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6 challenges in statistical modeling

I Setting up a realistic (i.e., complicated) model
I Regularization or partial pooling
I Fitting the model
I Checking the fit to data
I Confidence building
I Understanding the fitted model
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The models I’m fitting

I Hierarchical generalized linear models

I yi = α+ βxi + εi
I yi = αj[i ] + βj[i ]xi + εi (separate regression in each group)

I

(
αj
βj

)
∼ N

((
µα

µβ

)
,

(
σ2α ρσασβ

ρσασβ σ2β

))
, for j = 1, . . . , J

I Also can have group-level predictors and nonnested grouping
factors

Andrew Gelman Some computational and modeling issues for hierarchical models



3/13

The models I’m fitting

I Hierarchical generalized linear models
I yi = α+ βxi + εi

I yi = αj[i ] + βj[i ]xi + εi (separate regression in each group)

I

(
αj
βj

)
∼ N

((
µα

µβ

)
,

(
σ2α ρσασβ

ρσασβ σ2β

))
, for j = 1, . . . , J

I Also can have group-level predictors and nonnested grouping
factors

Andrew Gelman Some computational and modeling issues for hierarchical models



3/13

The models I’m fitting

I Hierarchical generalized linear models
I yi = α+ βxi + εi
I yi = αj[i ] + βj[i ]xi + εi (separate regression in each group)

I

(
αj
βj

)
∼ N

((
µα

µβ

)
,

(
σ2α ρσασβ

ρσασβ σ2β

))
, for j = 1, . . . , J

I Also can have group-level predictors and nonnested grouping
factors

Andrew Gelman Some computational and modeling issues for hierarchical models



3/13

The models I’m fitting

I Hierarchical generalized linear models
I yi = α+ βxi + εi
I yi = αj[i ] + βj[i ]xi + εi (separate regression in each group)

I

(
αj
βj

)
∼ N

((
µα

µβ

)
,

(
σ2α ρσασβ

ρσασβ σ2β

))
, for j = 1, . . . , J

I Also can have group-level predictors and nonnested grouping
factors

Andrew Gelman Some computational and modeling issues for hierarchical models



3/13

The models I’m fitting

I Hierarchical generalized linear models
I yi = α+ βxi + εi
I yi = αj[i ] + βj[i ]xi + εi (separate regression in each group)

I

(
αj
βj

)
∼ N

((
µα

µβ

)
,

(
σ2α ρσασβ

ρσασβ σ2β

))
, for j = 1, . . . , J

I Also can have group-level predictors and nonnested grouping
factors

Andrew Gelman Some computational and modeling issues for hierarchical models



4/13

Application: public opinion in population subgroups
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Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)

I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.

I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)

I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



5/13

Software options

I R, Matlab, etc. (data processing and graphics, general
computing)

I C, Fortran, Python, etc. (fast computation)
I Bugs etc.
I Specialized multilevel modeling software (e.g., lmer in R)
I What’s missing?

I Something in between “automatic” and “program it yourself”

Andrew Gelman Some computational and modeling issues for hierarchical models



6/13

Some issues with Bugs, OpenBugs, Jags, etc.

I Difficult to keep track of multiple versions of a model

I Solution: allow unused parameters and data

I Code gets long and ugly

I Solution: allow subroutines and macros

I How long to run the program?

I Solution: automatic convergence check

I Lack of confidence in results. (“My model converged. Now
what?”)

I Solution: automatic fake-data debugging
I Solution: support for predictive model checking

I Slow convergnce for moderate to large datasets

I Solution: make use of hierarchical structure

I Can run slowly and even crash

I Solution: allow the sophisticated user/developer to “get under
the hood” and fix problems
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Need to have subroutines!

I For example:
for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)
y.hat[i] <- a[state[i]] + b[state[i]]*x[i]
e.y[i] <- y[i] - y.hat[i]

}
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)

I We would prefer:
y ~ norm (a[state] + b[state]*x, sigma.y)

I And it gets worse when dimension > 2
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Multiplicative redundant parameterization

I New code with extra parameters ξa, ξb:
for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)
y.hat[i] <- xi.a*a[state[i]] + xi.b*b[state[i]]*x[i]
e.y[i] <- y[i] - y.hat[i]

}
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)
xi.a ~ dnorm (0, .01)
xi.b ~ dnorm (0, .01)
for (j in 1:J){

a.adj[j] <- xi.a*a[j]
b.adj[j] <- xi.b*b[j]

}
I We would prefer:

y ~ norm (a[state] + b[state]*x, sigma.y)
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Priors needed for hierarchical variance parameters

I Problems

I Variances estimated at 0
I Correlations estimated at ±1; non-positive-definite covariance

matrices

I Solutions

I Regularization priors for point estimates

I Priors for variances that are bounded away from 0
I Priors for covariance matrices that are bounded away from

degeneracy

I Weakly-informative priors for full Bayes

I Half-Cauchy priors for hierarchical variances
I Scaled-inverse-Wishart priors for covariances:

ΣB = Diag(ξ)QDiag(ξ)
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Models for deep interactions

I Main effects, 2-way, 3-way, etc.
I Example: predicting public opinion given 4 age categories, 5

income categories, 50 states
I 4 + 5 + 50 + 4× 5 + 4× 50 + 5× 50 + 4× 5× 50 parameters

(“effects”)
I Also, group-level predictors (linear trends for age and income,

previous voting patterns for states)
I Need a richer modeling language

I glmer (y ~ z.age*z.inc*rvote.st + (z.age*z.inc | st) +
(z.age*rvote.st | inc) + (z.inc*rvote.st | age) +
(z.age | inc*st) + (z.inc | age*st) + (z.st |age*inc) +
(1 | age*inc*st), family=binomial(link="logistic"))

I No easy way to write this in Bugs or to program it oneself!
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Automatic confidence building

I Monitoring convergence

I Solution: check mixing within and between chains; it’s easy

I Fake-data debugging

I Solution: set up Bugs (or whatever) to automatically run itself
with simulated data

I Model checking

I Solution: posterior predictive simulation by default
I For example:

for (i in 1:n){
y[i] ~ dnorm (y.hat[i], tau.y)
y.rep[i] <- dnorm (y.hat[i], tau.y)
. . .

I But y rep should be included automatically
I Implicit graphical structure for model checking: y—θ—y rep
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Où allons-nous?

I Work in parallel on different software
I lmer/glmer

I Reglarizing priors
I Approximate full Bayes (a few steps of Metropolis)
I Use congjugate gradient to improve speed?

I Bugs

I Subroutines, automatic monitoring, other improvements
discussed above

I HBC (hierarchical Bayes compiler)

I Closer to programming it myself
I A better modeling language?
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Vos pensées??

I Where to go on Bugs?
I How to work efficiently when so many research groups around

the world are fitting these models?
I How to move from “The program converged!” to “The model

makes sense”?
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