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“As is often the case, priming effects are subtle, unexpected, and
newsworthy, while at the same time being perfectly coherent with
theory.”







Choices!

1. Exclusion criteria based on cycle length (3 options)
2. Exclusion criteria based on “How sure are you?” response (2)
3. Cycle day assessment (3)
4. Fertility assessment (4)
5. Relationship status assessment (3)

168 possibilities (after excluding some contradictory combinations)



Living in the multiverse



Policy!



Political science!

I Monthly cycle and voting
I Fat arms and political attitudes
I Subliminal smiley faces
I College football
I Shark attacks

I What if it were all true??
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Bad Bayes

I Model:
I y |θ ∼ N(θ, 1)
I p(θ) ∝ 1

I Data:
I y = 1

I Inference:
I θ|y ∼ N(y , 1)
I Pr(θ>0|y) = .84

I Wanna bet??
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What is the problem we are trying to solve?

I Routine use of informative priors



Why is it important?

I Existing unregularized estimates are too noisy
I Problems with big data
I Replication crisis in science



How is it solved today, and what are the limitations of
current solutions?

I Ignore the problem
I Limitation: we’re buried in noise

I Elicit priors from experts
I Limitation: experts can’t assess uncertainty, and they can be

biased
I “Judge, jury, and executioner” problem

I Hierarchical modeling, lasso, etc.
I Limitation: what do you do when you have a single parameter?



How will we solve the problem?

I Embedding in a hierarchical model
I Getting away from the idea that a no-prior estimate generally

exists!
I Weakly informative priors
I A small amount of information can do a lot of regularization



A simple but hard inference problem
I Sum of declining exponentials: y = a1e

−b1x + a2e
−b2x

I Statistical version: yi = (a1e
−b1xi + a2e

−b2xi ) · εi
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Stan code

data {
int N;
vector[N] x;
vector[N] y;}

parameters {
vector[2] log_a;
ordered[2] log_b;
real<lower=0> sigma;}

transformed parameters {
vector<lower=0>[2] a;
vector<lower=0>[2] b;
a <- exp(log_a);
b <- exp(log_b);}

model {
vector[N] ypred;
ypred <- a[1]*exp(-b[1]*x) + a[2]*exp(-b[2]*x);
y ~ lognormal(log(ypred), sigma);

}



Simulate fake data in R

a <- c(1, 0.8)
b <- c(0.1, 2)
sigma <- 0.2

x <- (1:1000)/100
N <- length(x)
ypred <- a[1]*exp(-b[1]*x) + a[2]*exp(-b[2]*x)
y <- ypred*exp(rnorm(N, 0, sigma))
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Fit the model in Stan

Inference for Stan model: exponentials.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.

mean se_mean sd 25% 50% 75% n_eff Rhat
a[1] 1.00 0.00 0.03 0.99 1.00 1.02 494 1
a[2] 0.70 0.00 0.08 0.65 0.69 0.75 620 1
b[1] 0.10 0.00 0.00 0.10 0.10 0.10 532 1
b[2] 1.71 0.02 0.34 1.48 1.67 1.90 498 1
sigma 0.19 0.00 0.00 0.19 0.19 0.20 952 1

I Compare to true values:
a <- c(1, 0.8)
b <- c(0.1, 2)
sigma <- .2



Let’s make the problem harder

I Simulate new data using these new parameter values:
a <- c(1, 0.8)
b <- c(0.1, 0.2)

I Then fit the model:

mean se_mean sd 25% 50% 75% n_eff Rhat
a[1] 1.33e+00 0.54 0.77 1.28 1.77e+00 1.79e+00 2 44.2
a[2] 2.46e+294 Inf Inf 0.00 0.00e+00 1.77e+00 2000 NaN
b[1] 1.00e-01 0.04 0.06 0.10 1.30e-01 1.30e-01 2 33.6
b[2] 3.09e+305 Inf Inf 0.50 1.15e+109 4.77e+212 2000 NaN
sigma 2.00e-01 0.00 0.00 0.19 2.00e-01 2.00e-01 65 1.0



What went wrong?
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Informative prior distribution

log_a ~ normal(0, 1);
log_b ~ normal(0, 1);



Happy ending

mean se_mean sd 25% 50% 75% n_eff Rhat
a[1] 1.56 0.09 0.32 1.52 1.72 1.75 13 1.25
a[2] 0.32 0.08 0.28 0.14 0.22 0.37 13 1.20
b[1] 0.13 0.00 0.01 0.12 0.13 0.13 22 1.14
b[2] 1.94 0.20 2.29 0.22 1.26 3.00 127 1.05
sigma 0.20 0.00 0.00 0.19 0.20 0.20 656 1.00

I Compare to true values:
a <- c(1, 0.8)
b <- c(0.1, 0.2)
sigma <- .2



Areas of application

I Ill-posed problems (y = a1e
−b1x + a2e

−b2x , differential
equation models in pharmacometrics)

I Weakly-informative priors for logistic regression
I Fitting models with less “hand-holding”
I A new way to think about junk science



Summary

I Get rid of the idea that classical methods (including
noninformative Bayes) are “safe” or “conservative”

I Examples: 1± 1, separation in logistic regression, junk science,
. . . good science

I The statistical significance filter is real.

I Prior information is all around
I Resolve the GIGO problem by embedding in a hierarchical

model
I Avoid the no-pooling or complete-pooling choice
I Fit in Stan!


