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Logistic regression
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A clean example
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The problem of separation
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Separation is no joke!

glm (vote ~ female + black + income, family=binomial(link="logit"))

1960 1968

coef.est coef.se coef.est coef.se

(Intercept) -0.14 0.23 (Intercept) 0.47 0.24

female 0.24 0.14 female -0.01 0.15

black -1.03 0.36 black -3.64 0.59

income 0.03 0.06 income -0.03 0.07

1964 1972

coef.est coef.se coef.est coef.se

(Intercept) -1.15 0.22 (Intercept) 0.67 0.18

female -0.09 0.14 female -0.25 0.12

black -16.83 420.40 black -2.63 0.27

income 0.19 0.06 income 0.09 0.05
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Regularization in action!
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Information in prior distributions

I Informative prior dist
I A full generative model for the data

I Noninformative prior dist
I Let the data speak
I Goal: valid inference for any θ

I Weakly informative prior dist
I Purposely include less information than we actually have
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Weakly informative priors for
logistic regression coefficients

I Separation in logistic regression
I Some prior info: logistic regression coefs are almost always

between −5 and 5:
I 5 on the logit scale takes you from 0.01 to 0.50

or from 0.50 to 0.99
I Smoking and lung cancer

I Independent Cauchy prior dists with center 0 and scale 2.5

I Rescale each predictor to have mean 0 and sd 1
2

I Fast implementation using EM; easy adaptation of glm
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Prior distributions
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Another example

Dose #deaths/#animals

−0.86 0/5
−0.30 1/5
−0.05 3/5

0.73 5/5

I Slope of a logistic regression of Pr(death) on dose:
I Maximum likelihood est is 7.8 ± 4.9
I With weakly-informative prior: Bayes est is 4.4 ± 1.9

I Which is truly conservative?

I The sociology of shrinkage
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Maximum likelihood and Bayesian estimates
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Evaluation using a corpus of datasets

I Compare classical glm to Bayesian estimates using various
prior distributions

I Evaluate using 5-fold cross-validation and average predictive
error

I The optimal prior distribution for β’s is (approx) Cauchy (0, 1)

I Our Cauchy (0, 2.5) prior distribution is weakly informative!
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Expected predictive loss, avg over a corpus of datasets
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Other examples of weakly informative priors

I Variance parameters

I Covariance matrices

I Population variation in a physiological model

I Mixture models
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No-interaction model

I Before-after data with treatment and control groups
I Default model: constant treatment effects

I Fisher’s classical null hyp: effect is zero for all cases
I Regression model: yi = Tiθ + Xiβ + εi
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Actual data show interactions

I Treatment interacts with “before” measurement

I Before-after correlation is higher for controls than for treated
units

I Examples
I An observational study of legislative redistricting
I An experiment with pre-test, post-test data
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Educational experiment

Observational study of legislative redistricting:
before-after data

Estimated partisan bias in previous election
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Legislative redistricting
Educational experiment

Educational experiment: correlation between pre-test and
post-test data for controls and for treated units
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Interactions in regression

I Interactions are important

I Example of income and voting within states (5 × 50)

I More complicated questions need more elaborate models
(7 × 5 × 50, 2 × 5 × 7 × 50, . . . )
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Red state, blue state, rich state, poor state

I Richer voters favor the Republicans, but

I Richer states favor the Democrats

I Hierarchical logistic regression: predict your vote given your
income and your state (“varying-intercept model”)
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Interactions!

Avg Income 2000 vs. Var Slope 2000
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3-way interactions!
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Adding another factor: The inference . . .
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. . . and the refutation!

I Criticisms from the blogger “Daily Kos”:
I Criticisms of the inferences:

“While Gelman claims only the under-$20K white demo went
for Obama, the results were far different. Per the exit poll –
real voters – Obama won all whites: 54-45 percent for those
making under $50K, and 51-47% for those making over$50K.
. . . New Hampshire is solidly Blue unlike Gelman’s maps, 58-40
– one of the most obvious misses in Gelman’s analysis. . . . ”

I Criciticms of the method:
“Gelman inexplicably avoids using exit poll data . . . while exit
polls have their own margin of errors and sample composition
problems, they sure as heck beat anything done over the
telephone.”

I Traditional statistical “conservatism” will be no defense here!
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After improving the model
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A graph we made to study and criticize our inferences

Andrew Gelman Creating structured and flexible models: some open problems



Weakly informative priors
Interactions in before-after studies

Interactions in regressions
Conclusions

Income and voting
Ethnicity/religion, income, and school vouchers
Age, income, and health care

Two more examples

I Ethnicity/religion, income, and school vouchers
I Show off our method by comparing to (ugly) raw data

I Age, income, and health care
I Compare to similar graphs of partisanship
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Ethnicity/religion, income, and school vouchers
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The raw data
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Age, income, and health care
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Structured hierarchical models

I Need to go beyond exchangeability to shrink batches of
parameters in a reasonable way

I For example, parameter matrices αjk don’t look like
exchangeable vectors

I Similar problems arise in shrinking higher-order terms in
neural nets, wavelets, tree models, image models, . . .

I Recall the “blessing of dimensionality”: as the number of
factors, and the number of levels per factor, increases, more
information is available to estimate the hyperparameters of
the big model
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Summary
Just for fun

What have we learned?

I Models need structure but not too much structure
I Interactions are important

I Treatment interactions in before-after studies
I 2-way, 3-way, . . . , interactions in regression models

I Conservatism in statistics

I Weak prior information is key
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Cultural differences

I How do you motivate/justify/defend/promote a statistical
method?

I Theoretical statisticians
I Applied statisticians
I Computer scientists

I Same data structure, different models
I Physics
I Political science
I Economics
I Biology/health
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