Rich State, Poor State, Red State, Blue State: What’s the Matter with Connecticut

Andrew Gelman
Department of Statistics and Department of Political Science
Columbia University

13 Aug 2006
Introduction

Individual, county, and state-level analyses
Multilevel models of individuals within states
Understanding the results
A trip to Mexico

Themes

▶ Income and voting: understanding aggregate and individual patterns
▶ Multilevel modeling and graphical display
▶ Some politics and some psychology
▶ Collaborators
Themes

- Income and voting: understanding aggregate and individual patterns
 - Multilevel modeling and graphical display
 - Some politics and some psychology
 - Collaborators
Themes

▶ Income and voting: understanding aggregate and individual patterns
▶ Multilevel modeling and graphical display
▶ Some politics and some psychology
▶ Collaborators
 - Boris Shor (Harris School of Public Policy, U of Chicago)
 - Joseph Bafumi (Dept of Political Science, Dartmouth)
 - David Park (Dept of Political Science, Wash U, St. Louis)
 - Jeronimo Cortina (Dept of Political Science, Columbia U)
Introduction
Individual, county, and state-level analyses
Multilevel models of individuals within states
Understanding the results
A trip to Mexico

Themes

▶ Income and voting: understanding aggregate and individual patterns
▶ Multilevel modeling and graphical display
▶ Some politics and some psychology
▶ Collaborators
 ▶ Boris Shor (Harris School of Public Policy, U of Chicago)
 ▶ Joseph Bafumi (Dept of Political Science, Dartmouth)
 ▶ David Park (Dept of Political Science, Wash U, St. Louis)
 ▶ Jeronimo Cortina (Dept of Political Science, Columbia U)
Themes

▶ Income and voting: understanding aggregate and individual patterns
▶ Multilevel modeling and graphical display
▶ Some politics and some psychology
▶ Collaborators
 ▶ Boris Shor (Harris School of Public Policy, U of Chicago)
 ▶ Joseph Bafumi (Dept of Political Science, Dartmouth)
 ▶ David Park (Dept of Political Science, Wash U, St. Louis)
 ▶ Jeronimo Cortina (Dept of Political Science, Columbia U)
Themes

- Income and voting: understanding aggregate and individual patterns
- Multilevel modeling and graphical display
- Some politics and some psychology
- Collaborators
 - Boris Shor (Harris School of Public Policy, U of Chicago)
 - Joseph Bafumi (Dept of Political Science, Dartmouth)
 - David Park (Dept of Political Science, Wash U, St. Louis)
 - Jeronimo Cortina (Dept of Political Science, Columbia U)
Themes

▶ Income and voting: understanding aggregate and individual patterns
▶ Multilevel modeling and graphical display
▶ Some politics and some psychology
▶ Collaborators
 ▶ Boris Shor (Harris School of Public Policy, U of Chicago)
 ▶ Joseph Bafumi (Dept of Political Science, Dartmouth)
 ▶ David Park (Dept of Political Science, Wash U, St. Louis)
 ▶ Jeronimo Cortina (Dept of Political Science, Columbia U)
Themes

- Income and voting: understanding aggregate and individual patterns
- Multilevel modeling and graphical display
- Some politics and some psychology
- Collaborators
 - Boris Shor (Harris School of Public Policy, U of Chicago)
 - Joseph Bafumi (Dept of Political Science, Dartmouth)
 - David Park (Dept of Political Science, Wash U, St. Louis)
 - Jeronimo Cortina (Dept of Political Science, Columbia U)
Introduction
Individual, county, and state-level analyses
Multilevel models of individuals within states
Understanding the results
A trip to Mexico

Themes

- Income and voting: understanding aggregate and individual patterns
- Multilevel modeling and graphical display
- Some politics and some psychology
- Collaborators
 - Boris Shor (Harris School of Public Policy, U of Chicago)
 - Joseph Bafumi (Dept of Political Science, Dartmouth)
 - David Park (Dept of Political Science, Wash U, St. Louis)
 - Jeronimo Cortina (Dept of Political Science, Columbia U)
Democrats and Republicans, rich and poor

- I never said all Democrats are saloon-keepers. What I said is that all saloon-keepers are Democrats. — Horace Greeley, 1860

- Pat doesn’t have a mink coat. But she does have a respectable Republican cloth coat. — Richard Nixon, 1952

- Like upscale areas everywhere, from Silicon Valley to Chicago’s North Shore to suburban Connecticut, Montgomery County supported the Democratic ticket in last year’s presidential election, by a margin of 63 percent to 34 percent. — David Brooks, 2001

- A lot of Bush’s red zones can be traced to wealthy enclaves or sun-belt suburbs where tax cuts are king. — Matt Bai, 2001
Democrats and Republicans, rich and poor

- I never said all Democrats are saloon-keepers. What I said is that all saloon-keepers are Democrats. — Horace Greeley, 1860

- Pat doesn’t have a mink coat. But she does have a respectable Republican cloth coat. — Richard Nixon, 1952

- Like upscale areas everywhere, from Silicon Valley to Chicago’s North Shore to suburban Connecticut, Montgomery County supported the Democratic ticket in last year’s presidential election, by a margin of 63 percent to 34 percent. — David Brooks, 2001

- A lot of Bush’s red zones can be traced to wealthy enclaves or sun-belt suburbs where tax cuts are king. — Matt Bai, 2001
Democrats and Republicans, rich and poor

I never said all Democrats are saloon-keepers. What I said is that all saloon-keepers are Democrats. — Horace Greeley, 1860

Pat doesn’t have a mink coat. But she does have a respectable Republican cloth coat. — Richard Nixon, 1952

Like upscale areas everywhere, from Silicon Valley to Chicago’s North Shore to suburban Connecticut, Montgomery County supported the Democratic ticket in last year’s presidential election, by a margin of 63 percent to 34 percent. — David Brooks, 2001

A lot of Bush’s red zones can be traced to wealthy enclaves or sun-belt suburbs where tax cuts are king. — Matt Bai, 2001
Democrats and Republicans, rich and poor

- I never said all Democrats are saloon-keepers. What I said is that all saloon-keepers are Democrats. — Horace Greeley, 1860

- Pat doesn’t have a mink coat. But she does have a respectable Republican cloth coat. — Richard Nixon, 1952

- Like upscale areas everywhere, from Silicon Valley to Chicago’s North Shore to suburban Connecticut, Montgomery County supported the Democratic ticket in last year’s presidential election, by a margin of 63 percent to 34 percent. — David Brooks, 2001

- A lot of Bush’s red zones can be traced to wealthy enclaves or sun-belt suburbs where tax cuts are king. — Matt Bai, 2001
Democrats and Republicans, rich and poor

- I never said all Democrats are saloon-keepers. What I said is that all saloon-keepers are Democrats. — Horace Greeley, 1860

- Pat doesn’t have a mink coat. But she does have a respectable Republican cloth coat. — Richard Nixon, 1952

- Like upscale areas everywhere, from Silicon Valley to Chicago’s North Shore to suburban Connecticut, Montgomery County supported the Democratic ticket in last year’s presidential election, by a margin of 63 percent to 34 percent. — David Brooks, 2001

- A lot of Bush’s red zones can be traced to wealthy enclaves or sun-belt suburbs where tax cuts are king. — Matt Bai, 2001
Puzzles

- Rich states go for the Democrats, but rich voters go for the Republicans. How do we understand this?
- Why all the fuss since 2000?
- How to reconcile journalists’ and social scientists’ views about income and political preferences?
Rich *states* go for the Democrats, but rich *voters* go for the Republicans. How do we understand this?

Why all the fuss since 2000?

How to reconcile journalists’ and social scientists’ views about income and political preferences?
Puzzles

- Rich *states* go for the Democrats, but rich *voters* go for the Republicans. How do we understand this?
- Why all the fuss since 2000?
- How to reconcile journalists’ and social scientists’ views about income and political preferences?
Rich states go for the Democrats, but rich voters go for the Republicans. How do we understand this?

Why all the fuss since 2000?

How to reconcile journalists’ and social scientists’ views about income and political preferences?
Richer states now support the Democrats

▶ In each presidential election year, run linear regression:
 ▶ \(y = \) state vote share for the Republican
 ▶ \(x = \) average income in the state
▶ Display time series of estimates ± standard errors (the "secret weapon")
▶ Quantitative version of looking at a series of red/blue maps
▶ Also do separate analyses for South, non-South
Richer states now support the Democrats

- In each presidential election year, run linear regression:
 - $y = \text{state vote share for the Republican}$
 - $x = \text{average income in the state}$
- Display time series of estimates ± standard errors (the “secret weapon”)
- Quantitative version of looking at a series of red/blue maps
- Also do separate analyses for South, non-South
Richer states now support the Democrats

- In each presidential election year, run linear regression:
 - $y =$ state vote share for the Republican
 - $x =$ average income in the state
- Display time series of estimates ± standard errors (the “secret weapon”)
- Quantitative version of looking at a series of red/blue maps
- Also do separate analyses for South, non-South
Richer states now support the Democrats

- In each presidential election year, run linear regression:
 - \(y = \) state vote share for the Republican
 - \(x = \) average income in the state
- Display time series of estimates \(\pm \) standard errors (the “secret weapon”)
- Quantitative version of looking at a series of red/blue maps
- Also do separate analyses for South, non-South
Richer states now support the Democrats

- In each presidential election year, run linear regression:
 - $y =$ state vote share for the Republican
 - $x =$ average income in the state
- Display time series of estimates ± standard errors (the “secret weapon”)
- Quantitative version of looking at a series of red/blue maps
- Also do separate analyses for South, non-South
Richer states now support the Democrats

- In each presidential election year, run linear regression:
 - $y = \text{state vote share for the Republican}$
 - $x = \text{average income in the state}$
- Display time series of estimates \pm standard errors (the “secret weapon”)
- Quantitative version of looking at a series of red/blue maps
- Also do separate analyses for South, non-South
Richer states now support the Democrats

- In each presidential election year, run linear regression:
 - $y =$ state vote share for the Republican
 - $x =$ average income in the state
- Display time series of estimates \pm standard errors (the “secret weapon”)
- Quantitative version of looking at a series of red/blue maps
- Also do separate analyses for South, non-South
Richer states now support the Democrats
Richer states now support the Democrats

- “Latte” Democrats vs. “Nascar” Republicans
- Recent trends explain why it’s recent news
- Is state-level inequality (rather than average income) the explanation?
Richer states now support the Democrats

▶ “Latte” Democrats vs. “Nascar” Republicans
▶ Recent trends explain why it’s recent news
▶ Is state-level inequality (rather than average income) the explanation?
 ▶ Including state Gini index in the regressions has essentially no effect
Richer states now support the Democrats

- “Latte” Democrats vs. “Nascar” Republicans
- Recent trends explain why it’s recent news
- Is state-level inequality (rather than average income) the explanation?
 - Including state Gini index in the regressions has essentially no effect
Richer states now support the Democrats

- “Latte” Democrats vs. “Nascar” Republicans
- Recent trends explain why it’s recent news
- Is state-level inequality (rather than average income) the explanation?
 - Including state Gini index in the regressions has essentially no effect
Richer states now support the Democrats

▶ “Latte” Democrats vs. “Nascar” Republicans
▶ Recent trends explain why it’s recent news
▶ Is state-level inequality (rather than average income) the explanation?
 ▶ Including state Gini index in the regressions has essentially no effect
Richer voters continue to support the Republicans

- National Election Study
- Each election year, logistic regression on individual voters:
 - y = vote preference (1 = Rep, 0 = Dem)
 - x = individual income (on a five-point scale)
- Display time series of estimates \pm standard errors
- Also do separate analyses for South, non-South
Richer voters continue to support the Republicans

- **National Election Study**
 - Each election year, logistic regression on individual voters:
 - \(y = \) vote preference (1=Rep, 0=Dem)
 - \(x = \) individual income (on a five-point scale)
 - Display time series of estimates ± standard errors
 - Also do separate analyses for South, non-South
Richer voters continue to support the Republicans

- National Election Study
- Each election year, logistic regression on individual voters:
 - $y =$ vote preference (1=Rep, 0=Dem)
 - $x =$ individual income (on a five-point scale)
- Display time series of estimates ± standard errors
- Also do separate analyses for South, non-South
Richer voters continue to support the Republicans

- National Election Study
- Each election year, logistic regression on individual voters:
 - $y = \text{vote preference (1=Rep, 0=Dem)}$
 - $x = \text{individual income (on a five-point scale)}$
- Display time series of estimates ± standard errors
- Also do separate analyses for South, non-South
Richer voters continue to support the Republicans

- National Election Study
- Each election year, logistic regression on individual voters:
 - \(y \) = vote preference (1=Rep, 0=Dem)
 - \(x \) = individual income (on a five-point scale)
- Display time series of estimates ± standard errors
- Also do separate analyses for South, non-South
Richer voters continue to support the Republicans

- National Election Study
- Each election year, logistic regression on individual voters:
 - $y =$ vote preference (1=Rep, 0=Dem)
 - $x =$ individual income (on a five-point scale)
- Display time series of estimates \pm standard errors
- Also do separate analyses for South, non-South
Richer voters continue to support the Republicans

- National Election Study
- Each election year, logistic regression on individual voters:
 - \(y = \) vote preference (1=Rep, 0=Dem)
 - \(x = \) individual income (on a five-point scale)
- Display time series of estimates ± standard errors
- Also do separate analyses for South, non-South
Richer voters continue to support the Republicans
Richer voters continue to support the Republicans

- “Fat-cat” Republicans and “working-class” Democrats
- Including ethnicity, sex, education, and age as predictors in the model has little effect on the coefficient for income
Richer voters continue to support the Republicans

- “Fat-cat” Republicans and “working-class” Democrats
- Including ethnicity, sex, education, and age as predictors in the model has little effect on the coefficient for income
Richer voters continue to support the Republicans

- “Fat-cat” Republicans and “working-class” Democrats
- Including ethnicity, sex, education, and age as predictors in the model has little effect on the coefficient for income
Richer counties support the Republicans in some states and the Democrats in others.

- Within each state, estimate regression on county data:
 - y = county vote share for the Republican
 - x = average income in the county
- Varying-intercept, varying-slope model:
- Fit separate model for each election year ("secret weapon")
- For each state, display time series of estimated β_s
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - $y =$ county vote share for the Republican
 - $x =$ average income in the county
- Varying-intercept, varying-slope model:
 - $y_c = \alpha_s[c] + \beta_s[c] x_c + \text{error}_c$
 - $s[c] =$ state containing county c
- Fit separate model for each election year ("secret weapon")
- For each state, display time series of estimated β_s
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - $y =$ county vote share for the Republican
 - $x =$ average income in the county
- Varying-intercept, varying-slope model:
 - $y_c = \alpha_s[c] + \beta_s x_c + \text{error}$
 - $s[c] =$ state containing county c
- Fit separate model for each election year ("secret weapon")
- For each state, display time series of estimated β_s
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - $y = \text{county vote share for the Republican}$
 - $x = \text{average income in the county}$

- Varying-intercept, varying-slope model:
 - $y_c = \alpha_{s[c]} + \beta_{s[c]}x_c + \text{error}_c$
 - $s[c] = \text{state containing county } c$

- Fit separate model for each election year ("secret weapon")
- For each state, display time series of estimated β_s
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - $y = \text{county vote share for the Republican}$
 - $x = \text{average income in the county}$

- Varying-intercept, varying-slope model:
 - $y_c = \alpha_s[c] + \beta_s[c]x_c + \text{error}_c$
 - $s[c] = \text{state containing county } c$

- Fit separate model for each election year ("secret weapon")
- For each state, display time series of estimated β_s
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - \(y = \text{county vote share for the Republican} \)
 - \(x = \text{average income in the county} \)
- Varying-intercept, varying-slope model:
 - \(y_c = \alpha_{s[c]} + \beta_{s[c]} x_c + \text{error}_c \)
 - \(s[c] = \text{state containing county } c \)
- Fit separate model for each election year ("secret weapon")
- For each state, display time series of estimated \(\beta_s \)
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - \(y = \) county vote share for the Republican
 - \(x = \) average income in the county

- Varying-intercept, varying-slope model:
 - \(y_c = \alpha_{s[c]} + \beta_{s[c]}x_c + \text{error}_c \)
 - \(s[c] = \) state containing county \(c \)

- Fit separate model for each election year (”secret weapon”)
- For each state, display time series of estimated \(\beta_s \)
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - $y = \text{county vote share for the Republican}$
 - $x = \text{average income in the county}$

- Varying-intercept, varying-slope model:
 - $y_c = \alpha_{s[c]} + \beta_{s[c]}x_c + \text{error}_c$
 - $s[c] = \text{state containing county } c$

- Fit separate model for each election year (“secret weapon”)
 - For each state, display time series of estimated β_s
Richer counties support the Republicans in some states and the Democrats in others

- Within each state, estimate regression on county data:
 - \(y = \text{county vote share for the Republican} \)
 - \(x = \text{average income in the county} \)

- Varying-intercept, varying-slope model:
 - \(y_c = \alpha_{s[c]} + \beta_{s[c]}x_c + \text{error}_c \)
 - \(s[c] = \text{state containing county } c \)

- Fit separate model for each election year ("secret weapon")
- For each state, display time series of estimated \(\beta_s \)
Coef of county-level income on county-level vote: South

- Oklahoma
- Texas
- Mississippi
- South Carolina
- Kentucky
- Alabama
- North Carolina
- Georgia
- Virginia
- Louisiana
- West Virginia
- Arkansas
- Tennessee
- Florida
Coef of county-level income on county-level vote: West

- Utah
- Wyoming
- Idaho
- Montana
- Colorado
- Arizona
- Nevada
- New Mexico
- Oregon
- Washington
- California
- Hawaii
Coef of county-level income on county-level vote: Midwest

- Nebraska
- North Dakota
- South Dakota
- Kansas
- Indiana
- Ohio
- Missouri
- Wisconsin
- Iowa
- Minnesota
- Michigan
- Illinois
Coef of county-level income on county-level vote: Northeast

<table>
<thead>
<tr>
<th>State</th>
<th>Year 1968</th>
<th>Year 1980</th>
<th>Year 1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>-0.3</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
Richer counties support the Republicans in some states and the Democrats in others

- In “deep-red” Southern states such as Oklahoma, Texas, Mississippi, etc., richer counties strongly support the Republicans.
- In “media-center” states of New York, California, Maryland, and Virginia, richer counties slightly support the Democrats.
- Journalists noticed a pattern (richer counties supporting the Democrats) that is concentrated in the states where the journalists live!
Richer counties support the Republicans in some states and the Democrats in others

- In “deep-red” Southern states such as Oklahoma, Texas, Mississippi, etc., richer counties strongly support the Republicans.
- In “media-center” states of New York, California, Maryland, and Virginia, richer counties slightly support the Democrats.
- Journalists noticed a pattern (richer counties supporting the Democrats) that is concentrated in the states where the journalists live!
Richer counties support the Republicans in some states and the Democrats in others

- In “deep-red” Southern states such as Oklahoma, Texas, Mississippi, etc., richer counties strongly support the Republicans
- In “media-center” states of New York, California, Maryland, and Virginia, richer counties slightly support the Democrats
- Journalists noticed a pattern (richer counties supporting the Democrats) that is concentrated in the states where the journalists live!
Richer counties support the Republicans in some states and the Democrats in others

- In “deep-red” Southern states such as Oklahoma, Texas, Mississippi, etc., richer counties strongly support the Republicans
- In “media-center” states of New York, California, Maryland, and Virginia, richer counties slightly support the Democrats
- Journalists noticed a pattern (richer counties supporting the Democrats) that is concentrated in the states where the journalists live!
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - $y =$ vote preference (1=Rep, 0=Dem)
 - $x =$ individual income (on a five-point scale)
- Varying-intercept model:
 - $\Pr(y_i = 1) = \logit^{-1}(\alpha_s[i] + \beta x_i)$
 - $s[i] =$ state containing county i
- State-level regression of α_s on state income
- Use 2000 Annenberg Election Survey (over 100,000 respondents)
- Plot estimated $\Pr(R\ vote)$ vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - $y =$ vote preference ($1=$Rep, $0=$Dem)
 - $x =$ individual income (on a five-point scale)
- Varying-intercept model:
- Use 2000 Annenberg Election Survey (over 100,000 respondents)
- Plot estimated $\Pr(R \text{ vote})$ vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - \(y = \text{vote preference (1=Rep, 0=Dem)} \)
 - \(x = \text{individual income (on a five-point scale)} \)

- Varying-intercept model:
 - \(\Pr(y = 1) = \text{logit}^{-1}(\alpha_s + \beta x) \)
 - \(\alpha_s = \text{state containing county} \)
 - State-level regression of \(\alpha_s \) on state income

- Use 2000 Annenberg Election Survey (over 100,000 respondents)

- Plot estimated \(\Pr(\text{R vote}) \) vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - $y = \text{vote preference (1=Rep, 0=Dem)}$
 - $x = \text{individual income (on a five-point scale)}$

- Varying-intercept model:
 - $\Pr(y_i = 1) = \text{logit}^{-1}(\alpha_{s[i]} + \beta x_i)$
 - $s[i] = \text{state containing county } i$
 - State-level regression of α_s on state income

- Use 2000 Annenberg Election Survey (over 100,000 respondents)

- Plot estimated $\Pr(\text{R vote})$ vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - $y = $ vote preference (1=Rep, 0=Dem)
 - $x = $ individual income (on a five-point scale)

- Varying-intercept model:
 - $Pr(y_i = 1) = \text{logit}^{-1}(\alpha_{s[i]} + \beta x_i)$
 - $s[i] =$ state containing county i
 - State-level regression of α_s on state income

- Use 2000 Annenberg Election Survey (over 100,000 respondents)

- Plot estimated $Pr(R \text{ vote})$ vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - \(y \) = vote preference (1=Rep, 0=Dem)
 - \(x \) = individual income (on a five-point scale)

- Varying-intercept model:
 - \(\Pr(y_i = 1) = \logit^{-1}(\alpha_{s[i]} + \beta x_i) \)
 - \(s[i] \) = state containing county \(i \)
 - State-level regression of \(\alpha_s \) on state income

- Use 2000 Annenberg Election Survey (over 100,000 respondents)

- Plot estimated \(\Pr(\text{R vote}) \) vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - \(y = \) vote preference (1=Rep, 0=Dem)
 - \(x = \) individual income (on a five-point scale)

- Varying-intercept model:
 - \(\Pr(y_i = 1) = \logit^{-1}(\alpha_{s[i]} + \beta x_i) \)
 - \(s[i] = \) state containing county \(i \)
 - State-level regression of \(\alpha_s \) on state income

- Use 2000 Annenberg Election Survey (over 100,000 respondents)

- Plot estimated \(\Pr(\text{R vote}) \) vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - $y =$ vote preference ($1=\text{Rep}, 0=\text{Dem}$)
 - $x =$ individual income (on a five-point scale)

- Varying-intercept model:
 - $\Pr(y_i = 1) = \logit^{-1}(\alpha_s[i] + \beta x_i)$
 - $s[i] =$ state containing county i
 - State-level regression of α_s on state income

- Use 2000 Annenberg Election Survey (over 100,000 respondents)

- Plot estimated $\Pr(\text{R vote})$ vs. income for three representative states
Richer voters continue to support the Republicans within states

Within each state, estimate logistic regression on individuals:
- \(y = \text{vote preference (1=Rep, 0=Dem)} \)
- \(x = \text{individual income (on a five-point scale)} \)

Varying-intercept model:
- \(\Pr(y_i = 1) = \text{logit}^{-1}(\alpha_{s[i]} + \beta x_i) \)
- \(s[i] = \text{state containing county } i \)
- State-level regression of \(\alpha_s \) on state income

Use 2000 Annenberg Election Survey (over 100,000 respondents)

Plot estimated \(\Pr(\text{R vote}) \) vs. income for three representative states
Richer voters continue to support the Republicans within states

- Within each state, estimate logistic regression on individuals:
 - \(y = \text{vote preference (1=Rep, 0=Dem)} \)
 - \(x = \text{individual income (on a five-point scale)} \)

- Varying-intercept model:
 - \(\Pr(y_i = 1) = \logit^{-1}(\alpha_{s[i]} + \beta x_i) \)
 - \(s[i] = \text{state containing county } i \)
 - State-level regression of \(\alpha_s \) on state income

- Use 2000 Annenberg Election Survey (over 100,000 respondents)

- Plot estimated \(\Pr(\text{R vote}) \) vs. income for three representative states
Richer voters support the Republicans within states

Varying–intercept model, 2000

Connecticut
Ohio
Mississippi

Andrew Gelman
Rich State, Poor State, ...
How do income/voting patterns vary by state

- Varying-intercept, varying-slope model:
 - \(\Pr(y_i = 1) = \logit^{-1}(\alpha_{s[i]} + \beta_{s[i]}x_i) \)
 - \(s[i] = \) state containing county \(i \)
 - State-level regression of \(\alpha_s \) and \(\beta_s \) on state income

- Income is coded as \(-2, -1, 0, 1, 2\), so we can interpret both intercepts and slopes

- Plot estimated \(\Pr(R \text{ vote}) \) vs. income for 3 representative states

- Plot estimated slopes vs. state incomes
How do income/voting patterns vary by state

- Varying-intercept, varying-slope model:
 - Pr($y_i = 1$) = logit$^{-1}(\alpha_s[i] + \beta_s[i]x_i)$
 - $s[i] = $ state containing county i
 - State-level regression of α_s and β_s on state income
 - Income is coded as $-2, -1, 0, 1, 2$, so we can interpret both intercepts and slopes
 - Plot estimated Pr(R vote) vs. income for 3 representative states
 - Plot estimated slopes vs. state incomes
How do income/voting patterns vary by state

- Varying-intercept, varying-slope model:
 - \(\Pr(y_i = 1) = \logit^{-1}(\alpha_s[i] + \beta_s[i]x_i) \)
 - \(s[i] = \) state containing county \(i \)
 - State-level regression of \(\alpha_s \) and \(\beta_s \) on state income

- Income is coded as \(-2, -1, 0, 1, 2\), so we can interpret both intercepts and slopes

- Plot estimated \(\Pr(\text{R vote}) \) vs. income for 3 representative states

- Plot estimated slopes vs. state incomes
Introduction
Individual, county, and state-level analyses
Multilevel models of individuals within states
Understanding the results
A trip to Mexico

How do income/voting patterns vary by state

- Varying-intercept, varying-slope model:
 - \(\Pr(y_i = 1) = \text{logit}^{-1}(\alpha_{s[i]} + \beta_{s[i]} x_i) \)
 - \(s[i] = \text{state containing county } i \)
 - State-level regression of \(\alpha_s \) and \(\beta_s \) on state income

- Income is coded as \(-2, -1, 0, 1, 2\), so we can interpret both intercepts and slopes

- Plot estimated \(\Pr(R \text{ vote}) \) vs. income for 3 representative states

- Plot estimated slopes vs. state incomes
How do income/voting patterns vary by state

- Varying-intercept, varying-slope model:
 - \(\Pr(y_i = 1) = \logit^{-1}(\alpha_{s[i]} + \beta_{s[i]}x_i) \)
 - \(s[i] \) = state containing county \(i \)
 - State-level regression of \(\alpha_s \) and \(\beta_s \) on state income

- Income is coded as \(-2, -1, 0, 1, 2\), so we can interpret both intercepts and slopes

- Plot estimated \(\Pr(R \text{ vote}) \) vs. income for 3 representative states

- Plot estimated slopes vs. state incomes
How do income/voting patterns vary by state

- Varying-intercept, varying-slope model:
 - \(\Pr(y_i = 1) = \logit^{-1}(\alpha_s[i] + \beta_s[i]x_i) \)
 - \(s[i] = \text{state containing county } i \)
 - State-level regression of \(\alpha_s \) and \(\beta_s \) on state income

- Income is coded as \(-2, -1, 0, 1, 2\), so we can interpret both intercepts and slopes

- Plot estimated \(\Pr(\text{R vote}) \) vs. income for 3 representative states

- Plot estimated slopes vs. state incomes
How do income/voting patterns vary by state

- Varying-intercept, varying-slope model:
 - $\Pr(y_i = 1) = \logit^{-1}(\alpha_{s[i]} + \beta_{s[i]}x_i)$
 - $s[i] =$ state containing county i
 - State-level regression of α_s and β_s on state income

- Income is coded as $-2, -1, 0, 1, 2$, so we can interpret both intercepts and slopes

- Plot estimated $\Pr($R vote$)$ vs. income for 3 representative states

- Plot estimated slopes vs. state incomes
Income matters more in “red America” than in “blue America”
Income matters more in “red America” than in “blue America”

![Graph showing the relationship between slope and average state income.](graph.png)

Andrew Gelman
Rich State, Poor State, ...
Supplementary analyses give the same results

- Excluding African Americans
- Also including sex, ethnicity, age, education, state % black, and state avg. education in the regression
- Estimates since 1968 using National Election Studies
- Exit polls from 2000
- Exit polls from 2004
Supplementary analyses give the same results

- Excluding African Americans
- Also including sex, ethnicity, age, education, state % black, and state avg. education in the regression
- Estimates since 1968 using National Election Studies
 - “Rich-state, poor-state” patterns started in the 1990s
- Exit polls from 2000
- Exit polls from 2004
Supplementary analyses give the same results

- Excluding African Americans
- Also including sex, ethnicity, age, education, state % black, and state avg. education in the regression
- Estimates since 1968 using National Election Studies
 - “Rich-state, poor-state” patterns started in the 1990s
- Exit polls from 2000
- Exit polls from 2004
Supplementary analyses give the same results

- Excluding African Americans
- Also including sex, ethnicity, age, education, state % black, and state avg. education in the regression
- Estimates since 1968 using National Election Studies
 - “Rich-state, poor-state” patterns started in the 1990s
- Exit polls from 2000
- Exit polls from 2004
Supplementary analyses give the same results

- Excluding African Americans
- Also including sex, ethnicity, age, education, state % black, and state avg. education in the regression
- Estimates since 1968 using National Election Studies
 - “Rich-state, poor-state” patterns started in the 1990s
- Exit polls from 2000
- Exit polls from 2004
Supplementary analyses give the same results

- Excluding African Americans
- Also including sex, ethnicity, age, education, state % black, and state avg. education in the regression
- Estimates since 1968 using National Election Studies
 - “Rich-state, poor-state” patterns started in the 1990s
- Exit polls from 2000
- Exit polls from 2004
Supplementary analyses give the same results

- Excluding African Americans
- Also including sex, ethnicity, age, education, state % black, and state avg. education in the regression
- Estimates since 1968 using National Election Studies
 - “Rich-state, poor-state” patterns started in the 1990s
- Exit polls from 2000
- Exit polls from 2004
Estimates using National Election Studies
Income and vote preference from exit polls

Mississippi

Ohio

Connecticut

Virginia
Understanding the differences between states

- Richer states support the Democrats—even though, within any given state, richer voters tend to support the Republicans.
- The slope within a state is strongest in poor, rural, Republican-leaning “red” states and weakest in rich, urban, Democrat-leaning “blue” states.
- These patterns have largely arisen in the past ten or fifteen years.
Richer states support the Democrats—even though, within any given state, richer voters tend to support the Republicans.

The slope within a state is strongest in poor, rural, Republican-leaning “red” states and weakest in rich, urban, Democrat-leaning “blue” states.

These patterns have largely arisen in the past ten or fifteen years.
Understanding the differences between states

- Richer states support the Democrats—even though, within any given state, richer voters tend to support the Republicans.
- The slope within a state is strongest in poor, rural, Republican-leaning “red” states and weakest in rich, urban, Democrat-leaning “blue” states.
- These patterns have largely arisen in the past ten or fifteen years.
Richer states support the Democrats—even though, within any given state, richer voters tend to support the Republicans.

The slope within a state is strongest in poor, rural, Republican-leaning “red” states and weakest in rich, urban, Democrat-leaning “blue” states.

These patterns have largely arisen in the past ten or fifteen years.
Understanding the differences between states

- Positive slopes within states are no surprise.
- Between states: state income as product of long-term trends (large cities 50 or 100 years ago, more trade, immigration, ethnic diversity).
- Economic issues are perhaps more salient in poor states, less salient in rich states (that could be “what’s wrong with Connecticut”.)
Understanding the differences between states

- Positive slopes within states are no suprise
- Between states: state income as product of long-term trends (large cities 50 or 100 years ago, more trade, immigration, ethnic diversity)
- Economic issues are perhaps more salient in poor states, less salient in rich states (that could be “what’s wrong with Connecticut”)

Andrew Gelman
Rich State, Poor State, . . .
Understanding the differences between states

- Positive slopes within states are no surprise
- Between states: state income as product of long-term trends (large cities 50 or 100 years ago, more trade, immigration, ethnic diversity)
- Economic issues are perhaps more salient in poor states, less salient in rich states (that could be “what’s wrong with Connecticut”)
Understanding the differences between states

- Positive slopes within states are no surprise
- Between states: state income as product of long-term trends (large cities 50 or 100 years ago, more trade, immigration, ethnic diversity)
- Economic issues are perhaps more salient in poor states, less salient in rich states (that could be “what’s wrong with Connecticut”)
Explaining journalists’ confusion

- Statistical explanations
- Political explanations
- Psychological explanations
Explaining journalists' confusion

▶ Statistical explanations
 ◀ Political explanations
 ◀ Psychological explanations
Explaining journalists’ confusion

- Statistical explanations
- Political explanations
- Psychological explanations
Explaining journalists’ confusion

- Statistical explanations
- Political explanations
- Psychological explanations
Statistical explanations for journalists’ confusion

- Red-blue map is misleading
 - Overstates “polarization”
 - Focus on large land-area states
- Reliance on anecdotes leads to confirmation of what is already “known”
- Aggregation bias: within-state and between-state correlations in different directions
Statistical explanations for journalists’ confusion

- Red-blue map is misleading
 - Overstates “polarization”
 - Focus on large land-area states
- Reliance on anecdotes leads to confirmation of what is already “known”
- Aggregation bias: within-state and between-state correlations in different directions
Statistical explanations for journalists’ confusion

- Red-blue map is misleading
 - Overstates “polarization”
 - Focus on large land-area states
 - Reliance on anecdotes leads to confirmation of what is already “known”
- Aggregation bias: within-state and between-state correlations in different directions
Statistical explanations for journalists’ confusion

- Red-blue map is misleading
 - Overstates “polarization”
 - Focus on large land-area states

- Reliance on anecdotes leads to confirmation of what is already “known”

- Aggregation bias: within-state and between-state correlations in different directions
Statistical explanations for journalists’ confusion

- Red-blue map is misleading
 - Overstates “polarization”
 - Focus on large land-area states
- Reliance on anecdotes leads to confirmation of what is already “known”
- Aggregation bias: within-state and between-state correlations in different directions
Statistical explanations for journalists’ confusion

- Red-blue map is misleading
 - Overstates “polarization”
 - Focus on large land-area states
- Reliance on anecdotes leads to confirmation of what is already “known”
- Aggregation bias: within-state and between-state correlations in different directions
Political explanations for journalists’ confusion

- I come from Huntington, a small farming community in Indiana. I had an upbringing like many in my generation—a life built around family, public school, Little League, basketball and church on Sunday. My brother and I shared a room in our two-bedroom house. — Dan Quayle, 1992

- Lower-than-average income Americans are part of the “mom and apple pie” cluster

- Both sides want to claim the “average American”

- 50% of voters support each party, so no easy answers for either side!
Political explanations for journalists’ confusion

- I come from Huntington, a small farming community in Indiana. I had an upbringing like many in my generation—a life built around family, public school, Little League, basketball and church on Sunday. My brother and I shared a room in our two-bedroom house. — Dan Quayle, 1992
- Lower-than-average income Americans are part of the “mom and apple pie” cluster
- Both sides want to claim the “average American”
- 50% of voters support each party, so no easy answers for either side!
Political explanations for journalists’ confusion

- I come from Huntington, a small farming community in Indiana. I had an upbringing like many in my generation—a life built around family, public school, Little League, basketball and church on Sunday. My brother and I shared a room in our two-bedroom house. — Dan Quayle, 1992

- Lower-than-average income Americans are part of the “mom and apple pie” cluster

- Both sides want to claim the “average American”

- 50% of voters support each party, so no easy answers for either side!
Political explanations for journalists’ confusion

- I come from Huntington, a small farming community in Indiana. I had an upbringing like many in my generation—a life built around family, public school, Little League, basketball and church on Sunday. My brother and I shared a room in our two-bedroom house. — Dan Quayle, 1992

- Lower-than-average income Americans are part of the “mom and apple pie” cluster

- Both sides want to claim the “average American”

- 50% of voters support each party, so no easy answers for either side!
Political explanations for journalists’ confusion

- I come from Huntington, a small farming community in Indiana. I had an upbringing like many in my generation—a life built around family, public school, Little League, basketball and church on Sunday. My brother and I shared a room in our two-bedroom house. — Dan Quayle, 1992
- Lower-than-average income Americans are part of the “mom and apple pie” cluster
- Both sides want to claim the “average American”
- 50% of voters support each party, so no easy answers for either side!
Political explanations for journalists’ confusion

- I come from Huntington, a small farming community in Indiana. I had an upbringing like many in my generation—a life built around family, public school, Little League, basketball and church on Sunday. My brother and I shared a room in our two-bedroom house. — Dan Quayle, 1992

- Lower-than-average income Americans are part of the “mom and apple pie” cluster

- Both sides want to claim the “average American”

- 50% of voters support each party, so no easy answers for either side!
Psychological explanations for journalists’ confusion

- “Typicality” (Rosch, 1975): robins and penguins
- What does a “typical” Democrat or a “typical” Republican look like?
- Personification of states and counties
Psychological explanations for journalists’ confusion

- “Typicality” (Rosch, 1975): robins and penguins
- What does a “typical” Democrat or a “typical” Republican look like?
- Personification of states and counties
Psychological explanations for journalists’ confusion

- “Typicality” (Rosch, 1975): robins and penguins
- What does a “typical” Democrat or a “typical” Republican look like?
- Personification of states and counties
Psychological explanations for journalists’ confusion

- “Typicality” (Rosch, 1975): robins and penguins
- What does a “typical” Democrat or a “typical” Republican look like?
- Personification of states and counties
Psychological explanations for journalists’ confusion

- I can’t believe Nixon won. I don’t know anybody who voted for him. — attributed to Pauline Kael, 1972
- It evidently irritates many liberals to point out that their party gets heavy support from superaffluent “people of fashion” and does not run very well among “the common people.” — Michael Barone, 2005
- First-order availability bias (“false consensus effect”): most people I know are Democrats, therefore most people are Democrats
- This is the error attributed to Kael, but nobody would actually make this mistake for a presidential election!
Psychological explanations for journalists’ confusion

- I can’t believe Nixon won. I don’t know anybody who voted for him. — attributed to Pauline Kael, 1972

- It evidently irritates many liberals to point out that their party gets heavy support from superaffluent “people of fashion” and does not run very well among “the common people.” — Michael Barone, 2005

- First-order availability bias (“false consensus effect”): most people I know are Democrats, therefore most people are Democrats

- This is the error attributed to Kael, but nobody would actually make this mistake for a presidential election!
Psychological explanations for journalists’ confusion

- I can’t believe Nixon won. I don’t know anybody who voted for him. — attributed to Pauline Kael, 1972

- It evidently irritates many liberals to point out that their party gets heavy support from superaffluent “people of fashion” and does not run very well among “the common people.” — Michael Barone, 2005

- First-order availability bias (“false consensus effect”): most people I know are Democrats, therefore most people are Democrats

- This is the error attributed to Kael, but nobody would actually make this mistake for a presidential election!
Psychological explanations for journalists’ confusion

- I can’t believe Nixon won. I don’t know anybody who voted for him. — attributed to Pauline Kael, 1972

- It evidently irritates many liberals to point out that their party gets heavy support from superaffluent “people of fashion” and does not run very well among “the common people.” — Michael Barone, 2005

- First-order availability bias (“false consensus effect”): most people I know are Democrats, therefore most people are Democrats

- This is the error attributed to Kael, but nobody would actually make this mistake for a presidential election!
Psychological explanations for journalists’ confusion

- I can’t believe Nixon won. I don’t know anybody who voted for him. — attributed to Pauline Kael, 1972
- It evidently irritates many liberals to point out that their party gets heavy support from superaffluent “people of fashion” and does not run very well among “the common people.” — Michael Barone, 2005
- First-order availability bias (“false consensus effect”): most people I know are Democrats, therefore most people are Democrats
- This is the error attributed to Kael, but nobody would actually make this mistake for a presidential election!
Second-order availability bias

- Journalists are mostly Democrats and mostly richer than average
- Second-order availability bias: I am a Democrat and richer than average, therefore the Republicans are likely to be poorer than average
- Richer journalists are more likely to be Democrats
- Second-order availability bias: I see a positive correlation between income and voting for the Democrats, therefore this correlation must exist in the population
- This is the error that Barone makes
Second-order availability bias

- Journalists are mostly Democrats and mostly richer than average
- Second-order availability bias: I am a Democrat and richer than average, therefore the Republicans are likely to be poorer than average
- Richer journalists are more likely to be Democrats
- Second-order availability bias: I see a positive correlation between income and voting for the Democrats, therefore this correlation must exist in the population
- This is the error that Barone makes
Second-order availability bias

- Journalists are mostly Democrats and mostly richer than average
- Second-order availability bias: I am a Democrat and richer than average, therefore the Republicans are likely to be poorer than average
- Richer journalists are more likely to be Democrats
- Second-order availability bias: I see a positive correlation between income and voting for the Democrats, therefore this correlation must exist in the population
- This is the error that Barone makes
Second-order availability bias

- Journalists are mostly Democrats and mostly richer than average
- Second-order availability bias: I am a Democrat and richer than average, therefore the Republicans are likely to be poorer than average
- Richer journalists are more likely to be Democrats
 - Second-order availability bias: I see a positive correlation between income and voting for the Democrats, therefore this correlation must exist in the population
 - This is the error that Barone makes
Second-order availability bias

- Journalists are mostly Democrats and mostly richer than average
- Second-order availability bias: I am a Democrat and richer than average, therefore the Republicans are likely to be poorer than average
- Richer journalists are more likely to be Democrats
- Second-order availability bias: I see a positive correlation between income and voting for the Democrats, therefore this correlation must exist in the population
- This is the error that Barone makes
Second-order availability bias

- Journalists are mostly Democrats and mostly richer than average
- Second-order availability bias: I am a Democrat and richer than average, therefore the Republicans are likely to be poorer than average
- Richer journalists are more likely to be Democrats
- Second-order availability bias: I see a positive correlation between income and voting for the Democrats, therefore this correlation must exist in the population
- This is the error that Barone makes
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference
- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference

- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference
- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference
- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference
- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference
- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference
- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!
Second-order availability bias

- National journalists in New York, California, Maryland, and Virginia live in states where:
 - Rich counties support the Democrats, poor counties support the Republicans
 - There is only a weak relation between income and vote preference
- In contrast, in the deep-red Southern states:
 - Rich counties support the Republicans, poor counties support the Democrats
 - There is a strong correlation between income and Republican vote preference
- Paradoxically, journalists are influenced by their geography—even when they try to generalize to the general population!

Andrew Gelman
"Rich State, Poor State, . . ."
The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states.

But, there are real differences between red and blue states. Income is more important in red states.

There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.

Key statistical tools:
Conclusions

▶ The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states
▶ But, there are real differences between red and blue states. Income is more important in red states
▶ There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.
▶ Key statistical tools:
The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states.

But, there are real differences between red and blue states. Income is more important in red states.

There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.

Key statistical tools:
- Multilevel modeling
- Interactions (varying slopes)
- The secret weapon
- The superplot
Conclusions

- The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states
- But, there are real differences between red and blue states. Income is more important in red states
- There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.

- Key statistical tools:
 - Multilevel modeling
 - Interactions (varying slopes)
 - The secret weapon
 - The superplot
Conclusions

- The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states.
- But, there are real differences between red and blue states. Income is more important in red states.
- There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.
- Key statistical tools:
 - Multilevel modeling
 - Interactions (varying slopes)
 - The secret weapon
 - The superplot
Conclusions

- The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states.
- But, there are real differences between red and blue states. Income is more important in red states.
- There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.
- Key statistical tools:
 - Multilevel modeling
 - Interactions (varying slopes)
 - The secret weapon
 - The superplot
The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states. But, there are real differences between red and blue states. Income is more important in red states. There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.

Key statistical tools:
- Multilevel modeling
- Interactions (varying slopes)
- The secret weapon
- The superplot
Conclusions

- The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states.
- But, there are real differences between red and blue states. Income is more important in red states.
- There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.
- Key statistical tools:
 - Multilevel modeling
 - Interactions (varying slopes)
 - The secret weapon
 - The superplot
Conclusions

- The red/blue map is misleading. Actually, Republicans are richer than Democrats, on average—in the U.S., and within states.
- But, there are real differences between red and blue states. Income is more important in red states.
- There are statistical, political, and psychological reasons for journalists (and others) to get confused on this.
- Key statistical tools:
 - Multilevel modeling
 - Interactions (varying slopes)
 - The secret weapon
 - The superplot

Andrew Gelman
Rich State, Poor State, ...
Red-state, blue-state in Mexico

- Background on Mexican elections
- Replicating our analysis
- Challenges in fitting the multilevel model
- Goal: to give a sense of practical model building
Red-state, blue-state in Mexico

- Background on Mexican elections
- Replicating our analysis
- Challenges in fitting the multilevel model
- Goal: to give a sense of practical model building
Red-state, blue-state in Mexico

- Background on Mexican elections
- Replicating our analysis
 - Challenges in fitting the multilevel model
- Goal: to give a sense of practical model building
Red-state, blue-state in Mexico

- Background on Mexican elections
- Replicating our analysis
- Challenges in fitting the multilevel model
- Goal: to give a sense of practical model building
Red-state, blue-state in Mexico

- Background on Mexican elections
- Replicating our analysis
- Challenges in fitting the multilevel model
- Goal: to give a sense of practical model building
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN beat PRI in 2000;
 - PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
- PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
 - 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
 - PAN beat PRI in 2000;
 - PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
- PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
 PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
 PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south

Andrew Gelman

Rich State, Poor State, ...
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
 PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
 PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
 PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Mexican presidential elections

- Every 6 years
- Historically controlled by the Institutional Revolutionary Party (PRI)
- 2000 and 2006 were the first fair elections; 3 major parties:
 - PAN (National Action Party, conservative)
 - PRI (status quo)
 - PRD (Party of the Democratic Revolution, left)
- PAN beat PRI in 2000;
 PAN beat PRD (by less than 1%) in 2006
- Income at individual level: middle class and poor
- Income at state level: north, center, and south
Presidential election results in 2000 and 2006
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints
- Data issues
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints
- Data issues
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints

- Data issues
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints

- Data issues
 - Smaller sample size
 - Polls use cluster sampling
 - No good measure of state income
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints

- Data issues
 - Smaller sample size
 - Polls use cluster sampling
 - No good measure of state income
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints

- Data issues
 - Smaller sample size
 - Polls use cluster sampling
 - No good measure of state income
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints

- Data issues
 - Smaller sample size
 - Polls use cluster sampling
 - No good measure of state income
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome \(y = 1, 2, 3 \)
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints

- Data issues
 - Smaller sample size
 - Polls use cluster sampling
 - No good measure of state income
Fitting the model

- 3 parties instead of 2
 - Model a continuous outcome $y = 1, 2, 3$
 - Logistic regression comparing each party to the other two
 - Ordered logit, estimating cutpoints

- Data issues
 - Smaller sample size
 - Polls use cluster sampling
 - No good measure of state income
State vote vs. state GDP

Background on Mexican elections
Repeating our analysis
Challenges in fitting the model
Costs and benefits of Bayesian inference and multilevel models

Introduction
Individual, county, and state-level analyses
Multilevel models of individuals within states
Understanding the results
A trip to Mexico
Data and fitted lines within poor and rich states
Estimated intercepts and slopes vs. state GDP
Summary of results

- Similar to the U.S.
 - Rich voters support more conservative candidates
 - Income predicts vote choice more strongly in poor states
- Different from the U.S.

Similar to the U.S.

- Rich voters support more conservative candidates
- Income predicts vote choice more strongly in poor states
Summary of results

- Similar to the U.S.
 - Rich voters support more conservative candidates
 - Income predicts vote choice more strongly in poor states
- Different from the U.S.
Summary of results

- Similar to the U.S.
 - Rich voters support more conservative candidates
 - Income predicts vote choice more strongly in poor states
- Different from the U.S.
 - Rich states are more conservative
Summary of results

- Similar to the U.S.
 - Rich voters support more conservative candidates
 - Income predicts vote choice more strongly in poor states

- Different from the U.S.
 - Rich states are more conservative
Summary of results

- Similar to the U.S.
 - Rich voters support more conservative candidates
 - Income predicts vote choice more strongly in poor states
- Different from the U.S.
 - Rich states are more conservative
Summary of results

- **Similar to the U.S.**
 - Rich voters support more conservative candidates
 - Income predicts vote choice more strongly in poor states

- **Different from the U.S.**
 - Rich states are more conservative
Nonlinear relation to state GDP

- Richer states are more conservative and have lower slopes—except for Mexico City, the richest “state”
- Cannot simply display the equivalents of Mississippi, Ohio, and Connecticut
Nonlinear relation to state GDP

- Richer states are more conservative and have lower slopes—except for Mexico City, the richest “state”
- Cannot simply display the equivalents of Mississippi, Ohio, and Connecticut
Richer states are more conservative and have lower slopes—except for Mexico City, the richest “state”

Cannot simply display the equivalents of Mississippi, Ohio, and Connecticut
Original fit
Fixing the model

- Add state-level predictors
 - GDP per capita (already included in model)
 - Indicators for the five regions (including Mexico City)
- Collinearity
Fixing the model

▶ Add state-level predictors
 ▶ GDP per capita (already included in model)
 ▶ Indicators for the five regions (including Mexico City)
▶ Collinearity
Fixing the model

- Add state-level predictors
 - GDP per capita (already included in model)
 - Indicators for the five regions (including Mexico City)
- Collinearity
 - In classical regression, can't include all these predictors
 - OK in Bayesian (multilevel) model
Fixing the model

- Add state-level predictors
 - GDP per capita (already included in model)
 - Indicators for the five regions (including Mexico City)

- Collinearity
 - In classical regression, can't include all these predictors
 - OK in Bayesian (multilevel) model
Fixing the model

- Add state-level predictors
 - GDP per capita (already included in model)
 - Indicators for the five regions (including Mexico City)

- Collinearity
 - In classical regression, can’t include all these predictors
 - OK in Bayesian (multilevel) model
Fixing the model

- Add state-level predictors
 - GDP per capita (already included in model)
 - Indicators for the five regions (including Mexico City)
- Collinearity
 - In classical regression, can’t include all these predictors
 - OK in Bayesian (multilevel) model
Fixing the model

- Add state-level predictors
 - GDP per capita (already included in model)
 - Indicators for the five regions (including Mexico City)
- Collinearity
 - In classical regression, can’t include all these predictors
 - OK in Bayesian (multilevel) model
Costs and benefits of Bayesian multilevel modeling

- Cost
 - Can be more effort to fit

- Benefit
Costs and benefits of Bayesian multilevel modeling

- **Cost**
 - Can be more effort to fit

- **Benefit**
 - Fewer arbitrary choices (paradoxically, in light of what is sometimes said about subjectivity and prior distributions)
Costs and benefits of Bayesian multilevel modeling

Cost
- Can be more effort to fit

Benefit
- Fewer arbitrary choices (paradoxically, in light of what is sometimes said about subjectivity and prior distributions)
Costs and benefits of Bayesian multilevel modeling

- **Cost**
 - Can be more effort to fit

- **Benefit**
 - Fewer arbitrary choices (paradoxically, in light of what is sometimes said about subjectivity and prior distributions)
Costs and benefits of Bayesian multilevel modeling

- **Cost**
 - Can be more effort to fit

- **Benefit**
 - Fewer arbitrary choices (paradoxically, in light of what is sometimes said about subjectivity and prior distributions)