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My earlier talk on tradeoffs in statistical graphics

» Originally: Infoviz vs. stat graphics

» The best information visualizations are grabby, visually striking
» The best statistical graphics reveal patterns and discrepancies
» Different goals, different looks

» Lots of negative reactions

» (Some) infofiz people felt we were trivializing their work
» (Some) statisticians felt we gave infofiz too much respect

» Our new theme: tradeoffs in statistical graphics
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We did not come to mock ...
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Instead, compare a bare-bones infographic ...

African Countries
by GDP

IN U.S. $ BILLIONS
Gross domestic product (GDP) refers to the market value of allfinal goods and services private consumption + gross investment + government spending + (exports — imports)
produced within a country in a given period (2005 - 2009).
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To a corresponding statistical graphic ...

African Countries by GDP
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Another example . ..
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The statistician’s version
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A legendary early infographic ...
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DIAGRAM o 1 CAUSES or MORTALITY
IN THE ARMY IN THE EAST .
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2.
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suNE
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The Areas of the blue, red, & black wedges are each measured from

the centre as the common vertex
The blue wedges measured from the centre of the cirele represent area
for area the deaths from Preventible or Mitigable Zymotic Diseases, the
red wedges measured from the centre the deaths from wounds, & the
black wedges measured from the centre the deaths from all other causes
The black line across the red triangle in Nov' 1854 marks the boundary
of the deaths from all other causes during the month
In October 1854, & April 1855, the black area coincides with the red,
in January & February 1856, the blue coincides with the black

The entire areas may be compared by following the blue, the red & the
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How we would display it ...

Mortality rates in the Crimean War from April 1854 to March 1856
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For those of you reading this talk off the web

> I'm not saying that the boring plots (constructed by Antony Unwin and
myself using R) are better than Florence Nightingale's beautiful images!

» Rather, I'm saying that Nightingale's graphic and ours serve different
purposes:

» She dramatizes the problem with a unique and
visually-appealing image that draws the casual viewer in deeper

» We display the data to reveal patterns, for viewers who are
already interested in the problem

> In any case, this is not my main point today. We'll spend most of our
time discussing the choices involved in graphs that I've made over the
years.

» Now, back to our regularly scheduled presentation ...
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General theme

» All graphs are comparisons

» All of statistics are comparisons
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Specific recommendations

» Multiple plots per page (small multiples)
» Don't clutter each plot

> Line plots are great—they facilitate more comparisons
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Don't clutter each plot: example

From Graph Design for the Eye and Mind by Stephen Kosslyn:

g 600 o) Female, 50—24,999
i E Female, 525,000+
S 400}

3 s Mole, $25,000+
< 200~ == Male, S0-24,999

Under 65 65 or over
Age group

Figure 1.6. The contrasting slope of one line makes the odd group easy to
spot; no such visual cue can be given in a table.
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Redo using small multiples!
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Line plots: Cleveland's principle

» Always ask: What is the comparison?

» Example: an analysis from market research
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Improvement?
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Line plot is better
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Statistics is . ..

Measurement

Statistics

Comparison
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Today's talk

v

(Some of) my examples from (nearly) 30 years of applied
resarch

v

Choices involved in making the graphs

v

What works, what doesn’t, and why

» You must participate!
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1984: “The effects of solar flares on single event upset
rates”
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Figure 4: The integral LET spectra for the composite
worst—case solar flare particle event outside the
magnetosphere. These spectra are behind aluminum
shielding of the 1indicated thicknesses, These
thicknesses correspend to 0,025, 0.1, 0.5 and 2,0
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1984: “The effects of solar flares on single event upset

rates”
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1986: “Reduced subboundary misalignment in SOI films

scanned at low velocities”

50

40 8= 197 §70%°

sof {

SUBBOUNDARY ANGULAR MISALINEMENT (DEGREES}

1 1 1
10 20 30 40 SO

SUBBOUNDARY LATERAL SPACING (;;m)

0.5
S

Fig. 9 Measured average crystallographic angular misalignment 0
for a number of subboundaries as a function of the average lateral
spacing 5 of those subboundaries as obtained from the experiment of
Fig. 8.
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1989: “Constrained maximum entropy methods in an

image reconstruction problem”

Fig. 1b: Herates of the EM algorithm:
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1990: “Estimating the electoral consequences of legislative

redistricting”

Table 1. Votes Received by Democrats and Republicans in Ohio Legislative House Districts,

1972 1974

District Democrat Republican District Democrat Republican District Democrat Republican [

1 18,250 22,798 51 22,488 16,951 1 20,490 15,107
2 25,679 17,130 52 24,336 14,083 2 18,669 11,969
3 0 33,954 53 25,932 8,997 3 12,778 20,272
4 23,684 10,212 54 22,780 15,229 4 15,765 9,813
5 21,723 16,130 55 20,198 9,583 5 11,711 9,708
6 28,309 0 56 21,603 10,678 6 20,584 5,763
7 20,334 12,675 57 16,533 17,114 7 20,193 9,778
8 16,622 3,656 58 13,587 22,105 8 11,153 2,261
9 11,946 10,396 59 14,877 20,234 9 9,566 0
10 12,383 5,316 60 14,556 13,940 10 8,277 1,890
11 20,091 18,539 61 16,507 17,825 11 22,398 5,221
12 18,337 20,561 62 23,668 13,428 12 9,865 19,599
13 16,688 1,970 63 13,868 18,402 13 10,687 966
14 22,865 11,218 64 13,984 22,593 14 11,478 8,087
15 21,401 0 65 11,710 29,134 15 15,9056 1,936
16 27,783 12,701 66 15,500 30,156 16 21,909 10,403
17 24,511 15,716 67 20,409 17,931 17 22,327 11,274
18 28,805 14,454 68 21,489 15,574 18 22,416 8,138

c - = q 4
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1990: “Estimating the electoral consequences of legislative

redistricting”
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Figure 1. Stem-and-Leaf Plot of the Proportion of the Vote Received
by a Party in a Contested District Election, Immediately Preceding an
Election in Which That Party Was Unopposed in That District.
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1990: “Estimating the electoral consequences of legislative

redistricting”
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1991: “Systemic consequences of incumbency advantage

in U.S. House elections”

Figure 3. Estimates of Incumbency Advantage
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2008: “Estimating incumbency advantage and its

variation, as an example of a before/after study”
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2008: “Estimating incumbency advantage and its

variation, as an example of a before/after study”
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1992: “Inference from iterative simulation using multiple

1Al
Ssequences
Potential
Normal-theory scale
posterior interval reduction Simulated quantiles
2.5% n 97.5% Est. 97.5% 2.5% 26% Median 5% 97.6%
@ 5.66 5.73 5.80 1.00 1.00 5.66 5.71 5.73 5.76 5.80
az 5.82 5.89 5.95 1.00 1.00 5.82 5.86 5.89 5.91 5.95
as 5.64 5.71 5.78 1.00 1.01 5.65 5.69 5.71 5.73 5.78
ay 5.64 5.71 5.77 1.00 1.02 5.64 5.68 5.71 5.73 5.717
as 5.51 5.58 5.65 1.00 1.01 5.51 5.56 5.58 5.60 5.65
as 5.73 5.80 5.86 1.00 1.00 5.73 5.717 5.80 5.82 5.86
a; 5.79 5.86 5.92 1.00 1.00 5.79 5.83 5.86 5.88 5.92
as 5.52 5.59 5.66 1.00 1.00 5.52 5.56 5.59 5.61 5.65
as 5.48 5.55 5.62 1.00 1.00 5.49 5.53 5.55 5.57 5.62
ao 5.71 5.77 5.84 1.00 1.01 5.71 5.75 5.7 5.80 5.84
an 5.65 5.72 5.78 1.00 1.01 5.65 5.69 5.72 5.74 5.78
a2 5.66 5.73 5.80 1.00 1.00 5.66 5.71 5.73 5.75 5.80
a3 5.97 6.03 6.10 1.00 1.00 5.96 6.01 6.03 6.05 6.10
a1 5.93 6.01 6.09 1.00 1.01 5.93 5.98 6.01 6.04 6.09
ax 6.08 6.19 6.29 1.03 1.07 6.08 6.15 6.19 6.22 6.29
ais 6.11 6.19 6.27 1.01 1.03 6.10 6.16 6.19 6.22 6.26
a7 6.00 6.07 6.14 1.01 1.02 5.99 6.04 6.07 6.09 6.14
T 0.09 0.14 0.21 1.00 1.00 0.10 0.12 0.14 0.16 0.21
B 0.17 0.32 0.47 1.01 1.02 0.17 0.27 0.32 0.37 0.48
A 0.07 0.12 0.19 1.02 1.04 0.07 0.10 0.12 0.14 0.18
T 0.74 0.85 0.96 1.02 1.05 0.74 0.81 0.85 0.88 0.96
Gobs 0.18 0.19 0.20 1.01 1.02 0.18 0.18 0.19 0.19 0.20
0l Gobs 0.50 0.74 1.10 1.00 1.00 0.51 0.64 0.73 0.85 1.11
—2 log(density) 727.81 747.33 766.86 1.01 1.01 729.98 739.92 746.88 753.84 768.35
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1992: “Inference from iterative simulation using multiple

sequences’

tau
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1993: “Why are American Presidential election campaign

polls so variable when votes are so predictable?”
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1993: “Why are American Presidential election campaign

polls so variable when votes are so predictable?”
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1994: “Enhancing democracy through legislative

redistricting”
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1995: “Pre-election survey methodology: details from
polling organizations, 1988 and 1992"
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Figure 2. Fig. 2a, Effect of weighting on proportion of women. Fig.
2b, Proportion of women over time. a = ABC/Washington Post/
Chilton; ¢ = CBS; g = Gallup; h = Harris; [ = Los Angeles Times;
m = Media General/AP; r = Roper; y = Yankelovich. Capital let-
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1996: “Physiological pharmacokinetic analysis using

population modeling and informative prior distributions’

Exposure of 72 ppm Exposure of 144 ppm
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1996: “Physiological pharmacokinetic analysis using

population modeling and informative prior distributions”

Posterior distributions for individuals

Population Population
Parameter prior A B c D E F posterior
Ventilation/perfusion 1.16 1.26 1.19 133 1.22 961 119
ratio (VPR) x+115  x+ 115 x+144  x+145 x+ 115 x+ 115 x4 1.13
Blood flow, well- 653 658 647 660 626 637
perfused tissues (Fwp) x+106  x+107  x+107  x+106  x+108 X+ 1.06
Blood flow, poorly 421 123 27 123 132 134 129
perfused tissues (Fpp) x+142  x+143  x+143  x+142  x+ 143 x= 118 x= 111
Blood flow, 048 0442 0462 0437 0507 0582 0488
fat (Ff) X+113 X+ 113 x+ 144 x+143 x+ 144 x+ 114 x+ 112
Blood flow, 73 70 475 168 185 195 79
liver (Fl) x+ 115 x+115  x+ 115 x+ 116 x+115 x= 111
Volume, well- 189 202 201 183 188 196
perfused tissues (Vwp) X+ 1.14 x+115  x+115  x+ 115 x+ 114 x+1.09
Volume, poorly 649 636 636 655 5 641
perfused tissues (Vpp) x+1.04 x+105  x+105  x+104  x=+104  x+1.03
Volume, 032 033 033 033 033 032 033
liver (Vi) x+ 1.4 x+ 1.4 x+ 1.1 X+ 1.4 X+ 1.1 x+ 1.4 X+ 1.04
Partition coeff, 15.1 164 153 156 187 15.8 16.0
blood/air (Pba) x+104  x+108  x+104  x+104  x+104  x+104  x+ 111
Partition coeff, 183 1.98 1.95 200 1.83 1.83 1.92
well-perfused (Pwp) x+145  x+116  x+ 116 x+ 116 x= 115 x= 114 x+ 112
Partition coeff, 294 259 251 276 4.06 296 2.90
poorly perfused (Ppp) X+ 108 x+109  x+109  x+108  x+109  x+109  x+ 115
Partition coeff, 823 69.1 739 49.1 171 85.4 84.1
fat (Pf) x+108  x+108  x+108  x+108  x+109  x+107  x+128
Partition coeff, 293 321 3.09 3.16 294 3.08
liver (P1) x+1.32 x+132  x+133  x+188  x:182  x+1.12
Max metabolic rate 0011 00214 00199 00415 00165 00191
in liver (VMI) X+ 1.41 X+ 130 £ 134 x+130  x+138  x+145
801 742 650 hegl 729

Km .
in liver (KMI) x+1.63 x+1.61 x+1.57 x+ 1.59 X+ 1.60 x+1.20




1996: “Physiological pharmacokinetic analysis using

population modeling and informative prior distributions”
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1997: “Poststratification into many categories using

hierarchical logistic regression”
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Figure 3: Estimated Bush support estimated separately from seven individual polls taken shortly
before the election: for (a) the entire U.S. (excluding Alaska, Hawaii, and the District of Columbia),
(b) alarge state (California), (c¢) a medium-sized state (Washington), and (d) a small state (Nevada).
Each plot shows the raking estimates as a dotted line and the estimates from hierarchical model
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1998: “Estimating the probability of events that have

never occurred: When is your vote decisive?”

0
5%
2
=
@ ca
2 o v
o] d
w ™ e
- FL
g ~ PA
S OR-
o NNC
8 w VAGA
he o MO
o v W M AL
© w7 SC
= Az Ok ORMS
% AR
bl ks wy M
a < ME
b NST NNy
'C_> . [[<] Al 0 éﬁﬁ(w
(=2 .
o "
T T " T
-6.0 -5.5 -5.0 -4.5

log10 Pr (state is tied)

Figure 3. Probability That a State Is Decisive Given Tied Versus the
Probability That the State Is Tied for 1992 Plotted on a Log Scale. - - -
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Chance that your state is tied, given that its electoral votes are crucial
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Andrew Gelman Choices in statistical graphics: My stories



1999: “All maps of parameter estimates are misleading”

Fig. 6. Four multiple imputations. For each map, the shaded counties are those in which the imputed rates, 0;, drawn from
their posterior distribution, are in the top 10 per cent of U.S. counties, for that imputation. Compare these maps to the
map of the highest true county parameters in Figure 4. These maps have no systematic artefacts due to variation in the
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2000: “Type S error rates for classical and Bayesian single

and multiple comparison procedures”

classical

Bayes

0.5 1 1.5 2 25 3
tlo

Figure 2: Probability of making a claim with confidence for classical and
Bayesian comparisons: long-run frequencies are shown as a function of the
variance ratio 7/o.

Andrew Gelman Choices in statistical graphics: My stories



2002: “A probability model for golf putting”
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2003: “Forming voting blocs and coalitions as a prisoner’s

dilemma: a possible theoretical explanation for political
instability”
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2004: “Standard voting power indexes don

Proportional vote differential
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2005: “Multiple imputation for model checking:

completed-data plots with missing and latent data”

Observed data display
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Completed data display
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Figure 4. Summary of pain-relief responses over time under different doses from the clinical trial with nonignorable dropout
the shadings from bottom to top indicate “no pain relief” and intermediate

the top row include only the persons who have not dropped out the




2006: “The boxer, the wrestler, and the coin flip”

Bayes prior Bayes posterior
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2007: “An analysis of the NYPD's stop-and-frisk policy in

the context of claims of racial bias”
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2009: “Beautiful political data”

The youth vote and everybody else -] The youth vote vs. everybody else
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FIGURE 19-3.Some graphs showing recent patterns of voting by age. The top-left graph shows my first attempt, created on
election night based on immediate exit poll data. The top-right ¢raph was created by Hober Short, a student who saw my graph
on the Web and made his own, displaying time on the x-axis. The lower-left graph is my cleaned-up version of Short’s graph,
labeling all four age categories directly on the lines of the graph. All these graphs show the dramatic difference between 2008
and the two previous elections. Finally, the lower-right graph extends the data back to 1988, showing that Bill Clinton in 1996
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2010: “Public opinion on health care reform”
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Figure 1. Correlations and logistic regression coefficients for predicting opposition to
health care reform. The black closed circles are estimates for 2000 and the red open
circles correspond to 2004. Logistic regression coefficients have been divided by 4 to
correspond to approximate changes on the probability scale (e.g., Gelman and Hill,
2007), and the continuous inputs in the regression have been scaled by dividing by two
standard deviations so that their coefficients are comparable to those of binary predictors
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2010: “Public opinion on health care reform”

Should federal gov't spend more money on health care for the uninsured (2004 survey)?
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2011: “Tables as graphs: The Ramanujan principle”

Larger digits look bigger!
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2012: “Philosophy and the practice of Bayesian statistics”

1

Model 1

5

Probability each model is true

0
Time
Figure 1. Hypothetical picture of idealized Bayesian inference under the conventional inductive
philosophy. The posterior probability of different models changes over time with the expansion
of the likelihood as more data are entered into the analysis. Depending on the context of the
problem, the time scale on the x-axis might be hours, years, or decades, in any case long enough for
information to be gathered and analysed that first knocks out hypothesis 1 in favour of hypothesis
2, which in turn is dethroned in favour of the current champion, model 3.
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2013: “Election turnout and voting patterns”

2008 election: McCain share of the two-party vote in each income category
within each state among all voters (gray) and just non-Hispanic whites (orange)
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3: “Election turnout and voting patterns”

2008 election: McCain share of the two-party vote in each income category
within each state among all voters (gray) and just non-Hispanic whites (orange)
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» Gradual improvements in technique ...and understanding
» Often, what we're plotting is not “data”

> Research vs. publications: “Let me tell you about my first
wife”
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Take-home points

v

Small multiples

v

Line plots

v

Try to make a display self-contained, then add words

v

Graphs are comparisons
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