Andrew Gelman
Department of Statistics and Department of Political Science
Columbia University

6 Sept 2007
Contents

- Arsenic in Bangladesh
- Decision analysis
- Regression models
Contents

- Arsenic in Bangladesh
- Decision analysis
- Regression models
Contents

- Arsenic in Bangladesh
- Decision analysis
- Regression models
Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- Will people switch?
Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- Will people switch?
Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
 - Digging low-arsenic wells
 - Will people switch?
Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- Will people switch?
Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- Will people switch?
Mix of high and low arsenic wells.
Mix of high and low arsenic wells
Distance to nearest safe well

Unsafe wells: distance to nearest safe well

Users of unsafe wells: distance to nearest safe well
What if people switch wells?
Digging new wells
Where to dig new wells

Optimal locations for 30 new safe wells
(assuming 50% of eligible people have switched already)
How deep to dig?
New community wells

[Graphs showing arsenic levels in existing and community wells, with data points indicating where arsenic levels exceed safety standards.]
Cellphone-based information system

Instructions: SMS “?” to +880 17 13 045 512
or http://www.ideo.columbia.edu/welltracker/

Find village? “F*U*Arai hazard*V*Bara Barai Para”

Response: U:Arai hazard
M: Bara Barai Para
Bara Barai Para, 167029410201” and others

Safe depth? “SD*167029410201”

Response: U=Arai hazard
M=Bara Barai Para
V=Bara Barai Para
Start>=215’
Fail=5/100
Average arsenic 168 ppb
39 safe of 183
20-135’ 7 of 142
175-250’ 32 of 41

Money-back? “SD*167029410201*15000”

Response: TK750 insures TK15000 (US$250)
Add TK1000-3000 fixed cost (well design, test)
Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)
Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)
Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)
Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)
Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)
Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)
Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)
Probability of switching wells, given distance to nearest safe well
Probability of switching wells, given distance and existing arsenic level

Pr (switching) if As = 0.5
Pr (switching) if As = 1.0

Distance (in meters) to nearest safe well

Arsenic concentration in well water

Pr (switching) if dist = 0
Pr (switching) if dist = 50
Binned residuals: are people switching more or less than predicted by the model?
Model on log (arsenic level) and binned residuals

- **Pr (switching)**
 - if dist = 0
 - if dist = 50

- **Binned residual plot**
 - for model with log (arsenic)

- **Arsenic concentration in well water**
 - Average residual

Andrew Gelman | Arsenic and old models
Model for switching

- Distance to walk comes in linearly
 - Does this make sense?
 - Yes

- Current arsenic level comes in on the log scale
Model for switching

- Distance to walk comes in linearly
 - Does this make sense?
 - Yes
- Current arsenic level comes in on the log scale
Model for switching

- Distance to walk comes in linearly
 - Does this make sense?
 - Yes
- Current arsenic level comes in on the log scale
 - Does this make sense?
 - Yes and no
Model for switching

- Distance to walk comes in linearly
 - Does this make sense?
 - Yes

- Current arsenic level comes in on the log scale
 - Does this make sense?
 - Yes and no
Model for switching

- Distance to walk comes in linearly
 - Does this make sense?
 - Yes

- Current arsenic level comes in on the log scale
 - Does this make sense?
 - Yes and no
Model for switching

- Distance to walk comes in linearly
 - Does this make sense?
 - Yes

- Current arsenic level comes in on the log scale
 - Does this make sense?
 - Yes and no
Model for switching

- Distance to walk comes in linearly
 - Does this make sense?
 - Yes

- Current arsenic level comes in on the log scale
 - Does this make sense?
 - Yes and no
Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee
Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee
Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee
Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee
Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee
Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee
Insurance program

- Goal: dig more safe wells

- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)

- A (possible) solution: insurance or money-back guarantee
Goal: dig more safe wells

Outcomes to avoid:
- Digging an unsafe well and not testing it
- Not digging a new well because afraid of wasting money on an unsafe well
- Digging too shallow (risk of unsafe)
- Digging too deep (waste of money)

A (possible) solution: insurance or money-back guarantee
Decision analysis and the garbage-in, garbage-out problem

- Radon example
- Arsenic example
- Institutional decision analysis and the role of centralized information collection and analysis
Decision analysis and the garbage-in, garbage-out problem

- Radon example
- Arsenic example
- Institutional decision analysis and the role of centralized information collection and analysis
Decision analysis and the garbage-in, garbage-out problem

- Radon example
- Arsenic example
 - Institutional decision analysis and the role of centralized information collection and analysis
Decision analysis and the garbage-in, garbage-out problem

- Radon example
- Arsenic example
- Institutional decision analysis and the role of centralized information collection and analysis
Radon and lung cancer: estimated risks

Example of an interaction

Home radon exposure (pCi/L)

Probability of lung cancer

Smokers

Nonsmokers
Home radon exposure as a decision problem

- For your house, decision options:
 - Remediate (seal the basement, etc.), costs $2000
 - Take a good measurement, costs $50 + wait 1 year
 - Take a noisy measurement, costs $25 + wait 1 week
 - Do nothing

- It’s a classical “value of information” decision problem!
Home radon exposure as a decision problem

- For your house, decision options:
 - Remediate (seal the basement, etc.), costs $2000
 - Take a good measurement, costs $50 + wait 1 year
 - Take a noisy measurement, costs $25 + wait 1 week
 - Do nothing

- It's a classical “value of information” decision problem!
Home radon exposure as a decision problem

- For your house, decision options:
 - Remediate (seal the basement, etc.), costs $2000
 - Take a good measurement, costs $50 + wait 1 year
 - Take a noisy measurement, costs $25 + wait 1 week
 - Do nothing

- It's a classical “value of information” decision problem!
Home radon exposure as a decision problem

- For your house, decision options:
 - Remediate (seal the basement, etc.), costs $2000
 - Take a good measurement, costs $50 + wait 1 year
 - Take a noisy measurement, costs $25 + wait 1 week
 - Do nothing

- It's a classical “value of information” decision problem!
Home radon exposure as a decision problem

▶ For your house, decision options:
 ▶ Remediate (seal the basement, etc.), costs $2000
 ▶ Take a good measurement, costs $50 + wait 1 year
 ▶ Take a noisy measurement, costs $25 + wait 1 week
 ▶ Do nothing

▶ It’s a classical “value of information” decision problem!
Home radon exposure as a decision problem

- For your house, decision options:
 - Remediate (seal the basement, etc.), costs $2000
 - Take a good measurement, costs $50 + wait 1 year
 - Take a noisy measurement, costs $25 + wait 1 week
 - Do nothing

- It’s a classical “value of information” decision problem!
Home radon exposure as a decision problem

For your house, decision options:
- Remediate (seal the basement, etc.), costs $2000
- Take a good measurement, costs $50 + wait 1 year
- Take a noisy measurement, costs $25 + wait 1 week
- Do nothing

It’s a classical “value of information” decision problem!
Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info
Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info
Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info
Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info
Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info
50,000 homes with very high radon, millions with high radon

Goal: to identify the dangerous homes

3 sources of information:

- National survey: accurate measurements in 5000 homes in 125 U.S. counties
- State surveys: noisy, biased measurements in 80,000 homes in all the counties
- County-level soil uranium measurements (from 1950s)
- County-level geological info
Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info
Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, then link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works
Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, . . .)
- Classical method 2: use state surveys to identify high-radon areas, then link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works
Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, then link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works
Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, then link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works
Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, . . .)
- Classical method 2: use state surveys to identify high-radon areas, then link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works
Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type,
 . . .)
- Classical method 2: use state surveys to identify high-radon areas, then link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your “value of a microlife” (how much you would spend to reduce risk by 1/million), or
 - Specify your “action level” (the radon level at which you would do something)

- What should the EPA say?
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:

 ▶ What should the EPA say?
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your “value of a microlife” (how much you would spend to reduce risk by 1/million), or
 - Specify your “action level” (the radon level at which you would do something)
- What should the EPA say?
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your “value of a microlife” (how much you would spend to reduce risk by 1/million), or
 - Specify your “action level” (the radon level at which you would do something)
- What should the EPA say?
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your “value of a microlife” (how much you would spend to reduce risk by 1/million), or
 - Specify your “action level” (the radon level at which you would do something)
- What should the EPA say?
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your “value of a microlife” (how much you would spend to reduce risk by 1/million), or
 - Specify your “action level” (the radon level at which you would do something)
- What should the EPA say?
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your “value of a microlife” (how much you would spend to reduce risk by 1/million), or
 - Specify your “action level” (the radon level at which you would do something)

- What should the EPA say?
Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your “value of a microlife” (how much you would spend to reduce risk by 1/million), or
 - Specify your “action level” (the radon level at which you would do something)
- What should the EPA say?
Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience,
- Widgets cost $2 to make and sell for $3. Here’s the distribution of the market for widgets,
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example
Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, . . .
- Widgets cost $2 to make and sell for $3. Here’s the distribution of the market for widgets, . . ., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example
Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, ...
- Widgets cost $2 to make and sell for $3. Here’s the distribution of the market for widgets, ..., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example
Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, . . .
- Widgets cost $2 to make and sell for $3. Here’s the distribution of the market for widgets, . . ., how many should you make?
- Vague business example
 - Specific business example—what kind of power plant to build—pure GIGO
- Vague military example
Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, . . .
- Widgets cost $2 to make and sell for $3. Here’s the distribution of the market for widgets, . . ., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example
Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, . . .
- Widgets cost $2 to make and sell for $3. Here’s the distribution of the market for widgets, . . ., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example
Technical challenges in evaluating decision trees
Evaluating nested decision trees

- Alternation of *decision nodes* and *uncertainty nodes*
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!
Evaluating nested decision trees

- Alternation of *decision nodes* and *uncertainty nodes*
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!
Evaluating nested decision trees

- Alternation of *decision nodes* and *uncertainty nodes*
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!
Evaluating nested decision trees

- Alternation of *decision nodes* and *uncertainty nodes*
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!
Evaluating nested decision trees

- Alternation of decision nodes and uncertainty nodes
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!
Institutional decision analysis

- Comparative decisions
- Understanding decision makers’ priorities
- Relative recommendations
Institutional decision analysis

- Comparative decisions
 - Understanding decision makers’ priorities
 - Relative recommendations
Institutional decision analysis

- Comparative decisions
- Understanding decision makers’ priorities
- Relative recommendations
Institutional decision analysis

- Comparative decisions
- Understanding decision makers’ priorities
- Relative recommendations
Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making
Decentralized decision making

- What is the role of the government/NGO?
 - Coordinating data collection
 - Centralized data analysis
 - Providing individualized recommendations
 - Hierarchical modeling for dispersed decision making
Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
 - Centralized data analysis
 - Providing individualized recommendations
 - Hierarchical modeling for dispersed decision making
Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making
Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making
Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making
Advances in logistic regression

- Bayesian inference: the best fit to data does not give the best prediction for future data
- Conservatism in statistical inference
- Predictive model checking
Advances in logistic regression

- Bayesian inference: the best fit to data does not give the best prediction for future data
 - Conservatism in statistical inference
 - Predictive model checking
Advances in logistic regression

- Bayesian inference: the best fit to data does not give the best prediction for future data
- Conservatism in statistical inference
- Predictive model checking
Advances in logistic regression

- Bayesian inference: the best fit to data does not give the best prediction for future data
- Conservatism in statistical inference
- Predictive model checking
Separation in logistic regression

```r
glm (vote ~ female + black + income, family=binomial(link="logit"))
```

<table>
<thead>
<tr>
<th>Year</th>
<th>Coef. Estimate</th>
<th>Std. Error</th>
<th>Year</th>
<th>Coef. Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>(Intercept) -0.14</td>
<td>0.23</td>
<td>1968</td>
<td>(Intercept) 0.47</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>female 0.24</td>
<td>0.14</td>
<td></td>
<td>female -0.01</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>black -1.03</td>
<td>0.36</td>
<td></td>
<td>black -3.64</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>income 0.03</td>
<td>0.06</td>
<td></td>
<td>income -0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>1964</td>
<td>(Intercept) -1.15</td>
<td>0.22</td>
<td>1972</td>
<td>(Intercept) 0.67</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>female -0.09</td>
<td>0.14</td>
<td></td>
<td>female -0.25</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>black -16.83</td>
<td>420.40</td>
<td></td>
<td>black -2.63</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>income 0.19</td>
<td>0.06</td>
<td></td>
<td>income 0.09</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Regularization in action!
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefficients are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
- Smoking and lung cancer
- Independent Cauchy prior distributions with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
 - Some prior info: logistic regression coefficients are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50
 or from 0.50 to 0.99
 - Smoking and lung cancer
 - Independent Cauchy prior distributions with center 0 and scale 2.5
 - Rescale each predictor to have mean 0 and standard deviation $1/2$
 - Fast implementation using EM; easy adaptation of glm
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefficients are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior distributions with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefficients are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior distributions with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and standard deviation $1/2$
- Fast implementation using EM; easy adaptation of glm
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
 - Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
 - Fast implementation using EM; easy adaptation of glm
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefficients are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior distributions with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and standard deviation $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
Weakly informative priors for logistic regression coefficients

- Separation in logistic regression
- Some prior info: logistic regression coefs are almost always between −5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm
Evaluation using a corpus of datasets

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β’s is (approx) Cauchy $(0, 1)$
- Our Cauchy $(0, 2.5)$ prior distribution is weakly informative!
Evaluation using a corpus of datasets

- Compare classical glm to Bayesian estimates using various prior distributions
 - Evaluate using cross-validation and average predictive error
 - The optimal prior distribution for β's is (approx) Cauchy $(0, 1)$
 - Our Cauchy $(0, 2.5)$ prior distribution is weakly informative!
Evaluation using a corpus of datasets

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
 - The optimal prior distribution for β’s is (approx) Cauchy $(0, 1)$
 - Our Cauchy $(0, 2.5)$ prior distribution is weakly informative!
Evaluation using a corpus of datasets

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β's is (approx) Cauchy $(0, 1)$
- Our Cauchy $(0, 2.5)$ prior distribution is weakly informative!
Evaluation using a corpus of datasets

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β’s is (approx) Cauchy $(0, 1)$
- Our Cauchy $(0, 2.5)$ prior distribution is weakly informative!
Expected predictive loss, avg over a corpus of datasets

-\log \text{test likelihood}

GLM $\uparrow (1.79)$

BBR(g)
BBR(l)

df=8.0
df=4.0
df=0.5
df=2.0
df=1.0

scale of prior
Consider the logistic regression example

Problems with maximum likelihood when data show separation:

- Coefficient estimate of $-\infty$
- Estimated predictive probability of 0 for new cases

Is this conservative?

Not if evaluated on new data

What is statistical conservatism?
Consider the logistic regression example

Problems with maximum likelihood when data show separation:
- Coefficient estimate of $-\infty$
- Estimated predictive probability of 0 for new cases

Is this conservative?
- Not if evaluated on new data

What is statistical conservatism?
Conservatism of Bayesian inference

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?
Consider the logistic regression example

Problems with maximum likelihood when data show separation:

- Coefficient estimate of $-\infty$
- Estimated predictive probability of 0 for new cases

Is this conservative?

Not if evaluated on new data

What is statistical conservatism?
Conservatism of Bayesian inference

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of \(-\infty\)
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?
Conservatism of Bayesian inference

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
 - Not if evaluated on new data
 - What is statistical conservatism?
Conservatism of Bayesian inference

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?
Consider the logistic regression example

Problems with maximum likelihood when data show separation:
- Coefficient estimate of $-\infty$
- Estimated predictive probability of 0 for new cases

Is this conservative?

Not if evaluated on new data

What is statistical conservatism?
Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin
Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin
Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin
Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin