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Democrats and Republicans, rich and poor

I I never said all Democrats are saloon-keepers. What I said is
that all saloon-keepers are Democrats. — Horace Greeley,
1860

I Pat doesn’t have a mink coat. But she does have a
respectable Republican cloth coat. — Richard Nixon, 1952

I Like upscale areas everywhere, from Silicon Valley to
Chicago’s North Shore to suburban Connecticut, Montgomery
County supported the Democratic ticket in last year’s
presidential election, by a margin of 63 percent to 34 percent.
— David Brooks, 2001

I A lot of Bush’s red zones can be traced to wealthy enclaves or
sun-belt suburbs where tax cuts are king. — Matt Bai, 2001
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States
Individuals
Counties

Richer states now support the Democrats

I In each presidential election year, run linear regression:
I y = state vote share for the Republican
I x = average income in the state

I Display time series of estimates ± standard errors (the “secret
weapon”)

I Quantitative version of looking at a series of red/blue maps

I Also do separate analyses for South, non-South
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I “Latte” Democrats vs. “Nascar” Republicans

I Recent trends explain why it’s recent news
I Is state-level inequality (rather than average income) the
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I Including state Gini index in the regressions has essentially no

effect
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Richer voters continue to support the Republicans

I National Election Study
I Each election year, logistic regression on individual voters:

I y = vote preference (1=Rep, 0=Dem)
I x = individual income (on a five-point scale)

I Display time series of estimates ± standard errors
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Richer voters continue to support the Republicans

I “Fat-cat” Republicans and “working-class” Democrats

I Including ethnicity, sex, education, and age as predictors in
the model has little effect on the coefficient for income
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Individuals
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Richer counties support the Republicans in some states
and the Democrats in others

I Within each state, estimate regression on county data:
I y = county vote share for the Republican
I x = average income in the county

I Varying-intercept, varying-slope model:
I yc = αs[c] + βs[c]xc + errorc
I s[c] = state containing county c

I Fit separate model for each election year (“secret weapon”)

I For each state, display time series of estimated βs
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I Within each state, estimate regression on county data:
I y = county vote share for the Republican
I x = average income in the county

I Varying-intercept, varying-slope model:
I yc = αs[c] + βs[c]xc + errorc
I s[c] = state containing county c
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Introduction
Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

States
Individuals
Counties

Coef of county-level income on county-level vote: South

Year
1968 1980 1992

−
0.

3
0.

1

Oklahoma

Year
1968 1980 1992

−
0.

3
0.

1

Texas

Year
1968 1980 1992

−
0.

3
0.

1

Mississippi

Year
1968 1980 1992

−
0.

3
0.

1

South Carolina

Year
1968 1980 1992

−
0.

3
0.

1

Kentucky

Year
1968 1980 1992

−
0.

3
0.

1

Alabama

Year
1968 1980 1992

−
0.

3
0.

1

North Carolina

Year
1968 1980 1992

−
0.

3
0.

1

Georgia

Year
1968 1980 1992

−
0.

3
0.

1

Virginia

Year
1968 1980 1992

−
0.

3
0.

1

Louisiana

Year
1968 1980 1992

−
0.

3
0.

1

West Virginia

Year
1968 1980 1992

−
0.

3
0.

1

Arkansas

Year
1968 1980 1992

−
0.

3
0.

1

Tennessee

Year
1968 1980 1992

−
0.

3
0.

1

Florida
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Introduction
Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

States
Individuals
Counties

Coef of county-level income on county-level vote: West

Year
1968 1980 1992

−
0.

3
0.

1

Utah

Year
1968 1980 1992

−
0.

3
0.

1

Wyoming

Year
1968 1980 1992

−
0.

3
0.

1

Idaho

Year
1968 1980 1992

−
0.

3
0.

1

Montana

Year
1968 1980 1992

−
0.

3
0.

1

Colorado

Year
1968 1980 1992

−
0.

3
0.

1

Arizona

Year
1968 1980 1992

−
0.

3
0.

1

Nevada

Year
1968 1980 1992

−
0.

3
0.

1

New Mexico

Year
1968 1980 1992

−
0.

3
0.

1

Oregon

Year
1968 1980 1992

−
0.

3
0.

1

Washington

Year
1968 1980 1992

−
0.

3
0.

1

California

Year
1968 1980 1992

−
0.

3
0.

1

Hawaii
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Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

States
Individuals
Counties

Coef of county-level income on county-level vote: Midwest

Year
1968 1980 1992

−
0.

3
0.

1

Nebraska

Year
1968 1980 1992

−
0.

3
0.

1

North Dakota

Year
1968 1980 1992

−
0.

3
0.

1

South Dakota

Year
1968 1980 1992

−
0.

3
0.

1

Kansas

Year
1968 1980 1992

−
0.

3
0.

1

Indiana

Year
1968 1980 1992

−
0.

3
0.

1

Ohio

Year
1968 1980 1992

−
0.

3
0.

1

Missouri

Year
1968 1980 1992

−
0.

3
0.

1

Wisconsin

Year
1968 1980 1992

−
0.

3
0.

1

Iowa

Year
1968 1980 1992

−
0.

3
0.

1

Minnesota

Year
1968 1980 1992

−
0.

3
0.

1

Michigan

Year
1968 1980 1992

−
0.

3
0.

1

Illinois

Andrew Gelman Rich State, Poor State, . . .



Introduction
Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

States
Individuals
Counties

Coef of county-level income on county-level vote:Northeast

Year
1968 1980 1992

−
0.

3
0.

1

New Hampshire

Year
1968 1980 1992

−
0.

3
0.

1

Pennsylvania

Year
1968 1980 1992

−
0.

3
0.

1

Maine

Year
1968 1980 1992

−
0.

3
0.

1

Vermont

Year
1968 1980 1992

−
0.

3
0.

1

Delaware

Year
1968 1980 1992

−
0.

3
0.

1

New Jersey

Year
1968 1980 1992

−
0.

3
0.

1

Maryland

Year
1968 1980 1992

−
0.

3
0.

1

Connecticut

Year
1968 1980 1992

−
0.

3
0.

1

New York

Year
1968 1980 1992

−
0.

3
0.

1

Massachusetts

Year
1968 1980 1992

−
0.

3
0.

1

Rhode Island
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Introduction
Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

States
Individuals
Counties

Richer counties support the Republicans in some states
and the Democrats in others

I In “deep-red” Southern states such as Oklahoma, Texas,
Mississippi, etc., richer counties strongly support the
Republicans

I In “media-center” states of New York, California, Maryland,
and Virginia, richer counties slightly support the Democrats

I Journalists noticed a pattern (richer counties supporting the
Democrats) that is concentrated in the states where the
journalists live!
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Introduction
Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

Varying-intercept model
Varying-intercept, varying-slope model
Supplementary analyses

Richer voters continue to support the Republicans within
states

I Within each state, estimate logistic regression on individuals:
I y = vote preference (1=Rep, 0=Dem)
I x = individual income (on a five-point scale)

I Varying-intercept model:
I Pr(yi = 1) = logit−1(αs[i ] + βxi )
I s[i ] = state containing county i
I State-level regression of αs on state income

I Use 2000 Annenberg Election Survey (over 100,000
respondents)

I Plot estimated Pr(R vote) vs. income for three representative
states
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Richer voters support the Republicans within states
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Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

Varying-intercept model
Varying-intercept, varying-slope model
Supplementary analyses

How do income/voting patterns vary by state

I Varying-intercept, varying-slope model:
I Pr(yi = 1) = logit−1(αs[i ] + βs[i ]xi )
I s[i ] = state containing county i
I State-level regression of αs and βs on state income

I Income is coded as −2,−1, 0, 1, 2, so we can interpret both
intercepts and slopes

I Plot estimated Pr(R vote) vs. income for 3 representative
states

I Plot estimated slopes vs. state incomes
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Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

Varying-intercept model
Varying-intercept, varying-slope model
Supplementary analyses

Income matters more in “red America” than in “blue America”
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Multilevel models of individuals within states
Understanding the results

A trip to Mexico
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Supplementary analyses

Income matters more in “red America” than in “blue America”
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Slope vs. state income, 2000
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Introduction
Individual, county, and state-level analyses

Multilevel models of individuals within states
Understanding the results

A trip to Mexico

Varying-intercept model
Varying-intercept, varying-slope model
Supplementary analyses

Supplementary analyses give the same results

I Excluding African Americans

I Also including sex, ethnicity, age, education, state % black,
and state avg. education in the regression

I Estimates since 1968 using National Election Studies
I “Rich-state, poor-state” patterns started in the 1990s

I Exit polls from 2000

I Exit polls from 2004
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Estimates using National Election Studies
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Political explanations for journalists’ confusion

I I come from Huntington, a small farming community in
Indiana. I had an upbringing like many in my generation—a
life built around family, public school, Little League, basketball
and church on Sunday. My brother and I shared a room in our
two-bedroom house. — Dan Quayle, 1992

I Clinton displays almost every trope of blackness: single-parent
household, born poor, working-class, saxophone-playing,
McDonald’s-and-junk-food-loving boy from Arkansas. — Toni
Morrison, 1998

I Lower-than-average income Americans are part of the “mom
and apple pie” cluster

I Both sides want to claim the “average American”
I 50% of voters support each party, so no easy answers for

either side!
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Psychological explanations for journalists’ confusion

I I can’t believe Nixon won. I don’t know anybody who voted
for him. — attributed to Pauline Kael, 1972

I It evidently irritates many liberals to point out that their party
gets heavy support from superaffluent “people of fashion” and
does not run very well among “the common people.” —
Michael Barone, 2005

I First-order availability bias (“false consensus effect”): most
people I know are Democrats, therefore most people are
Democrats

I This is the error attributed to Kael, but nobody would
actually make this mistake for a presidential election!
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Second-order availability bias

I Journalists are mostly Democrats and mostly richer than
average

I Second-order availability bias: I am a Democrat and richer
than average, therefore the Republicans are likely to be poorer
than average
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between income and voting for the Democrats, therefore this
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Second-order availability bias

I National journalists in New York, California, Maryland, and
Virginia live in states where:

I Rich counties support the Democrats, poor counties support
the Republicans

I There is only a weak relation between income and vote
preference

I In contrast, in the deep-red Southern states:
I Rich counties support the Republicans, poor counties support

the Democrats
I There is a strong correlation between income and Republican

vote preference

I Paradoxically, journalists are influenced by their
geography—even when they try to generalize to the general
population!
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