Arsenic and old models

Andrew Gelman Department of Statistics and Department of Political Science Columbia University

6 Sept 2007

イロト イヨト イヨト イヨト

Contents

- Aresenic in Bangladesh
- Decision analysis
- Regression models

・ロト ・回ト ・ヨト ・ヨト

Contents

Aresenic in Bangladesh

- Decision analysis
- Regression models

・ロト ・回ト ・ヨト ・ヨト

Contents

- Aresenic in Bangladesh
- Decision analysis
- Regression models

・ロト ・回ト ・ヨト ・ヨト

æ

Contents

- Aresenic in Bangladesh
- Decision analysis
- Regression models

イロト イヨト イヨト イヨト

æ

Natural arsenic in well water in Bangladesh

- ► Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- ▶ Will people switch?

イロト イヨト イヨト イヨト

Natural arsenic in well water in Bangladesh

Where is the arsenic?

- What can people do?
- Digging low-arsenic wells
- ▶ Will people switch?

- 4 回 2 - 4 三 2 - 4 三 2

Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- Will people switch?

- 4 回 2 - 4 三 2 - 4 三 2

Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- Will people switch?

| 4 回 2 | 4 三 2 | 4 三 2 |

Natural arsenic in well water in Bangladesh

- Where is the arsenic?
- What can people do?
- Digging low-arsenic wells
- Will people switch?

▲圖▶ ▲屋▶ ▲屋▶

Natural arsenic in well water

Andrew Gelman Arsenic and old models

Mix of high and low arconic wells

Mix of high and low arsenic wells

Distance to nearest safe well

э

æ

What if people switch wells?

Digging new wells

Andrew Gelman

Arsenic and old models

Where to dig new wells

Optimal locations for 30 new safe wells (assuming 50% of eligible people have switched already)

Andrew Gelman Arsenic and old models

How deep to dig?

Andrew Gelman

 $\mathcal{O} \land \mathcal{O}$

New community wells

Cellphone-based information system

	Instructions:	SMS "?" to +880 1713 045 512 or http://www.ldeo.columbia.edu/welltracker/
	Find village?	"F*U*Araihazar*V*Bara Barai Para"
	Response:	U:Araihazar M: Bara Barai Para Bara Barai Para, 167029410201″ and others
	Safe depth?	"SD*167029410201"
	Response:	U=Araihazar M=Bara Barai Para V=Bara Barai Para Start>=215' Fail=5/100 Average arsenic 168 ppb 39 safe of 183 20-135' 7 of 142 175-250' 32 of 41
200	Money-back?	"SD*167029410201*15000"
300 -	Response:	TK750 insures TK15000 (US\$250) Add TK1000-3000 fixed cost (well design, test)
	Andrew Gelman	Arsenic and old models

Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well.
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)

イロト イヨト イヨト イヨト

Survey data: would you switch wells?

Logistic regression

Predictor variables:

- Distance to nearest safe well
- Arsenic level of your current well
- Education
- Membership in community organizations (not predictive)

イロト イヨト イヨト イヨト

Survey data: would you switch wells?

Logistic regression

Predictor variables:

- Distance to nearest safe well
- Arsenic level of your current well
- Education
- Membership in community organizations (not predictive)

イロト イヨト イヨト イヨト

Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)

Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)

- 4 同 2 4 三 2 4 三 2 4

Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)

- 4 回 ト - 4 三 ト

Survey data: would you switch wells?

- Logistic regression
- Predictor variables:
 - Distance to nearest safe well
 - Arsenic level of your current well
 - Education
 - Membership in community organizations (not predictive)

- 4 回 ト - 4 三 ト

Probability of switching wells, given distance to nearest safe well

A ■

Probability of switching wells, given distance and existing arsenic level

Binned residuals: are people switching more or less than predicted by the model?

Model on log (arsenic level) and binned residuals

Binned residual plot for model with log (arsenic)

Model for switching

Distance to walk comes in linearly

- Does this make sense?
- ▶ Yes

Current arsenic level comes in on the log scale

Model for switching

Distance to walk comes in linearly

- Does this make sense?
- Yes

Current arsenic level comes in on the log scale

イロト イヨト イヨト イヨト

Model for switching

Distance to walk comes in linearly

- Does this make sense?
- Yes

Current arsenic level comes in on the log scale

イロト イヨト イヨト イヨト

Model for switching

Distance to walk comes in linearly

- Does this make sense?
- Yes
- Current arsenic level comes in on the log scale
 - Does this make sense?
 - Yes and no

イロト イヨト イヨト イヨト

Model for switching

Distance to walk comes in linearly

- Does this make sense?
- Yes

Current arsenic level comes in on the log scale

- Does this make sense?
- Yes and no

イロト イヨト イヨト イヨト

Model for switching

Distance to walk comes in linearly

- Does this make sense?
- Yes
- Current arsenic level comes in on the log scale
 - Does this make sense?

Yes and no

イロト イヨト イヨト イヨト

-2

Model for switching

Distance to walk comes in linearly

- Does this make sense?
- Yes
- Current arsenic level comes in on the log scale
 - Does this make sense?
 - Yes and no

イロト イヨト イヨト イヨト

-2

Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it.
 - Not digging a new well because atraid of wasting money on annual unsate well.
 - Digging too shallow (risk of unsafe
 - Digging too deep (waste of money
- A (possible) solution: insurance or money-back guarantee

3

Insurance program

Goal: dig more safe wells

- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money
- A (possible) solution: insurance or money-back guarantee

Insurance program

Goal: dig more safe wells

Outcomes to avoid:

- Digging an unsafe well and not testing it
- Not digging a new well because afraid of wasting money on an unsafe well
- Digging too shallow (risk of unsafe)
- Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee

Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee

Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee

Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- A (possible) solution: insurance or money-back guarantee

Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)

▶ A (possible) solution: insurance or money-back guarantee

<ロ> <同> <同> < 同> < 同>< < 同>< < 同>< < 同>< < 同> < < 同>< < 同>< < 同>< < 同>< < 同>< < □> < < □> < < □> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> < □>> <

Insurance program

- Goal: dig more safe wells
- Outcomes to avoid:
 - Digging an unsafe well and not testing it
 - Not digging a new well because afraid of wasting money on an unsafe well
 - Digging too shallow (risk of unsafe)
 - Digging too deep (waste of money)
- ► A (possible) solution: insurance or money-back guarantee

| 4 回 2 | 4 三 2 | 4 三 2 |

Decision analysis and the garbage-in, garbage-out problem

- Radon example
- Arsenic example
- Institutional decision analysis and the role of centralized information collection and analysis

Decision analysis and the garbage-in, garbage-out problem

Radon example

- Arsenic example
- Institutional decision analysis and the role of centralized information collection and analysis

Decision analysis and the garbage-in, garbage-out problem

Radon example

Arsenic example

 Institutional decision analysis and the role of centralized information collection and analysis

| 4 回 2 | 4 三 2 | 4 三 2 |

Decision analysis and the garbage-in, garbage-out problem

- Radon example
- Arsenic example
- Institutional decision analysis and the role of centralized information collection and analysis

- 4 回 ト - 4 三 ト

Radon and lung cancer: estimated risks

Home radon exposure as a decision problem

For your house, decision options:

- Remediate (seal the basement, etc.), costs \$2000
- Take a good measurement, costs \$50 + wait 1 year
- Take a noisy measurement, costs \$25 + wait 1 week
- Do nothing
- It's a classical "value of information" decision problem!

<ロ> (日) (日) (日) (日) (日)

Home radon exposure as a decision problem

For your house, decision options:

- Remediate (seal the basement, etc.), costs \$2000
- Take a good measurement, costs \$50 + wait 1 year
- Take a noisy measurement, costs \$25 + wait 1 week
- Do nothing
- It's a classical "value of information" decision problem!

Home radon exposure as a decision problem

For your house, decision options:

- Remediate (seal the basement, etc.), costs \$2000
- Take a good measurement, costs \$50 + wait 1 year
- Take a noisy measurement, costs \$25 + wait 1 week
- Do nothing

It's a classical "value of information" decision problem!

Home radon exposure as a decision problem

For your house, decision options:

- Remediate (seal the basement, etc.), costs \$2000
- Take a good measurement, costs \$50 + wait 1 year
- Take a noisy measurement, costs \$25 + wait 1 week
- Do nothing

It's a classical "value of information" decision problem!

<ロ> (四) (四) (三) (三)

Home radon exposure as a decision problem

For your house, decision options:

- Remediate (seal the basement, etc.), costs \$2000
- ▶ Take a good measurement, costs \$50 + wait 1 year
- Take a noisy measurement, costs \$25 + wait 1 week
- Do nothing

It's a classical "value of information" decision problem!

- A 同 ト - A 三 ト - A 三 ト

Home radon exposure as a decision problem

For your house, decision options:

- Remediate (seal the basement, etc.), costs \$2000
- ▶ Take a good measurement, costs \$50 + wait 1 year
- Take a noisy measurement, costs \$25 + wait 1 week
- Do nothing

It's a classical "value of information" decision problem!

- 4 同 ト 4 ヨ ト 4 ヨ ト

Home radon exposure as a decision problem

For your house, decision options:

- Remediate (seal the basement, etc.), costs \$2000
- Take a good measurement, costs \$50 + wait 1 year
- Take a noisy measurement, costs \$25 + wait 1 week
- Do nothing
- It's a classical "value of information" decision problem!

- 4 回 ト - 4 三 ト

Home radon analysis

- ▶ 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- ▶ 3 sources of information:

イロン イヨン イヨン イヨン

Home radon analysis

▶ 50,000 homes with very high radon, millions with high radon

- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, blased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s) County-level geological info

Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info

Home radon analysis

- ▶ 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info

Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info

Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info

Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info

Home radon analysis

- 50,000 homes with very high radon, millions with high radon
- Goal: to identify the dangerous homes
- 3 sources of information:
 - National survey: accurate measurements in 5000 homes in 125 U.S. counties
 - State surveys: noisy, biased measurements in 80,000 homes in all the counties
 - County-level soil uranium measurements (from 1950s)
 - County-level geological info

- 4 回 2 - 4 □ 2 - 4 □

Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, them link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works

イロン イヨン イヨン イヨ

Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, them link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works

Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, them link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works

Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, them link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works

Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, them link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works

Home radon analysis: statistical methods

- Classical method 1: use national survey to predict radon from house-level predictors (basement, ventilation, construction, county uranium, soil type, ...)
- Classical method 2: use state surveys to identify high-radon areas, them link these to geological maps
- Bayesian method: combine all the info to get inference for houses with and without basements in all counties
- Measurement-error model adjusts for low-quality data
- Cross-validation demonstrates that it works

- 4 回 2 - 4 回 2 - 4 回 2

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:

What should the EPA say?

- 4 回 2 - 4 三 2 - 4 三

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- ► Garbage-in, garbage-out issue:

What should the EPA say?

- A 🗇 🕨 - A 🖻 🕨 - A 🖻

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your "value of a microlife" (how much you would spend to reduce risk by 1/million), or
 Specify your "action level" (the radon level at which you would do something)
- ▶ What should the EPA say?

A (1) > A (1) > A

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your "value of a microlife" (how much you would spend to reduce risk by 1/million), or
 - Specify your "action level" (the radion level at which you would do something)

- 4 回 2 - 4 □ 2 - 4 □

▶ What should the EPA say?

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- ► Garbage-in, garbage-out issue:
 - Specify your "value of a microlife" (how much you would spend to reduce risk by 1/million), or
 - Specify your "action level" (the radon level at which you would do something)
- What should the EPA say?

(人間) (人) (人) (人)

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your "value of a microlife" (how much you would spend to reduce risk by 1/million), or
 - Specify your "action level" (the radon level at which you would do something)
- What should the EPA say?

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- ► Garbage-in, garbage-out issue:
 - Specify your "value of a microlife" (how much you would spend to reduce risk by 1/million), or
 - Specify your "action level" (the radon level at which you would do something)

- 4 回 2 - 4 □ 2 - 4 □

▶ What should the EPA say?

Home radon analysis: garbage in, garbage out

- Use Bayes posterior distribution to figure out optimal decision for houses in every county
- Average over the 3000 counties to estimate the total dollar cost and lives saved under various strategies
- Compare to costs of other safety measures
- Garbage-in, garbage-out issue:
 - Specify your "value of a microlife" (how much you would spend to reduce risk by 1/million), or
 - Specify your "action level" (the radon level at which you would do something)

What should the EPA say?

Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, ...
- Widgets cost \$2 to make and sell for \$3. Here's the distribution of the market for widgets, ..., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example

Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, ...
- Widgets cost \$2 to make and sell for \$3. Here's the distribution of the market for widgets, ..., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example

Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, ...
- Widgets cost \$2 to make and sell for \$3. Here's the distribution of the market for widgets, ..., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, ...
- Widgets cost \$2 to make and sell for \$3. Here's the distribution of the market for widgets, ..., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example

Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, ...
- Widgets cost \$2 to make and sell for \$3. Here's the distribution of the market for widgets, ..., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example

Why are textbook examples of decision analysis so lame?

- Your nephew is renting an apartment, balancing issues of cost, size, convenience, ...
- Widgets cost \$2 to make and sell for \$3. Here's the distribution of the market for widgets, ..., how many should you make?
- Vague business example
- Specific business example—what kind of power plant to build—pure GIGO
- Vague military example

Technical challenges in evaluating decision trees

3

Evaluating nested decision trees

- Alternation of decision nodes and uncertainty nodes
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!

Evaluating nested decision trees

Alternation of decision nodes and uncertainty nodes

- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!

- 4 回 2 - 4 □ 2 - 4 □

Evaluating nested decision trees

- Alternation of decision nodes and uncertainty nodes
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!

- 4 回 2 - 4 三 2 - 4 三 2

Evaluating nested decision trees

- Alternation of decision nodes and uncertainty nodes
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!

- 4 回 2 - 4 三 2 - 4 三 2

Evaluating nested decision trees

- Alternation of decision nodes and uncertainty nodes
- Evaluating a tree of decision nodes (e.g., a traffic route): maximize at each step
- Evaluating a tree of uncertainty nodes (e.g., a casino game): simulate random draw at each step
- Evaluating an alternating tree: difficult!

- 4 回 ト - 4 三 ト

Institutional decision analysis

- Comparative decisions
- Understanding decision makers' priorities
- Relative recommendations

- 4 回 2 - 4 三 2 - 4 三 2

Institutional decision analysis

Comparative decisions

- Understanding decision makers' priorities
- Relative recommendations

- 4 回 2 - 4 三 2 - 4 三 2

Institutional decision analysis

- Comparative decisions
- Understanding decision makers' priorities
- Relative recommendations

Institutional decision analysis

- Comparative decisions
- Understanding decision makers' priorities
- Relative recommendations

|田・ (日) (日)

Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making

- 4 回 2 - 4 回 2 - 4 回

Decentralized decision making

What is the role of the government/NGO?

- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making

| 4 回 2 4 三 2 4 三 4 三

Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making

<**□** > < ⊇ >

Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making

A (1) > (1) > (1)

Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making

Decentralized decision making

- What is the role of the government/NGO?
- Coordinating data collection
- Centralized data analysis
- Providing individualized recommendations
- Hierarchical modeling for dispersed decision making

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

- Bayesian inference: the best fit to data does not give the best prediction for future data
- Conservatism in statistical inference
- Predictive model checking

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

- Bayesian inference: the best fit to data does not give the best prediction for future data
- Conservatism in statistical inference
- Predictive model checking

Separation in logistic regression Conservatism of Bayesian inference

- 4 回 2 - 4 三 2 - 4 三 2

- Bayesian inference: the best fit to data does not give the best prediction for future data
- Conservatism in statistical inference
- Predictive model checking

Separation in logistic regression Conservatism of Bayesian inference

・ 同 ト ・ ヨ ト ・ ヨ ト

- Bayesian inference: the best fit to data does not give the best prediction for future data
- Conservatism in statistical inference
- Predictive model checking

Separation in logistic regression Conservatism of Bayesian inference

Separation in logistic regression

glm (vote ~ female + black + income, family=binomial(link="logit"))

1960

	coef.est	coef.se
(Intercept)	-0.14	0.23
female	0.24	0.14
black	-1.03	0.36
income	0.03	0.06

1964

	coef.est	coef.se
(Intercept)	-1.15	0.22
female	-0.09	0.14
black	-16.83	420.40
income	0.19	0.06

1968

	coef.est	coef.se
(Intercept)	0.47	0.24
female	-0.01	0.15
black	-3.64	0.59
income	-0.03	0.07
1972		
	coef.est	coef.se

0.67	0.18
-0.25	0.12
-2.63	0.27
0.09	0.05
	-0.25 -2.63

・ロ・ ・ 日・ ・ 日・ ・ 日・

-2

Separation in logistic regression Conservatism of Bayesian inference

Regularization in action!

Andrew Gelman

Arsenic and old models

Separation in logistic regression Conservatism of Bayesian inference

・ロト ・回ト ・ヨト ・ヨト

- Separation in logistic regression
- ▶ Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50
 - or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- ▶ Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

・ロ・ ・ 日・ ・ 日・ ・ 日・

Weakly informative priors for logistic regression coefficients

Separation in logistic regression

- ▶ Some prior info: logistic regression coefs are almost always between -5 and 5:
 - ▶ 5 on the logit scale takes you from 0.01 to 0.50
 - or from 0.50 to 0.99
 - Smoking and lung cancer
- ▶ Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd ¹/₂
- ▶ Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd ¹/₂
- ▶ Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- ▶ Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

イロン イヨン イヨン イヨン

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- ▶ Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

イロン イヨン イヨン イヨン

- Separation in logistic regression
- ► Some prior info: logistic regression coefs are almost always between -5 and 5:
 - 5 on the logit scale takes you from 0.01 to 0.50 or from 0.50 to 0.99
 - Smoking and lung cancer
- Independent Cauchy prior dists with center 0 and scale 2.5
- Rescale each predictor to have mean 0 and sd $\frac{1}{2}$
- Fast implementation using EM; easy adaptation of glm

Separation in logistic regression Conservatism of Bayesian inference

<ロ> (四) (四) (三) (三)

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β's is (approx) Cauchy (0, 1)
- Our Cauchy (0,2.5) prior distribution is weakly informative!

Separation in logistic regression Conservatism of Bayesian inference

イロト イポト イラト イラト

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β's is (approx) Cauchy (0,1)
- Our Cauchy (0, 2.5) prior distribution is weakly informative!

Separation in logistic regression Conservatism of Bayesian inference

イロト イポト イヨト イヨト

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β's is (approx) Cauchy (0, 1)
- Our Cauchy (0, 2.5) prior distribution is weakly informative!

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β 's is (approx) Cauchy (0, 1)
- Our Cauchy (0,2.5) prior distribution is weakly informative!

Separation in logistic regression Conservatism of Bayesian inference

イロト イポト イラト イラト

- Compare classical glm to Bayesian estimates using various prior distributions
- Evaluate using cross-validation and average predictive error
- The optimal prior distribution for β 's is (approx) Cauchy (0, 1)
- Our Cauchy (0, 2.5) prior distribution is weakly informative!

Separation in logistic regression Conservatism of Bayesian inference

< 🗇 🕨

Expected predictive loss, avg over a corpus of datasets

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of —co.
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

Conservatism of Bayesian inference

Consider the logistic regression example

- Problems with maximum likelihood when data show separation:
 - ▶ Coefficient estimate of −∞
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - ► Coefficient estimate of −∞
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Separation in logistic regression Conservatism of Bayesian inference

イロト イヨト イヨト イヨト

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Separation in logistic regression Conservatism of Bayesian inference

<⊡> < ⊒>

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Separation in logistic regression Conservatism of Bayesian inference

A (1) > A (1) > A

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Separation in logistic regression Conservatism of Bayesian inference

A (1) > A (1) > A

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Separation in logistic regression Conservatism of Bayesian inference

A (1) > A (1) > A

- Consider the logistic regression example
- Problems with maximum likelihood when data show separation:
 - Coefficient estimate of $-\infty$
 - Estimated predictive probability of 0 for new cases
- Is this conservative?
- Not if evaluated on new data
- What is statistical conservatism?

Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin

Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin

- 4 回 2 - 4 三 2 - 4 三 2

Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin

- 4 回 2 - 4 三 2 - 4 三 2

Take-home points

- Classical tools for statistical analysis and decision making are being made more realistic
- Recognize and surmount the garbage-in, garbage-out nature of decision analysis and statistical modeling
- Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen, Hao Lu, Erwann Rogard, and Aleks Jakulin

- 4 回 ト - 4 三 ト