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Comment: Anova as 
a Tool for Structuring 
and Understanding 
Hierarchical Models

Andrew Gelman

I agree with McCulloch that hierarchi-
cal models (which consider the persons 
in the experiment as a random sample 
from a hypothetical population) are a 
good idea for repeated measures data. As 
McCulloch points out, this assumption 
is typically well motivated by the goal of 
extrapolating the experimental findings 
to the population. He also explains why 
classical ANOVA is not the best tool for 
exploring such data.

However, if we think about ANOVA 
more broadly—as a way of structuring 
statisical analyses rather than as one par-
ticular set of computations—I believe a 
unification is possible that will give us the 
benefits of hierarchical modeling (effi-
cient estimation, even under imbalance, 
missing data, nonnormality, and other 
realistic data conditions, as discussed by 
McCulloch), while also preserving the 
benefits of ANOVA (the summary of a 
complicated model in terms of batches 
of coefficients and variance parameters). 
In my own areas of application, I have 
not found much use for F-tests and p-
values, but I have found concepts, such 
as decomposition of degrees of freedom, 
and estimation of the importance of dif-
ferent components of variation, to be 
helpful. In the embrace of maximum 
likelihood (or, more generally, Bayesian) 
estimation, I do not want to lose these 
helpful summaries.

So, how can we get the most out of 
ANOVA in a likelihood/Bayesian mod-
eling context? Each row of the ANOVA 
table corresponds to, and labels, a dif-
ferent batch of coefficients in the linear 
model. For example, McCulloch’s Table 
1 has five rows, and his equation (1) has 
five subsetted coefficients. I would like 
to see, for each row of the ANOVA table, 
an estimate of the standard deviation 
of its batch of coefficients. This idea is 
discussed fully in Gelman (2005); for an 
example, see Figure 1.

Thus, I agree with McCulloch’s 
point that hierarchical models and 
likelihood-based estimation can work 
better than classical ANOVA, espe-
cially in complex settings; but I would 
like to reserve a role for the concepts 
of ANOVA to help us understand fit-
ted models. The goal here is not to test 
hypotheses of zero effects but rather 
to summarize the importance of each 
batch of coefficients.

One of the most important advan-
tages of model-summary tools is that 

they can facilitate the fitting of multiple 
models. With regard to McCulloch’s 
particular application discussed here, 
I would be interested in seeing interac-
tions between person and alcohol and 
between person and pregnenolone. 
These batches of interactions would 
represent random samples from the 
interactions in the entire population 
and thus would have additional vari-
ance components, each estimated from 
n-1 degrees of freedom. An ANOVA 
display along the lines of Figure 1. 
could help us understand such a model 
and could lead to further investigation 
of treatment effects of interest. Hier-
archical estimation tools of the sort 
discussed by McCulloch are crucial in 
allowing us to fit these models. 
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Figure 1. ANOVA display for a multilevel logistic regression model fit to survey data on 
voter preferences. The estimate, 50% interval, and 95% interval are shown for the finite-
sample standard deviation of each batch of effects in the model. From Gelman (2005).
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