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that all saloon-keepers are Democrats. — Horace Greeley,
1860

» Pat doesn’t have a mink coat. But she does have a
respectable Republican cloth coat. — Richard Nixon, 1952

» Like upscale areas everywhere, from Silicon Valley to
Chicago’s North Shore to suburban Connecticut, Montgomery
County supported the Democratic ticket in last year's
presidential election, by a margin of 63 percent to 34 percent.
— David Brooks, 2001

» A lot of Bush's red zones can be traced to wealthy enclaves or
sun-belt suburbs where tax cuts are king. — Matt Bai, 2001
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Introduction

Puzzles

» Rich states go for the Democrats, but rich voters go for the
Republicans. How do we understand this?

» Why all the fuss since 20007

» How to reconcile journalists' and social scientists’ views about
income and political preferences?
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» In each presidential election year, run linear regression:

» y = state vote share for the Republican
> x = average income in the state

» Display time series of estimates + standard errors (the “secret
weapon”)

» Quantitative version of looking at a series of red/blue maps

» Also do separate analyses for South, non-South
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Counties

Richer states now support the Democrats
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Individual, county, and state-level analyses

Richer states now support the Democrats

» “Latte” Democrats vs. “Nascar” Republicans
» Recent trends explain why it's recent news
> |s state-level inequality (rather than average income) the

explanation?
» Including state Gini index in the regressions has essentially no

effect
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Richer voters continue to support the Republicans
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Individuals
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Richer voters continue to support the Republicans

» “Fat-cat” Republicans and “working-class” Democrats

» Including ethnicity, sex, education, and age as predictors in
the model has little effect on the coefficient for income
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Counties

Richer counties support the Republicans in some states
and the Democrats in others

» Within each state, estimate regression on county data:

» y = county vote share for the Republican
> x = average income in the county

» Varying-intercept, varying-slope model:

> Yo = Qgl] t+ ﬁS[C]XC + errorc
> s[c] = state containing county ¢

» Fit separate model for each election year (“secret weapon™)

» For each state, display time series of estimated (s
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Individual, county, and state-level analyses States
Individuals
Counties

Richer counties support the Republicans in some states
and the Democrats in others

» In “deep-red” Southern states such as Oklahoma, Texas,
Mississippi, etc., richer counties strongly support the
Republicans

» In “media-center” states of New York, California, Maryland,
and Virginia, richer counties slightly support the Democrats

» Journalists noticed a pattern (richer counties supporting the
Democrats) that is concentrated in the states where the
journalists live!
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Multilevel models of individuals within states Varying-intercept, varying-slope model
Supplementary analyses

Richer voters continue to support the Republicans within
states

» Within each state, estimate logistic regression on individuals:
» y = vote preference (1=Rep, 0=Dem)
» x = individual income (on a five-point scale)
» Varying-intercept model:
> Pr(y; = 1) = logit™ " (asp) + Bxi)
» s[i] = state containing county i
» State-level regression of as on state income
» Use 2000 Annenberg Election Survey (over 100,000
respondents)
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Varying-intercept model
Multilevel models of individuals within states Varying-intercept, varying-slope model
Supplementary analyses

voters continue to support the Republicans within

Within each state, estimate logistic regression on individuals:
» y = vote preference (1=Rep, 0=Dem)
» x = individual income (on a five-point scale)
Varying-intercept model:
> Pr(y; = 1) = logit™ " (asp) + Bxi)
» s[i] = state containing county i
» State-level regression of as on state income
Use 2000 Annenberg Election Survey (over 100,000
respondents)
Plot estimated Pr(R vote) vs. income for three representative
states
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Multilevel models of individuals within states Varying-intercept, varying-slope model
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Richer voters support the Republicans within states

Varying—intercept model, 2000
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How do income/voting patterns vary by state

» Varying-intercept, varying-slope model:

> Pr(y; = 1) = logit™ " (asp) + Bspyxi)
» s[i] = state containing county i
> State-level regression of as and [3s on state income

» Income is coded as —2,—1,0, 1,2, so we can interpret both
intercepts and slopes
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Multilevel models of individuals within states Varying-intercept, varying-slope model
Supplementary analyses

How do income/voting patterns vary by state

» Varying-intercept, varying-slope model:

> Pr(y; = 1) = logit™ " (asp) + Bspyxi)
» s[i] = state containing county i
> State-level regression of as and [3s on state income

» Income is coded as —2,—1,0, 1,2, so we can interpret both
intercepts and slopes

> Plot estimated Pr(R vote) vs. income for 3 representative
states

» Plot estimated slopes vs. state incomes
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Varying-intercept model
Multilevel models of individuals within states Varying-intercept, varying-slope model
Supplementary analyses

Income matters more in “red America” than in “blue America”

Varying-intercept, varying—slope model, 2000
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Varying-intercept model
Multilevel models of individuals within states Varying-intercept, varying-slope model
Supplementary analyses

Income matters more in “red America” than in “blue America”

Slope vs. state income, 2000

0.8

Slope
0.4

0.0

20 25 30 35
Avg State Income ($10k)

Andrew Gelman Rich State, Poor State,




Varying-intercept model
Multilevel models of individuals within states Varying-intercept, varying-slope model
Supplementary analyses

Supplementary analyses give the same results
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» Richer states support the Democrats—even though, within
any given state, richer voters tend to support the Republicans.

» The slope within a state is strongest in poor, rural,
Republican-leaning “red” states and weakest in rich, urban,
Democrat-leaning “blue” states.

» These patterns have largely arisen in the past ten or fifteen
years.
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» Positive slopes within states are no suprise

» Between states: state income as product of long-term trends
(large cities 50 or 100 years ago, more trade, immigration,
ethnic diversity)

» Economic issues are perhaps more salient in poor states, less
salient in rich states (that could be “what's wrong with
Connecticut”)
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» Red-blue map is misleading

» Overstates “polarization”
» Focus on large land-area states

» Reliance on anecdotes leads to confirmation of what is already
“known”

» Aggregation bias: within-state and between-state correlations
in different directions
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» | come from Huntington, a small farming community in
Indiana. | had an upbringing like many in my generation—a
life built around family, public school, Little League, basketball
and church on Sunday. My brother and | shared a room in our
two-bedroom house. — Dan Quayle, 1992

» Clinton displays almost every trope of blackness: single-parent
household, born poor, working-class, saxophone-playing,
McDonald’s-and-junk-food-loving boy from Arkansas. — Toni
Morrison, 1998

» Lower-than-average income Americans are part of the “mom
and apple pie" cluster

» Both sides want to claim the “average American”

» 50% of voters support each party, so no easy answers for
either side!
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» | can't believe Nixon won. | don’'t know anybody who voted
for him. — attributed to Pauline Kael, 1972

» |t evidently irritates many liberals to point out that their party
gets heavy support from superaffluent “people of fashion” and
does not run very well among “the common people.” —
Michael Barone, 2005

» First-order availability bias (“false consensus effect”): most
people | know are Democrats, therefore most people are
Democrats

» This is the error attributed to Kael, but nobody would
actually make this mistake for a presidential election!
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Second-order availability bias

» National journalists in New York, California, Maryland, and
Virginia live in states where:
» Rich counties support the Democrats, poor counties support
the Republicans
» There is only a weak relation between income and vote
preference
» In contrast, in the deep-red Southern states:
» Rich counties support the Republicans, poor counties support
the Democrats
» There is a strong correlation between income and Republican
vote preference
» Paradoxically, journalists are influenced by their
geography—even when they try to generalize to the general
population!
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» The red/blue map is misleading. Actually, Republicans are
richer than Democrats, on average—in the U.S., and within
states

» But, there are real differences between red and blue states.
Income is more important in red states

» There are statistical, political, and psychological reasons for
journalists (and others) to get confused on this.
» Key statistical tools:
» Multilevel modeling
» Interactions (varying slopes)
» The secret weapon
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» Historically controlled by the Institutional Revolutionary Party
(PRI)
» 2000 and 2006 were the first fair elections; 3 major parties:
» PAN (National Action Party, conservative)
» PRI (status quo)
» PRD (Party of the Democratic Revolution, left)
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Mexican presidential elections

» Every 6 years
» Historically controlled by the Institutional Revolutionary Party
(PRI)
» 2000 and 2006 were the first fair elections; 3 major parties:
» PAN (National Action Party, conservative)
» PRI (status quo)
» PRD (Party of the Democratic Revolution, left)
» PAN beat PRI in 2000;
PAN beat PRD (by less than 1%) in 2006
» Income at individual level: middle class and poor
» Income at state level: north, center, and south
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Fitting the model

» 3 parties instead of 2
» Model a continuous outcome y =1,2,3
> Logistic regression comparing each party to the other two
» Ordered logit, estimating cutpoints

» Data issues

» Smaller sample size
» Polls use cluster sampling
» No good measure of state income
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Data and fitted lines within poor and rich states
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Summary of results

» Similar to the U.S.
» Rich voters support more conservative candidates
» Income predicts vote choice more strongly in poor states

» Different from the U.S.
» Rich states are more conservative
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Nonlinear relation to state GDP

» Richer states are more conservative and have lower
slopes—except for Mexico City, the richest “state”

» Cannot simply display the equivalents of Mississippi, Ohio,
and Connecticut
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Fixing the model

» Add state-level predictors

» GDP per capita (already included in model)
» Indicators for the five regions (including Mexico City)

» Collinearity

> In classical regression, can't include all these predictors
» OK in Bayesian (multilevel) model
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Costs and benefits of Bayesian multilevel modeling

» Cost
» Can be more more effort to fit

» Benefit
» Fewer arbitrary choices (paradoxically, in light of what is
sometimes said about subjectivity and prior distributions)
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