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Ordered probit

data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];
row_vector[D] x[N]; }

parameters {
vector[D] beta;
ordered[K-1] c; }

model {
vector[K] theta;
for (n in 1:N) {

real eta;
eta <- x[n] * beta;
theta[1] <- 1 - Phi(eta - c[1]);
for (k in 2:(K-1))

theta[k] <- Phi(eta - c[k-1]) - Phi(eta - c[k]);
theta[K] <- Phi(eta - c[K-1]);
y[n] ~ categorical(theta);

} }
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Measurement error model

data {
...
real x_meas[N]; // measurement of x
real<lower=0> tau; // measurement noise

}
parameters {

real x[N]; // unknown true value
real mu_x; // prior location
real sigma_x; // prior scale
...

}
model {

x ~ normal(mu_x, sigma_x); // prior
x_meas ~ normal(x, tau); // measurement model
y ~ normal(alpha + beta * x, sigma);
...

}
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Stan overview

I Fit open-ended Bayesian models
I Specify log posterior density in C++
I Code a distribution once, then use it everywhere
I Hamiltonian No-U-Turn sampler
I Autodiff
I Runs from R, Python, Matlab, Julia; postprocessing
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People

I Stan core (15)
I Research collaborators (30)
I Developers (100)
I User community (1000)
I Users (10000)
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Funding

I National Science Foundation
I Institute for Education Sciences
I Department of Energy
I Novartis
I YouGov
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Roles of Stan

I Bayesian inference for unsophisticated users (alternative to
Stata, Bugs, etc.)

I Bayesian inference for sophisticated users (alternative to
programming it yourself)

I Fast and scalable gradient computation
I Environment for developing new algorithms
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“This week, the New York Times and CBS News published a story
using, in part, information from a non-probability, opt-in survey
sparking concern among many in the polling community. In general,
these methods have little grounding in theory and the results can
vary widely based on the particular method used.”
— Michael Link,
President, American Association for Public Opinion Research
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Xbox estimates, adjusting for demographics
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I Karl Rove, Wall Street Journal, 7 Oct: “Mr. Romney’s bounce
is significant.”

I Nate Silver, New York Times, 6 Oct: “Mr. Romney has not
only improved his own standing but also taken voters away
from Mr. Obama’s column.”
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Xbox estimates, adjusting for demographics and partisanship
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Jimmy Carter Republicans and George W. Bush Democrats
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Toxicology
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Earth science
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Lots of other applications

Astronomy, ecology, linguistics, epidemiology, soil science, . . .
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Steps of Bayesian data analysis

I Model building
I Inference
I Model checking
I Model understanding and improvement
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Background on Bayesian computation

I Point estimates and standard errors
I Hierarchical models
I Posterior simulation
I Markov chain Monte Carlo (Gibbs sampler and Metropolis

algorithm)
I Hamiltonian Monte Carlo
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Solving problems

I Problem: Gibbs too slow, Metropolis too problem-specific
I Solution: Hamiltonian Monte Carlo

I Problem: Interpreters too slow, won’t scale
I Solution: Compilation

I Problem: Need gradients of log posterior for HMC
I Solution: Reverse-mode algorithmic differentation

I Problem: Existing algo-diff slow, limited, unextensible
I Solution: Our own algo-diff

I Problem: Algo-diff requires fully templated functions
I Solution: Our own density library, Eigen linear algebra
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Radford Neal (2011) on Hamiltonian Monte Carlo

“One practical impediment to the use of Hamiltonian Monte Carlo
is the need to select suitable values for the leapfrog stepsize, ε, and
the number of leapfrog steps L . . . Tuning HMC will usually require
preliminary runs with trial values for ε and L . . . Unfortunately,
preliminary runs can be misleading . . . ”
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The No U-Turn Sampler

I Created by Matt Hoffman
I Run the HMC steps until they start to turn around

(bend with an angle > 180◦)
I Computationally efficient
I Requires no tuning of #steps
I Complications to preserve detailed balance

Gelman Carpenter Hoffman Lee Goodrich Betancourt . . . Stan: A platform for Bayesian inference
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NUTS Example Trajectory
Hoffman and Gelman

−0.1 0 0.1 0.2 0.3 0.4 0.5
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Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse
is a contour of the target distribution, the black open circles are the positions θ
traced out by the leapfrog integrator and associated with elements of the set of
visited states B, the black solid circle is the starting position, the red solid circles
are positions associated with states that must be excluded from the set C of
possible next samples because their joint probability is below the slice variable u,
and the positions with a red “x” through them correspond to states that must be
excluded from C to satisfy detailed balance. The blue arrow is the vector from the
positions associated with the leftmost to the rightmost leaf nodes in the rightmost
height-3 subtree, and the magenta arrow is the (normalized) momentum vector
at the final state in the trajectory. The doubling process stops here, since the
blue and magenta arrows make an angle of more than 90 degrees. The crossed-
out nodes with a red “x” are in the right half-tree, and must be ignored when
choosing the next sample.

being more complicated, the analogous algorithm that eliminates the slice variable seems
empirically to be slightly less efficient than the algorithm presented in this paper.

6

I Blue ellipse is contour of target distribution
I Initial position at black solid circle
I Arrows indicate a U-turn in momentum
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NUTS vs. Gibbs and MetropolisThe No-U-Turn Sampler

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots

compare 1,000 independent draws from a highly correlated 250-dimensional distribu-

tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by

random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)

generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS

(second from right). Only the first two dimensions are shown here.

4.4 Comparing the Efficiency of HMC and NUTS

Figure 6 compares the efficiency of HMC (with various simulation lengths λ ≈ �L) and
NUTS (which chooses simulation lengths automatically). The x-axis in each plot is the
target δ used by the dual averaging algorithm from section 3.2 to automatically tune the step
size �. The y-axis is the effective sample size (ESS) generated by each sampler, normalized by
the number of gradient evaluations used in generating the samples. HMC’s best performance
seems to occur around δ = 0.65, suggesting that this is indeed a reasonable default value
for a variety of problems. NUTS’s best performance seems to occur around δ = 0.6, but
does not seem to depend strongly on δ within the range δ ∈ [0.45, 0.65]. δ = 0.6 therefore
seems like a reasonable default value for NUTS.

On the two logistic regression problems NUTS is able to produce effectively indepen-
dent samples about as efficiently as HMC can. On the multivariate normal and stochastic
volatility problems, NUTS with δ = 0.6 outperforms HMC’s best ESS by about a factor of
three.

As expected, HMC’s performance degrades if an inappropriate simulation length is cho-
sen. Across the four target distributions we tested, the best simulation lengths λ for HMC
varied by about a factor of 100, with the longest optimal λ being 17.62 (for the multivari-
ate normal) and the shortest optimal λ being 0.17 (for the simple logistic regression). In
practice, finding a good simulation length for HMC will usually require some number of
preliminary runs. The results in Figure 6 suggest that NUTS can generate samples at least
as efficiently as HMC, even discounting the cost of any preliminary runs needed to tune
HMC’s simulation length.

25

I Two dimensions of highly correlated 250-dim distribution
I 1M samples from Metropolis, 1M from Gibbs (thin to 1K)
I 1K samples from NUTS, 1K independent draws
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varied by about a factor of 100, with the longest optimal λ being 17.62 (for the multivari-
ate normal) and the shortest optimal λ being 0.17 (for the simple logistic regression). In
practice, finding a good simulation length for HMC will usually require some number of
preliminary runs. The results in Figure 6 suggest that NUTS can generate samples at least
as efficiently as HMC, even discounting the cost of any preliminary runs needed to tune
HMC’s simulation length.
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I 1K samples from NUTS, 1K independent draws
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NUTS vs. Gibbs and MetropolisThe No-U-Turn Sampler

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots

compare 1,000 independent draws from a highly correlated 250-dimensional distribu-

tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by

random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)

generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS

(second from right). Only the first two dimensions are shown here.
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NUTS vs. Basic HMC

I 250-D normal and logistic regression models
I Vertical axis shows effective #sims (big is good)
I (Left) NUTS; (Right) HMC with increasing t = εL
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NUTS vs. Basic HMC II

I Hierarchical logistic regression and stochastic volatility
I Simulation time is step size ε times #steps L
I NUTS can beat optimally tuned HMC
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Solving more problems in Stan

I Problem: Need ease of use of BUGS
I Solution: Compile directed graphical model language

I Problem: Need to tune parameters for HMC
I Solution: Auto tuning, adaptation

I Problem: Efficient up-to-proportion density calcs
I Solution: Density template metaprogramming

I Problem: Limited error checking, recovery
I Solution: Static model typing, informative exceptions

I Problem: Poor boundary behavior
I Solution: Calculate limits (e.g. limx→0 x log x)

I Problem: Restrictive licensing (e.g., closed, GPL, etc.)
I Solution: Open-source, BSD license
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New stuff: Differential equation models

Simple harmonic oscillator:

dz1

dt
= −z2

dz2

dt
= −z1 − θz2

with observations (y1, y2)t , t = 1, . . . ,T :

y1t ∼ N(z1(t), σ2
1)

y2t ∼ N(z2(t), σ2
2)

Given data (y1, y2)t , t = 1, . . . ,T ,
estimate initial state (y1, y2)t=0 and parameter θ

Gelman Carpenter Hoffman Lee Goodrich Betancourt . . . Stan: A platform for Bayesian inference



39/44

Stan program: 1

functions {
real[] sho(real t, real[] y, real[] theta, real[] x_r, int[] x_i) {

real dydt[2];
dydt[1] <- y[2];
dydt[2] <- -y[1] - theta[1] * y[2];
return dydt;

}
}
data {

int<lower=1> T;
real y[T,2];
real t0;
real ts[T];

}
transformed data {

real x_r[0];
int x_i[0];

}
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Stan program: 2

parameters {
real y0[2];
vector<lower=0>[2] sigma;
real theta[1];

}
model {

real z[T,2];
sigma ~ cauchy(0,2.5);
theta ~ normal(0,1);
y0 ~ normal(0,1);
z <- integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);
for (t in 1:T)

y[t] ~ normal(z[t], sigma);
}
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Stan output

Run RStan with data simulated from
θ = 0.15, y0 = (1, 0), and σ = 0.1:

Inference for Stan model: sho.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
y0[1] 1.05 0.00 0.09 0.87 0.98 1.05 1.10 1.23 1172 1
y0[2] -0.06 0.00 0.06 -0.18 -0.10 -0.06 -0.02 0.06 1524 1
sigma[1] 0.14 0.00 0.04 0.08 0.11 0.13 0.16 0.25 1354 1
sigma[2] 0.11 0.00 0.03 0.06 0.08 0.10 0.12 0.18 1697 1
theta[1] 0.15 0.00 0.04 0.08 0.13 0.15 0.17 0.22 1112 1
lp__ 28.97 0.06 1.80 24.55 27.95 29.37 30.29 31.35 992 1
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Big Data, Big Model, Scalable Computing
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Thinking about scalability

I Hierarchical item response model:

Stan JAGS
# items # raters # groups # data time memory time memory

20 2,000 100 40,000 :02m 16MB :03m 220MB
40 8,000 200 320,000 :16m 92MB :40m 1400MB
80 32,000 400 2,560,000 4h:10m 580MB :??m ?MB

I Also, Stan generated 4x effective sample size per iteration
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Future work

I Programming

I Faster gradients and higher-order derivatives
I Functions

I Statistical algorithms

I Riemannian Hamiltonian Monte Carlo
I (Penalized) mle
I (Penalized) marginal mle
I Black-box variational Bayes
I Data partitioning and expectation propagation
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