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Eminem - Stan (Short Version) ft. Dido - YouTube
www.youtube.com/watch?v=aSLZFdqwh7E ~

Artists: Eminem, Dido
Album: No Angel
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Eminem - Stan (Short Version) ft. Dido - YouTube

www.youtube.com/watch?v=aSLZFdqwh7E ~

Artists: Eminem, Dido
Album: No Angel
Released: 1999

Feedback

Stan (song) - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Stan_(song) ~

"Stan" is the third single from the The Marshall Mathers LP, recorded in 1999 by
American rapper Eminem and featuring British singer Dido. It peaked at number ...
Thank You - Rock City - Robert Browning - Murder ballad

Stan: Project Home Page

mc-stan.org/ ~

Stan modeling language and C++ library for Bayesian inference. NUTS adaptive HMC
(MCMC) sampling, automatic differentiation, R, shell interfaces. Gelman.

Urban Dictionary: stan
www.urbandictionary.com/define.php?term=stan ~

Based on the central character in the Eminem song of the same name, a "stan" is an
overzealous maniacal fan for anv celebritv or athlete.
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s,

Stan

Stan is a probabilistic programming language implementing full Bayesian statistical

: - Home
inference with

o MCMC sampling (NUTS, HMC) RStan
and penalized maximum likelihood estimation with PyStan

e Optimization (BFGS) CmdStan
Stan is coded in C++ and runs on all major platforms (Linux, Mac, Windows). MatlabStan
Stan is freedom-respecting, open-source software (new BSD core, GPLv3 interfaces). Stan.jl
Interfaces Manual
Download and getting started instructions, organized by interface: Examples

e RStanv2.5.0 (R) Groups

e PyStan v2.5.0 (Python)

Issues

e CmdStan v2.5.0 (shell, command-line terminal)

e MatlabStan (MATLAB) Contribute

e Stan.jl (Julia) Source
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data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];
row_vector[D] x[N]; }
parameters {
vector[D] beta;
ordered[K-1] c; }
model {
vector[K] theta;
for (n in 1:N) {
real eta;
eta <- x[n] * beta;

theta[1] <- 1 - Phi(eta - c[1]);
for (k in 2:(X-1))

thetal[k] <- Phi(eta - c[k-1]) - Phi(eta - c[k]);
theta[K] <- Phi(eta - c[K-1]); ‘.
y[n] = categorical(theta);

3
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Measurement error model

data {
real x_meas[N]; // measurement of x
real<lower=0> tau; // measurement noise

}

parameters {
real x[N]; // unknown true value
real mu_x; // prior location
real sigma_x; // prior scale

}

model {
x ~ normal(mu_x, sigma_x); // prior
x_meas ~ normal(x, tau); // measurement model

y ~ normal(alpha + beta * x, sigma);
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Stan overview
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Stan overview

» Fit open-ended Bayesian models
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Stan overview

» Fit open-ended Bayesian models

» Specify log posterior density in C++
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Stan overview

» Fit open-ended Bayesian models
» Specify log posterior density in C++
» Code a distribution once, then use it everywhere
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Stan overview

v

Fit open-ended Bayesian models

v

Specify log posterior density in C++

v

Code a distribution once, then use it everywhere

v

Hamiltonian No-U-Turn sampler
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Stan overview

v

Fit open-ended Bayesian models

v

Specify log posterior density in C++

v

Code a distribution once, then use it everywhere

v

Hamiltonian No-U-Turn sampler
Autodiff

v
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Stan overview

v

Fit open-ended Bayesian models

v

Specify log posterior density in C++

v

Code a distribution once, then use it everywhere

v

Hamiltonian No-U-Turn sampler
Autodiff
Runs from R, Python, Matlab, Julia; postprocessing

v

v
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» Stan core (15)
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» Stan core (15)
» Research collaborators (30)
» Developers (100)
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v

v

v

v

Stan core (15)

Research collaborators (30)
Developers (100)

User community (1000)
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v

Stan core (15)

Research collaborators (30)
Developers (100)

User community (1000)
Users (10000)

v

v

v

v
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Funding

v

National Science Foundation

Institute for Education Sciences

v

v

Department of Energy
Novartis
YouGov

v

v
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Roles of Stan
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Roles of Stan

» Bayesian inference for unsophisticated users (alternative to
Stata, Bugs, etc.)
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Roles of Stan

» Bayesian inference for unsophisticated users (alternative to
Stata, Bugs, etc.)

» Bayesian inference for sophisticated users (alternative to
programming it yourself)
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Roles of Stan

» Bayesian inference for unsophisticated users (alternative to
Stata, Bugs, etc.)

» Bayesian inference for sophisticated users (alternative to
programming it yourself)

» Fast and scalable gradient computation
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Roles of Stan

v

Bayesian inference for unsophisticated users (alternative to
Stata, Bugs, etc.)

Bayesian inference for sophisticated users (alternative to
programming it yourself)

v

v

Fast and scalable gradient computation

v

Environment for developing new algorithms
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Barack Obama

Mitt Romney

Other

Not sure
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“This week, the New York Times and CBS News published a story
using, in part, information from a non-probability, opt-in survey
sparking concern among many in the polling community. In general,
these methods have little grounding in theory and the results can
vary widely based on the particular method used.”

— Michael Link,

President, American Association for Public Opinion Research
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Michael W. Link is Chief Methodologist for Research Methods at The Nielsen Company
base of experience in survey research, having worked in academia (University of South (
1999), not-for-profit research (RTI International, 1999-2004), government (Centers for Di
Prevention, 2004-2007), and the private sector (Nielsen, 2007-present). He received his
Science from the University of South Carolina. Michael's research centers around devels
methodologies for confronting some of the most pressing issues facing survey research,
techniques for improving survey participation and data quality (use of address-based san
call screening technologies), methodological issues involving use of multiple modes in ds
mail, CATI, field, mobile, meters), and obtaining participation from hard-to-survey popula
isolated, racial and ethnic groups). His numerous research articles have appeared in Pu
Quarterly and other leading scientific journals.

An AAPOR member since 1993, Michael served as AAPOR Conference Chair in back-to
& 2010), a member of both the Cell Phone and Online task forces, an instructor for an A/
numerous short-courses, a reviewer for the student paper competition on several occasic
regular reviewer for Public Opinion Quarterly. He is a member of SAPOR, serving from 2
President, Conference Chair, and Student Paper Competition Organizer and also a mem

In 2011 he, along with several research colleagues, received AAPOR’'s Warren J. Mitofsl|
Award for their work on address based sampling designs. His current research focuses ¢
technologies, such as mobile and social platforms, as vehicles for measuring and unders
attitudes and behaviors. He will be teaching a short course on “The Role of New Technc
Augmenting, or Replacing Traditional Surveys” at the 2012 AAPOR conference.
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Nielsen feels the heat of m BY DON KAPLAN
competition as it flubs its a8

ratings of news broadcasts, &
putting ABC ahead of NBC

In spite of the goof, its global president took time to slam rival Rentrak, which collects
different kind of data from viewers

NEW YORK DAILY NEWS / Sunday, October 19, 2014, 2:00 AM A

MEDIA

TV Ratings by Nielsen Had Errors for Months

By BILL CARTER and EMILY STEEL OCT. 10, 2014

Nielsen, the television research firm, acknowledged on Friday that it had ’

Email .. .
e been reporting inaccurate ratings for the broadcast networks for the last
seven months, a mistake that raises questions about the company’s
K share . . s e . .
increasingly criticized system for measuring TV audiences.
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Xbox estimates, adjusting for demographics
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» Karl Rove, Wall Street Journal, 7 Oct: “Mr. Romney's bou
is significant.”

» Nate Silver, New York Times, 6 Oct: “Mr. Romney has
only improved his own standing but also taken voters aw
from Mr. Obama's column.”

Gelman Carpenter Hoffman Lee Goodrich Betancourt ... Stan: A platform for Bayesian inference



Xbox estimates, adjusting for demographics and partisanship
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Jimmy Carter Republlcans and George W. Bush Democrats

Non-Monotonic Age Curve in 2008
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Non-Monotonic Age Curve in 2008 Non-Monotonicity in Other Elections Lining up by Birth Year
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The Formative Years
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Toxicology

Exposure of 72 ppm
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Earth science
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Lots of other applications

Astronomy, ecology, linguistics, epidemiology, soil science, . ..
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Steps of Bayesian data analysis
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Steps of Bayesian data analysis

» Model building
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Steps of Bayesian data analysis

» Model building

» Inference
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Steps of Bayesian data analysis

» Model building
> Inference

» Model checking
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Steps of Bayesian data analysis

v

Model building

Inference

v

v

Model checking

v

Model understanding and improvement
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Background on Bayesian computation
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Background on Bayesian computation

» Point estimates and standard errors
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Background on Bayesian computation

» Point estimates and standard errors

» Hierarchical models
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Background on Bayesian computation

» Point estimates and standard errors
» Hierarchical models

» Posterior simulation
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Background on Bayesian computation

v

Point estimates and standard errors

v

Hierarchical models

v

Posterior simulation

v

Markov chain Monte Carlo (Gibbs sampler and Metropolis
algorithm)
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Background on Bayesian computation

v

Point estimates and standard errors

v

Hierarchical models

v

Posterior simulation

v

Markov chain Monte Carlo (Gibbs sampler and Metropolis
algorithm)

v

Hamiltonian Monte Carlo
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Solving problems

Gelman Carpenter Hoffman Lee Goodrich Betancourt . A platform for Bayesian inference



Solving problems

» Problem: Gibbs too slow, Metropolis too problem-specific
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Solving problems

» Problem: Gibbs too slow, Metropolis too problem-specific

» Solution: Hamiltonian Monte Carlo
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Solving problems

» Problem: Gibbs too slow, Metropolis too problem-specific

» Solution: Hamiltonian Monte Carlo

» Problem: Interpreters too slow, won't scale
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Solving problems

» Problem: Gibbs too slow, Metropolis too problem-specific

» Solution: Hamiltonian Monte Carlo

» Problem: Interpreters too slow, won't scale

» Solution: Compilation
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Solving problems

Problem: Gibbs too slow, Metropolis too problem-specific

v

v

Solution: Hamiltonian Monte Carlo

v

Problem: Interpreters too slow, won't scale

v

Solution: Compilation

v

Problem: Need gradients of log posterior for HMC
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Solving problems

Problem: Gibbs too slow, Metropolis too problem-specific

v

v

Solution: Hamiltonian Monte Carlo

v

Problem: Interpreters too slow, won't scale

v

Solution: Compilation

v

Problem: Need gradients of log posterior for HMC

Solution: Reverse-mode algorithmic differentation

v
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Solving problems

» Problem:

» Solution:

» Problem:

» Solution:

> Problem:

» Solution:

» Problem:

Gibbs too slow, Metropolis too problem-specific

Hamiltonian Monte Carlo

Interpreters too slow, won't scale

Compilation

Need gradients of log posterior for HMC

Reverse-mode algorithmic differentation

Existing algo-diff slow, limited, unextensible
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Solving problems

» Problem:

» Solution:

» Problem:

» Solution:

> Problem:

» Solution:

» Problem:

» Solution:

Gibbs too slow, Metropolis too problem-specific

Hamiltonian Monte Carlo

Interpreters too slow, won't scale

Compilation

Need gradients of log posterior for HMC

Reverse-mode algorithmic differentation

Existing algo-diff slow, limited, unextensible

Our own algo-diff
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Solving problems

» Problem:

» Solution:

» Problem:

» Solution:

> Problem:

» Solution:

» Problem:

» Solution:

» Problem:

Gibbs too slow, Metropolis too problem-specific

Hamiltonian Monte Carlo

Interpreters too slow, won't scale

Compilation

Need gradients of log posterior for HMC

Reverse-mode algorithmic differentation

Existing algo-diff slow, limited, unextensible

Our own algo-diff

Algo-diff requires fully templated functions k
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Solving problems

» Problem:

» Solution:

» Problem:

» Solution:

> Problem:

» Solution:

» Problem:

» Solution:

» Problem:

» Solution:

Gibbs too slow, Metropolis too problem-specific

Hamiltonian Monte Carlo

Interpreters too slow, won't scale

Compilation

Need gradients of log posterior for HMC

Reverse-mode algorithmic differentation

Existing algo-diff slow, limited, unextensible

Our own algo-diff

Algo-diff requires fully templated functions k

Our own density library, Eigen linear algebra
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Neal (2011) on Hamiltonian Monte Carlo
Random-walk Metropolis Hamiltonian Monte Carlo

T T T T T T T T T T
"One practical impediment to the use of Hamiltonian Monte Carlo
is the need to select suitable values for the leapfrog stepsize, ¢, and
the number of leapfrog steps L ... Tuning HMC will usually require
preliminary runs with trial values for € and L ... Unfortunately,

preliminary runs can be misleading ..."
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The No U-Turn Sampler

v

Created by Matt Hoffman

Run the HMC steps until they start to turn around
(bend with an angle > 180°)

Computationally efficient

v

v

» Requires no tuning of #steps

v

Complications to preserve detailed balance
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NUTS Example Trajectory
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NUTS Example Trajectory

L L
-0.1 0 0.1 0.2 03 0.4 0.5

» Blue ellipse is contour of target distribution
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NUTS Example Trajectory

L L
-0.1 0 0.1 0.2 03 0.4 0.5

» Blue ellipse is contour of target distribution
» |nitial position at black solid circle
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NUTS Example Trajectory

L L
-0.1 0 0.1 0.2 03 0.4 0.5

» Blue ellipse is contour of target distribution
» |nitial position at black solid circle
» Arrows indicate a U-turn in momentum
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NUTS vs. Gibbs and Metropolis

Metropolis Gibbs NUTS Independent
3 4
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1 4
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2
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NUTS vs. Gibbs and Metropolis

Metropolis Gibbs NUTS Independent
3 4
2 4
1 4
N IRRERE |
14
2
3

» Two dimensions of highly correlated 250-dim distribution

N
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NUTS vs. Gibbs and Metropolis

Metropolis Gibbs NUTS Independent
3 4
2 4
1 4
N IRRERE |
14
2
3

» Two dimensions of highly correlated 250-dim distribution
» 1M samples from Metropolis, 1M from Gibbs (thin to 1K

b
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NUTS vs. Gibbs and Metropolis

Metropolis Gibbs NUTS Independent

» Two dimensions of highly correlated 250-dim distribution
» 1M samples from Metropolis, 1M from Gibbs (thin to 1K
» 1K samples from NUTS, 1K independent draws k
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NUTS vs. Basic HMC

» 250-D normal and logistic regression models
» Vertical axis shows effective #sims (big is good)
> (Left) NUTS; (Right) HMC with increasing t = eL
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NUTS vs. Basic HMC I

» Hierarchical logistic regression and stochastic volatility
» Simulation time is step size € times #steps L
» NUTS can beat optimally tuned HMC

Hierarchical Logistic Regression
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Solving more problems in Stan
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Solving more problems in Stan

» Problem: Need ease of use of BUGS
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Solving more problems in Stan

» Problem: Need ease of use of BUGS
» Solution: Compile directed graphical model language
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Solving more problems in Stan

» Problem: Need ease of use of BUGS
» Solution: Compile directed graphical model language

» Problem: Need to tune parameters for HMC
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Solving more problems in Stan

Problem: Need ease of use of BUGS
Solution: Compile directed graphical model language

v

v

Problem: Need to tune parameters for HMC
Solution: Auto tuning, adaptation

v

v
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Solving more problems in Stan

» Problem: Need ease of use of BUGS
» Solution: Compile directed graphical model language

v

Problem: Need to tune parameters for HMC
Solution: Auto tuning, adaptation

v

v

Problem: Efficient up-to-proportion density calcs
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Solving more problems in Stan

Problem: Need ease of use of BUGS
Solution: Compile directed graphical model language

v

v

v

Problem: Need to tune parameters for HMC
Solution: Auto tuning, adaptation

v

v

Problem: Efficient up-to-proportion density calcs

v

Solution: Density template metaprogramming
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Solving more problems in Stan

» Problem:
» Solution:

» Problem:
» Solution:

» Problem:
» Solution:

» Problem:

Need ease of use of BUGS
Compile directed graphical model language

Need to tune parameters for HMC
Auto tuning, adaptation

Efficient up-to-proportion density calcs
Density template metaprogramming

Limited error checking, recovery
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» Solution:
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» Solution:

» Problem:
» Solution:

» Problem:
» Solution:

Need ease of use of BUGS
Compile directed graphical model language

Need to tune parameters for HMC
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Solving more problems in Stan

» Problem:
» Solution:

» Problem:
» Solution:

» Problem:
» Solution:

» Problem:
» Solution:

» Problem:
» Solution:

» Problem:
» Solution:

Need ease of use of BUGS
Compile directed graphical model language

Need to tune parameters for HMC
Auto tuning, adaptation

Efficient up-to-proportion density calcs
Density template metaprogramming

Limited error checking, recovery
Static model typing, informative exceptions

Poor boundary behavior
Calculate limits (e.g. limy_,0 x log x)

Restrictive licensing (e.g., closed, GPL, etc.) k
Open-source, BSD license
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New stuff: Differential equation models

Simple harmonic oscillator:

dn
a 2
% = —Z1 — 922

with observations (y1,y2)t, t =1,..., T:

yie ~ N(Zl(t)af’%)
y2e ~ N(z(t),03)

Given data (y1,y2)s,t=1,..., T,
estimate initial state (y1, y2)t—0 and parameter 6
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functions {
real[] sho(real t, reall] y, real[] theta, reall] x_r, int[] x_i) {
real dydt[2];
dydt[1] <- y[2];
dydt[2] <- -y[1] - thetalll * y[2];
return dydt;

}

¥

data {
int<lower=1> T;
real y[T,2];
real tO;
real ts[T];

}

transformed data {
real x_r[0];
int x_i[0];

}
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parameters {
real yO[2];
vector<lower=0>[2] sigma;
real thetal1];
}
model {
real z[T,2];
sigma ~ cauchy(0,2.5);
theta ~ normal(0,1);
yO ~ normal(0,1);
z <- integrate_ode(sho, yO, tO, ts, theta, x_r, x_i);
for (t in 1:T)
y[t] ~ normal(z[t], sigma);
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Stan output

Run RStan with data simulated from
6 =0.15, yo = (1,0), and 0 = 0.1:

Inference for Stan model: sho.

4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

yo[1] 1.05 0.00 0.09 0.87 0.98 1.05 1.10 1.23 1172 1
yo[2] -0.06 0.00 0.06 -0.18 -0.10 -0.06 -0.02 0.06 1524 1
sigma[1] 0.14 0.00 0.04 0.08 0.11 0.13 0.16 0.25 1354 1
sigma[2] 0.11 0.00 0.03 0.06 0.08 0.10 0.12 0.18 1697 1
theta[1] 0.15 0.00 0.04 0.08 0.13 0.15 0.17 0.22 1112 1
1p__ 28.97 0.06 1.80 24.55 27.95 29.37 30.29 31.35 992 1

b
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Big Data, Big Model, Scalable Computing

100 Items
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Thinking about scalability
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Thinking about scalability

» Hierarchical item response model:

Stan JAGS
# items  # raters  # groups # data time memory time memory
20 2,000 100 40,000 :02m 16MB  :03m  220MB
40 8,000 200 320,000 :16m 92MB  :40m 1400MB
80 32,000 400 2,560,000 4h:10m 580MB :77?m MB
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Thinking about scalability

» Hierarchical item response model:

Stan JAGS
# items  # raters # groups # data time memory time memory
20 2,000 100 40,000 :02m 16MB :03m  220MB
40 8,000 200 320,000 :16m 92MB  :40m 1400MB
80 32,000 400 2,560,000 4h:10m 580MB :77?m MB

» Also, Stan generated 4x effective sample size per iteration

b
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Future work
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» Functions
» Statistical algorithms
» Riemannian Hamiltonian Monte Carlo
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» Programming

» Faster gradients and higher-order derivatives
» Functions

» Statistical algorithms

» Riemannian Hamiltonian Monte Carlo
(Penalized) mle

(Penalized) marginal mle

Black-box variational Bayes

Data partitioning and expectation propagation

vV vy vVvYy
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