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What if people switch wells?
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Survey data: would you switch wells?

I Logistic regression
I Predictor variables:

I Distance to nearest safe well
I Arsenic level of your current well
I Education
I Membership in community organizations (not predictive)
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Probability of switching wells, given distance to nearest
safe well
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Probability of switching wells, given distance and existing
arsenic level
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Binned residuals: are people switching more or less than
predicted by the model?
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Model on log (arsenic level) and binned residuals
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I Distance to walk comes in linearly
I Does this make sense?
I Yes

I Current arsenic level comes in on the log scale
I Does this make sense?
I Yes and no
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Insurance program

I Goal: dig more safe wells
I Outcomes to avoid:

I Digging an unsafe well and not testing it
I Not digging a new well because afraid of wasting money on an

unsafe well
I Digging too shallow (risk of unsafe)
I Digging too deep (waste of money)

I A (possible) solution: insurance or money-back guarantee
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Radon and lung cancer: estimated risks
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Home radon exposure as a decision problem

I For your house, decision options:
I Remediate (seal the basement, etc.), costs $2000
I Take a good measurement, costs $50 + wait 1 year
I Take a noisy measurement, costs $25 + wait 1 week
I Do nothing

I It’s a classical “value of information” decision problem!
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Home radon analysis

I 50,000 homes with very high radon, millions with high radon

I Goal: to identify the dangerous homes
I 3 sources of information:

I National survey: accurate measurements in 5000 homes in 125
U.S. counties

I State surveys: noisy, biased measurements in 80,000 homes in
all the counties

I County-level soil uranium measurements (from 1950s)
I County-level geological info
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Home radon analysis: statistical methods

I Classical method 1: use national survey to predict radon from
house-level predictors (basement, ventilation, construction,
county uranium, soil type, . . . )

I Classical method 2: use state surveys to identify high-radon
areas, them link these to geological maps

I Bayesian method: combine all the info to get inference for
houses with and without basements in all counties

I Measurement-error model adjusts for low-quality data

I Cross-validation demonstrates that it works
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Home radon analysis: garbage in, garbage out

I Use Bayes posterior distribution to figure out optimal decision
for houses in every county

I Average over the 3000 counties to estimate the total dollar
cost and lives saved under various strategies

I Compare to costs of other safety measures
I Garbage-in, garbage-out issue:

I Specify your “value of a microlife” (how much you would
spend to reduce risk by 1/million), or

I Specify your “action level” (the radon level at which you would
do something)

I What should the EPA say?
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Why are textbook examples of decision analysis so lame?

I Your nephew is renting an apartment, balancing issues of cost,
size, convenience, . . .

I Widgets cost $2 to make and sell for $3. Here’s the
distribution of the market for widgets, . . . , how many should
you make?

I Vague business example

I Specific business example—what kind of power plant to
build—pure GIGO

I Vague military example
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Evaluating nested decision trees

I Alternation of decision nodes and uncertainty nodes

I Evaluating a tree of decision nodes (e.g., a traffic route):
maximize at each step

I Evaluating a tree of uncertainty nodes (e.g., a casino game):
simulate random draw at each step

I Evaluating an alternating tree: difficult!
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I Comparative decisions

I Understanding decision makers’ priorities

I Relative recommendations
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Decentralized decision making

I What is the role of the goverment/NGO?

I Coordinating data collection

I Centralized data analysis

I Providing individualized recommendations

I Hierarchical modeling for dispersed decision making
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Separation in logistic regression
Conservatism of Bayesian inference

Advances in logistic regression

I Bayesian inference: the best fit to data does not give the best
prediction for future data

I Conservatism in statistical inference

I Predictive model checking
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Separation in logistic regression
Conservatism of Bayesian inference

Separation in logistic regression

glm (vote ~ female + black + income, family=binomial(link="logit"))

1960 1968

coef.est coef.se coef.est coef.se

(Intercept) -0.14 0.23 (Intercept) 0.47 0.24

female 0.24 0.14 female -0.01 0.15

black -1.03 0.36 black -3.64 0.59

income 0.03 0.06 income -0.03 0.07

1964 1972

coef.est coef.se coef.est coef.se

(Intercept) -1.15 0.22 (Intercept) 0.67 0.18

female -0.09 0.14 female -0.25 0.12

black -16.83 420.40 black -2.63 0.27

income 0.19 0.06 income 0.09 0.05
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Separation in logistic regression
Conservatism of Bayesian inference

Regularization in action!
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Separation in logistic regression
Conservatism of Bayesian inference

Weakly informative priors for
logistic regression coefficients

I Separation in logistic regression
I Some prior info: logistic regression coefs are almost always

between −5 and 5:
I 5 on the logit scale takes you from 0.01 to 0.50

or from 0.50 to 0.99
I Smoking and lung cancer

I Independent Cauchy prior dists with center 0 and scale 2.5

I Rescale each predictor to have mean 0 and sd 1
2

I Fast implementation using EM; easy adaptation of glm
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Separation in logistic regression
Conservatism of Bayesian inference

Evaluation using a corpus of datasets

I Compare classical glm to Bayesian estimates using various
prior distributions

I Evaluate using cross-validation and average predictive error

I The optimal prior distribution for β’s is (approx) Cauchy (0, 1)

I Our Cauchy (0, 2.5) prior distribution is weakly informative!
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Expected predictive loss, avg over a corpus of datasets
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Conservatism of Bayesian inference

I Consider the logistic regression example
I Problems with maximum likelihood when data show

separation:
I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated on new data

I What is statistical conservatism?
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Take-home points

I Classical tools for statistical analysis and decision making are
being made more realistic

I Recognize and surmount the garbage-in, garbage-out nature
of decision analysis and statistical modeling

I Thanks also to Lex van Geen, Matilde Trevisani, Jie Shen,
Hao Lu, Erwann Rogard, and Aleks Jakulin
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