A. No Coalitions

A voter is decisive if the others are split 4-4:

$$
\operatorname{Pr}(\text { Voter is decisive })=\binom{8}{4} 2^{-8}=0.273
$$

Average $\operatorname{Pr}($ Voter is decisive $)=0.273$

B. A Single Coalition of 5 Voters

A voter in the coalition is decisive if others in the coalition are split 2-2:

$$
\operatorname{Pr}(\text { Voter is decisive })=\binom{4}{2} 2^{-4}=0.375
$$

A voter not in the coalition can never be decisive:

$$
\operatorname{Pr}(\text { Voter is decisive })=0
$$

Average $\operatorname{Pr}($ Voter is decisive $)=\frac{5}{9}(0.375)+\frac{4}{9}(0)=0.208$

C. A Single Coalition of 3 Voters

A voter in the coalition is decisive if others in the coalition are split 1-1 and the coalition is decisive:

$$
\operatorname{Pr}(\text { Voter is decisive })=\frac{1}{2} \cdot \frac{50}{64}=0.391
$$

A voter not in the coalition is decisive with probability:

$$
\operatorname{Pr}(\text { Voter is decisive })=\binom{5}{1} 2^{-5}=0.156
$$

Average $\operatorname{Pr}($ Voter is decisive $)=\frac{3}{9}(0.391)+\frac{6}{9}(0.156)=0.234$
D. Three Coalitions of 3 Voters Each

A voter is decisive if others in the coalition are split 1-1 and the other two coalitions are split 1-1:

$$
\operatorname{Pr}(\text { Voter is decisive })=\frac{1}{2} \cdot \frac{1}{2}=0.250
$$

Average $\operatorname{Pr}($ Voter is decisive $)=0.250$
FIG. 1. An example of four different systems of coalitions with nine voters, with the probability of decisiveness of each voter computed under the random voting model. Each is a "one person, one vote" system, but they have different implications for probabilities of casting a decisive vote. Joining a coalition is generally beneficial to those inside the coalition but hurts those outside. The average voting power is maximized under A, the popular-vote rule with no coalitions. From Katz, Gelman and King (2002).

