Hierarchical modeling and prior information: an example from toxicology

Andrew Gelman
Department of Statistics
Columbia University, New York

Lamont-Doherty Earth Observatory conference on climate reconstruction, 9 Feb 2011

Outline of 45-minute talk

- Central story: 4-compartment model of toxicokinetics of perchloroethylene
- Bayesian inference combines prior information and data
- Unresolved questions
- How the model all fits together

Time at the end for discussion and questions

Toxicokinetics of perchloroethylene

- Goal:
 - How much PERC is metabolized at high doses
 - Population distribution
- Experimental data: Expose 6 healthy volunteers to PERC for four hours, then measure concentrations in blood and air for 2 weeks
- 4-compartment model, metabolism in liver
- Our analysis:
 - Simple data-fitting didn't work
 - Use Bayes to combine data and prior info within model

4-compartment model

Some data

Exposure of 72 ppm

Exposure of 144 ppm

Simple statistical ideas did not work

- Fit 4-compartment model directly to data
- Assisted model fit
- 1 or 2-compartment model
- Simulation from prior distribution

Simple statistical ideas did not work: Fit 4-compartment model directly to data

Nonlinear least squares

- Fitting to each person separately:
 - Unstable: approx 30 data points, 15 parameters
 - "8 kg liver"
- Pooling data and estimating parameters for "the standard man"
 - Not useful for our goal of population inference

Simple statistical ideas did not work: Assisted model fit

- Set some parameters to fixed values (from the pharmacology literature)
- Estimate the other parameters

- Couldn't fit the data well
- Difficult to get fixed values for PERC-specific parameters such as equilibrium concentration ratios

Simple statistical ideas did not work: 1 or 2-compartment model

Simpler model can be estimated easily and robustly

- Does not fit the data well
 - Most of the PERC leaves in a few hours, but some stays in the body after a week or more
- Not realistic for low-dose extrapolation

Simple statistical ideas did not work: Simulation from prior distribution

- Get prior information on parameters from pharmacology literature
- Try to fit data within these prior constraints

- Does not fit the data well
- Difficult to get good prior information for PERC-specific parameters such as equilibrium concentration ratios

Bayesian inference

- 4-compartment model
- 15 parameters for each person
- Prior information
 - Strong for some parameters (e.g., volume of liver)
 - Weak for others (e.g., Michaelis-Menten coef)
 - Model includes uncertainty and variation
- Posterior simulation: random walk through parameter space
- Inference for parameters and predictions
- Model checking

Hierarchical prior distributions

Scaled parameter	Multiplier	Prior on μ		Prior on Σ
		exp (M)	exp (S)	Truncation
Ventilation over perfusion ratio (VPR)	1	1.6	1.3	3
Blood flows				
Well perfused tissues (Fwp)	$0.7 \times MV/VPR$	0.48^{e}	$1.2^{\rm f}$	3
Poorly perfused tissues (Fpp)	$0.7 \times MV/VPR$	0.20	$1.2^{\rm f}$	3
Fat $(\tilde{F}f)$	$0.7 \times MV/VPR$	0.07	$1.2^{\rm f}$	3
Liver (Fl)	$0.7 \times MV/VPR$	0.25	1.1^{f}	3
Volumes	,			
Well perfused tissues (Vwp)	LBM	0.28^{e}	$1.2^{\rm f}$	3
Poorly perfused tissues (Vpp)	LBM	0.56^{e}	$1.2^{\rm f}$	3
Liver (Vl)	LBM	0.033	1.1^{f}	3
Blood/air partition coefficient (Pba)	1	12	1.5	3
Tissue/blood partition coefficients				
Well perfused tissues (Pwp)	1	4.8	1.5	3
Poorly perfused tissues (Ppp)	1	1.6	1.5	3
Fat (Pf)	1	125	1.5	3
Liver (Pl)	1	4.8	1.5	3
Max. rate of metabolism in liver (VMl)	$LBM^{ m o.7}$	0.042	10	2
Km in liver (KMl)	1	16	10	2

Fitting and using the model

- Use Gibbs sampler and Metropolis algorithm to take a random walk through parameter space
- Computationally intensive
 - Each step requires evaluation of the numerical differential equation solver
- Check inferences: Do they make sense?
- Re-run the model several times to simulate what would happen under different conditions

Inference for 6 individuals

Inference for the population

Prediction of data from a new study

What we did

- Set up a hierarchical prior distribution with uncertainty and population variation for a 4compartment model
- Fit the model to data (much computation)
- Checked inferences about parameters to see that they made sense
- Re-ran model under hypothetical low-dose, high-dose exposures

Challenges

- That was 1995; what have we done since?
- Goal of automating the process of inference
- More realistic models
 - More than 4 compartments
 - More happening within each compartment
- Technical challenges in modeling and computation
- Many thousands of drugs and toxins to study

Exchange of ideas between statistics and pharmacology

- Statistics → pharmacology
 - Bayesian inference for combining prior and data
 - Hierarchical models for population variation
- Pharmacology → statistics
 - Models for constrained parameters
 - Hierarchical prior distributions
 - New ideas in understanding and checking models

Putting it all together

- 1. Physiological pharmacokinetic model
- 2. Hierarchical population model
- 3. Prior information
- 4. Experimental data
- 5. Bayesian inference
- 6. Computation
- 7. Model checking

We need all of these!

1. Physiological pharmacokinetic model

- Without a physiological model, there is no good way to get prior information on the parameters
- We need physiological parameters (not just curve-fitting of the data) to efficiently combine information across different people

2. Hierarchical population model

- Without a population model, there generally are not enough data to estimate the model separately for each individual
- And there is too much variation among bodies (even among healthy young male volunteers) to pool all the data together and estimate common parameters

- 3. Prior information
- 4. Experimental data

- We need prior information. Otherwise, our estimates don't make sense (the 8 kg liver)
- We need experimental data to learn about perchloroethylene in particular

5. Bayesian inference

- Using Bayesian inference, we can find parameter that are consistent with both prior information and data, if such agreement is possible
- Automatically includes uncertainty and variability, so inferences can be plugged in directly to risk assessment and decision analysis

6. Computation

- Our models are big. Least squares, maximum likelihood, etc., are not enough
- Old-fashioned differential-equation solver is still sitting inside the model
- Our computers are never fast enough. We want more, more, more!

7. Model checking

- Check inferences about parameters
 - Do they make sense?
 - Are they consistent with prior distributions
- Check fit to data
- Check predictions on new data

Summary of PK example

- Population pharmacokinetic models have many moving parts
- Often, complexity in one place makes it easier, not harder, to add information in other places

Using Bayesian ideas to improve existing analyses

- Regularization (for example, avoiding estimates on the boundary of parameter space)
- Accounting for uncertainty (especially for decisions)
- Checking model fit
- Using models to combine different sources of information (partial pooling)
- Better dialogue with subject-matter experts (more windows into the model and data)

Now: Your questions and comments!