
State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and hierarchical regression:
some successes and struggles

Andrew Gelman
Department of Statistics and Department of Political Science

Columbia University

18 October 2004

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting and regression modeling

I Success: state-level opinions from national polls
I Hierarchical modeling and poststratification

I Struggle: the Social Indicators Survey of NYC families
I Reconciling survey weighting and regression
I Weighting from a hierarchical Bayes perspective

I Unrelated topic: interactions in before-after studies

I collaborators:
I David Park, Dept of Political Science, Washington University
I Joe Bafumi, Dept of Political Science, Columbia University
I Shouhao Zhao, Dept of Statistics, Columbia University
I John Carlin, Dept of Biostatistics, University of Melbourne
I Julien Teitler and Sandra Garcia, Social Work, Columbia Univ
I Rod Little, Dept of Biostatistics, University of Michigan

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

National opinion trends

1940 1950 1960 1970 1980 1990 2000

50
60

70
80

Year

P
er

ce
nt

ag
e 

su
pp

or
t f

or
 th

e 
de

at
h 

pe
na

lty

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies
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I Goal: estimating time series within each state

I One poll at a time: small-area estimation

I It works! Validated for pre-election polls

I Combining surveys: hierarchical model for parallel time series
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I Poststratification cells: sex × ethnicity × age × education ×
state
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I Hierarchical model for the data
I Pr(yi = 1) = logit−1((Xβ)i )
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I Bayesian inference, summarize by posterior simulations of β:

Simulation θ1 · · · θ75

1 ** · · · **
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Poststratification to estimate state opinions

I Implied inference for θj = logit−1(Xβ) in each of 3264 cells j
(e.g., black female, age 18–29, college graduate, Connecticut)

I Poststratification
I Within each state s, average over 64 cells:∑

j∈s Njθj

/ ∑
j∈s Nj

I Nj = population in cell j (from Census)
I 1000 simulation draws propagate to uncertainty for each θj
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I No pooling: separate estimate within each state
I Complete pooling: no state predictors
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I Mean absolute state errors:
I No pooling: 10.4%
I Complete pooling: 5.4%
I Hierarchical model with poststratification: 4.5%
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Validation study: comparison of state errors

1988 election outcome vs. poll estimate
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State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Death penalty opinions from General Social Survey,
1975–2000

I Goal: time series of opinions in each state

I For each state s at time t, sum over 64 poststrat cells j :∑
j∈s Njtθjt

/ ∑
j∈s Njt

I Logistic regression: θjt = logit−1((Xβ)jt)

I Time series model for the state coefficients β

I Estimate the β’s from the survey data

I We just presented the model in “reverse order”
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Survey weighting is a mess

I Using weights
I Weighted mean: ȳw =
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i=1 wi
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I Estimating anything more complicated: ???

I Regression modeling as an alternative
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∑n
i=1 wiyi

/∑n
i=1 wi

I Estimating a ratio: rw =
∑n

i=1 wiyi

/∑n
i=1 wixi

I Estimating anything more complicated: ???

I Regression modeling as an alternative
I Need to control for many potential confounders
I Hierarchical modeling as a (potential) solution

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Survey weighting is a mess
Weights are not inverse probabilities
CBS/New York Times polls
Social Indicators Survey

Survey weighting is a mess

I Using weights
I Weighted mean: ȳw =
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Simple theoretical example

I Survey of a population with 52% women, 48% men
I Simple random sampling, n = 100

I SRS 1: 52 women, 48 men. Weights are wi = 1 for everyone
I SRS 2: 60 women, 40 men. Weights are wi = 52

60 for women,
40
48 for men

I We know the population proportions, so the selection
probabilities are irrelevant

I Weights depend on the entire survey; the (yi ,wi ) paradigm is
inappropriate
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CBS/New York Times pre-election polls
id org y state edu age adults weight

6140 cbsnyt NA 7 3 1 2 923
6141 cbsnyt 1 39 4 2 2 558
6142 cbsnyt 0 31 2 4 1 448
6143 cbsnyt 0 7 3 1 2 923
6144 cbsnyt 1 33 2 2 1 403

I The weight is listed as just another survey variable

I But they are actually constructed after the survey
I Weights wi = g(Xi , θ):

I Xi are sex, age, education, . . .
I θ are parameters depending on the entire survey and on

Census population info

I Goal is to estimate national and statewide averages
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Social Indicators Survey

I Telephone survey every 2 years of NYC families

I Administered by Columbia University School of Social Work

I Questions such as, “Do you rate the schools as poor, fair,
good, or very good?”

I Weighting to match Current Population Survey: #adults and
children in family, marital status, ethnicity, age, education

I Goal is to estimate changes over time
I Bias-variance tradeoff in constructing weights:

I Weights adjust for potential confounders
I But we want weighted estimates to be stable
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children in family, marital status, ethnicity, age, education

I Goal is to estimate changes over time
I Bias-variance tradeoff in constructing weights:

I Weights adjust for potential confounders
I But we want weighted estimates to be stable
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CBS/New York Times polls
Social Indicators Survey
Summary so far

Poststratification for the CBS polls

I We don’t actually use the “weights”

I We model y conditional on the variables used in the weighting

I These define poststratification cells j = 1, . . . , J = 3264

I 2× 2× 4× 4× 51: sex × ethnicity × age × education × state

I Poststratified average, θ =
PJ

j=1 Njθj
PJ

j=1 Nj

I Nj = population in cell j (from Census)

I Same Census that was used to create the survey weights
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CBS/New York Times polls
Social Indicators Survey
Summary so far

Estimating time trends in NYC

I Compare 1999 and 2001 Social Indicators Surveys

I Goal is to estimate Ȳ 2001 − Ȳ 1999, for various survey
responses y

I Estimate from weighted average, ȳ2001
w − ȳ1999

w

I Or, estimate using regression:
I Combine two surveys into a single data matrix
I Add an indicator that is 1 for 2001 and 0 for 1999
I Fit regression, look at coefficient for the “2001” indicator

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

CBS/New York Times polls
Social Indicators Survey
Summary so far

Estimating time trends in NYC

I Compare 1999 and 2001 Social Indicators Surveys
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CBS/New York Times polls
Social Indicators Survey
Summary so far

Comparing estimates from weighting and regression

(a) time (b) linear
weighted change regression
averages in coefficient

Question 1999 2001 percent of time

Adult in good/excellent health 75% 78% 3.4% (2.4%) 6.6% (1.4%)
Child in good/excellent health 82% 84% 1.7% (1.5%) 1.2% (1.3%)
Neighborhood is safe/very safe 77% 81% 4.5% (2.3%) 4.1% (1.5%)

I The estimates can be very different!

I Which to believe?

I Same pattern with logistic regression
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CBS/New York Times polls
Social Indicators Survey
Summary so far

Summary so far

I Hierarchical modeling + poststratification works well for
estimating state-level opinions from national polls

I We’re not sure what to do with the Social Indicators Survey
I Tangle of regression coefficients
I No simple structure (as in the hierarchical model for 50 states)

I Larger goal:
I Believable estimates using regression
I “Backward compatibility” to simple weighted averages
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Classical models
Hierarchical models

Regression models and implied weights

I Fit a regression and poststratify:

I θ̂ =
∑J

j=1 Nj θ̂j

/ ∑J
j=1 Nj

I From regression, θ̂j ’s are linear combinations of the data y
I We can write θ̂ = 1

n

∑n
i=1 wiyi

I wi ’s are implied weights

I Classical regression

I Hierarchical regression
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Weights corresponding to trivial classical regressions

I Full poststratification, θ̂ =
∑J

j=1 Nj ȳj

/ ∑J
j=1 Nj

I Classical regression on indicators for all J cells
I Equivalent weights: wi ∝ Nj/nj

I No weighting, θ̂ = ȳ
I Classical regression with just a constant term
I Equivalent weights: wi = 1
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I Classical regression with just a constant term
I Equivalent weights: wi = 1

Andrew Gelman Survey weighting and hierarchical regression



State-level opinions from national polls
Where do weights come from?

Inference using survey weights and poststratification
Theory of weighting and poststratification

Where to go next?
Unrelated topic: interactions in before-after studies

Classical models
Hierarchical models

Weights corresponding to trivial classical regressions

I Full poststratification, θ̂ =
∑J

j=1 Nj ȳj
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I Exchangeable normal model on J categories
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/(
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)
I Hierarchical regression models:

Shrinkage toward marginal “raking” weights

I Important for “backward compatibility”
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I Our ideal procedure:
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I Population info included using poststratification
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Our research plan

I Figuring out where the 2 estimates diverge for the Social
Indicators Survey

I Goal: believable estimates for time trends
I Goal: a good set of weights for simple estimands

I Related problems in statistical modeling
I Hierarchical regressions with complex interactions
I Iterative proportional fitting, etc., using population margins

I No “conclusions”
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No-interaction model
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constant treatment effects
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Unit-level “error term” ηi

I For control units, ηi persists from time 1 to time 2
I For treatment units, ηi changes:

I Subtractive treatment error (ηi only at time 1)
I Additive treatment error (ηi only at time 2)
I Replacement treatment error

I Under all these models, the before-after correlation is higher
for controls than treated units
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I State-level estimates from national polls
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logistic regression. Survey Methodology. (Andrew Gelman and
Thomas C. Little)

2004 Bayesian multilevel estimation with poststratification:
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