35)383

B.2 Analytic integration ofˇ384

We denote the singular value decomposition of X by385

X = U DV t (36)386

where U is an orthogonal n × k matrix, V is an orthogonal k × k matrix, and D is a387

k × k diagonal matrix. We define z ∈ Rk by the formula388

z = V tβ. (37)389

The following lemma, which will be used in the proof of Lemma 5, gives an expression390

for the second to last term of the exponent in (1) after a change of variables.391

Lemma 3 For all β ∈ Rk , and y ∈ Rn,392

−
1

2σ 2
2

‖Xβ − y‖2 = −
yt y

2σ 2
2

+
k

∑

i=1

−
λ2

i

2σ 2
2

z2
i +

wi

σ 2
2

zi (38)393

where394

w = V t Xt y, (39)395

z is defined in (37), and λi is the i th entry on the diagonal of D (see (36)).396

Proof Clearly,397

‖Xβ − y‖2 = β t X t Xβ − 2yt Xβ + yt y. (40)398

Substituting (36) and (37) into (40), we obtain399

‖Xβ − y‖2 = β t (U DV t )t (U DV t )β − 2yt X V V tβ + yt y

= (β t V )D2(V tβ) − 2yt (V t Xt )t z + yt y.
(41)400

where z is defined in (37). Substituting (39) and (37) into (41), we have401

‖Xβ − y‖2 = zt D2z − 2wt z + yt y (42)402

Equation (38) follows immediately from (42). ()403

The following lemma provides an equation for the last term of the exponent in (1).404

The identity will be used in Lemma 5.405
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Lemma 4 For all σ1 > 0,406

−
‖β‖2

2σ 2
1

=
k

∑

i=1

−
z2

i

2σ 2
1

(43)407

where β ∈ Rk , z is defined in (37), and V is defined in (36).408

Proof Clearly,409

‖β‖2

2σ 2
1

=
1

2σ 2
1

(V z)t (V z) =
zt z

2σ 2
1

(44)410

where V is defined in (36). Equation (43) follows immediately from (44). ()411

The following formula combines Lemmas 3 and 4 to convert the final two terms of412

(1) into a Gaussian in k dimensions.413

Lemma 5414

−
‖Xβ − y‖2

2σ 2
2

−
‖β‖2

2σ 2
1

= a0 +
k

∑

i=1

a2,i (zi −
a1,i

2a2,i
)2 +

a2
1,i

4a2,i
(45)415

where416

a2,i =
λ2

i

2σ 2
2

+
1

2σ 2
1

, (46)417

a1,i =
wi

σ 2
2

(47)418

and419

a0 = −
yt y

2σ 2
2

(48)420

where z is defined in (37), w is defined in (39) and V is defined in (36).421

Proof By combining Lemmas 3 and 4, we have422

−
1

2σ 2
2

‖Xβ − y‖2 −
1

2σ 2
1

‖β‖2 = a0 +
k

∑

i=1

(

a1,i zi − a2,i z
2
i

)

. (49)423

We obtain Eq. (45) by completing the square in Eq. (49). ()424

The following theorem is the principal analytical apparatus of this note. It provides425

a formula for the k-dimensional integrals that appear in (29), (30), and (31).426

Theorem 1 For all σ1, σ2 > 0427

∫

Rk
q(σ1, σ2,β)dβ = q̃(σ1, σ2) (50)428
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where q̃(σ1, σ2) is defined by the formula429

q̃(σ1, σ2) = σ
−(k+1)
1 σ−n

2 exp

(

− log2(σ1) −
σ 2

2

2
430

+ a0 +
k

∑

i=1

a2
1,i

4a2,i

)√
2π

k
k

∏

i=1

1
√

2a2,i

(51)431

where a2,i is defined in (46), a1,i is defined in (47) and a0 is defined in (48).432

Proof Using (1), clearly433

∫

Rk
q(σ1, σ2,β)dβ = σ

−(k+1)
1

∫

Rk
exp

(

− log2(σ1) −
σ 2

2

2
434

−
1

2σ 2
2

‖Xβ − y‖2 −
1

2σ 2
1

‖β‖2

)

dβ (52)435

Performing the change of variables (37) and substituting (45) into (52), we have436

∫

Rk
q(σ1, σ2,β)dβ = σ

−(k+1)
1 exp

(

− log2(σ1) −
σ 2

2

2
+ a0437

+
k

∑

i=1

a2
1,i

4a2,i

)
∫

Rk
exp

( k
∑

i=1

a2,i (zi −
a1,i

2a2,i
)2

)

dz (53)438

Since the integrand on the right side of (53) is a Gaussian in zi , Eq. (50) follows from439

applying Lemma 1 to (53). ()440

Remark 3 When adjusting the priors on the scale parameter to both become half-441

normal, we have the model442

σ1 ∼ normal+(0, 1) (54)443

σ2 ∼ normal+(0, 1) (55)444

β ∼ normal(0, σ1) (56)445

y ∼ normal(Xβ, σ2). (57)446
447

For the corresponding posterior, we note that q̃ becomes448

∫

Rk
q(σ1, σ2,β)dβ = exp

(

−
σ 2

1 + σ 2
2

2
+ a0449

+
k

∑

i=1

a2
1,i

4a2,i

)
∫

Rk
exp

( k
∑

i=1

a2,i (zi −
a1,i

2a2,i
)2

)

dz (58)450
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The following theorem provides a formula for the expectation of z (see (37)). We451

use this formula, in combination with an orthogonal transformation, to obtain the452

expectation of β.453

Theorem 2 For all σ1 > 0 and σ2 ∈ R,454

∫

Rk
(V t x)i q(σ1, σ2,β)dβ =

a1,i

2a2,i
q̃(t) (59)455

where q is defined in (1), q̃ is defined in (51), a2,i is defined in (46), a1,i is defined in456

(47), a0 is defined in (48).457

Proof Combining (53) and (37), we have458

∫

Rk
(V tβ)i q(σ1, σ2,β)dβ459

= exp

(

− log2(σ1) −
σ 2

2

2
+ a0 +

k
∑

i=1

a2
1,i

4a2,i

)

460

×
∫

Rk
zi exp

(

k
∑

i=1

a2,i (zi −
a1,i

2a2,i
)2

)

dz. (60)461

Applying Lemma 2 to (60), we obtain (59). ()462

C Trapezoid rule463

The trapezoid rule (see, e.g. Stoer and Bulirsch 1992) is a quadrature scheme that is464

used to approximate the integral465

∫ b

a
f (x)dx (61)466

467

with the sum468

n
∑

k=1

f (xk−1) + f (xk)

2
∆x (62)469

470

where ∆x = (b − a)/(n − 1) and471

xk = a + k
b − a

n
(63)472

473
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for k = 0, ..., n. In the 2-dimensional analogue of the trapezoid rule we approximate474

the integral475

∫ d

c

∫ b

a
f (x, y)dxdy (64)476

477

with the sum478

n
∑

k=1

g(yk−1) + g(yk)

2
∆y (65)479

480

where481

g(y) =
m

∑

k=1

f (xk−1, y) + f (xk, y)

2
∆x (66)482

483

and484

∆y = (d − c)/(n − 1), (67)485

yk = c + k
d − c

n
, (68)486

∆x = (b − a)/(m − 1), (69)487

xk = a + k
b − a

m
. (70)488

489
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