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Example analysis: regression of residuals for
“How many prisoners do you know?”

Coefficient Estimate

−0.2 0 0.2 0.4 0.6

female
nonwhite
age < 30
age > 65

married
college educated
employed
income < $20,000
income > $80,000
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How many people do you know?
Scale-up method
“How many X’s” survey data

How many people do you know? Demonstration

I How many people do you know named Nicole?

I How many people do you know named Anthony?

I How many lawyers do you know?

I How many people do you know who were robbed in the past
year?
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Scale-up method: demonstration

I On average, you knew 0.6 Nicoles

I 0.13% of Americans are named Nicole

I Assume 0.13% of your acquaintances are Nicoles

I Estimate: on average, you know 0.6/0.0013 = 450 people

I On average, you know 0.8 Anthonys

I 0.31% of Americans are named Anthony

I Estimate: on average, you know 0.8/0.0031 = 260 people

I Why do these differ?
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year, widow(er) under 65

I Commercial pilot, gun dealer, postal worker, member of
Jaycees, opened business in past year, American Indian
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3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Models of social network data

I Erdos-Renyi model: random links

I Our null model: some people are more popular than others

I Our overdispersed model

I More general models . . .
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Data, compared to
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from 3 models
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Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Bayesian inference

I Negative-binomial data model allowing overdispersion

I Hierarchical models for gregariousness, group-size, and
overdispersion parameters

I 1370 + 32 + 32 + 4 parameters to estimate

I Computation using the Gibbs/Metropolis sampler

I Adaptive (self-tuning) algorithm implemented using Jouni
Kerman’s Umacs function in R
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Gibbs-Metropolis algorithm: updating α, β, ω

I For each i , update αi using Metropolis with jumping dist.

α∗i ∼ N(α
(t−1)
i , (jumping scale of αi )

2).
I For each k, update βk using Metropolis with jumping dist.

β∗k ∼ N(β
(t−1)
k , (jumping scale of βk)2).

I For each k, update ωk using Metropolis with jumping dist.

ω∗k ∼ N(ω
(t−1)
k , (jumping scale of ωk)2).

Reflect jumps off the edges:

1 5 10 15 20
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Gibbs-Metropolis algorithm: updating hyperparameters

I Update µα ∼ N
(

1
n

∑n
i=1 αi ,

1
nσ2

)
I Update σ2

α ∼ Inv-χ2
(
n−1, 1

n

∑n
i=1 (αi − µα)2

)
I Similarly with µβ, σβ

I Renormalize to identify the α’s and β’s . . .
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Renormalizing the αi ’s and βk ’s

I Problem: αi ’s and βk ’s are not separately identified in the
model, yik ∼ Negative-binomial(eαi+βk , ωk)

I Possible solutions:
I Choose a “baseline” value: set α1 = 0 (for example)
I Renormalize a group of parameters: set

∑n
i=1 αi = 0

I Anchor the prior distribution: set µα = 0

I Our solution: rescale so that the bk ’s for the names (Nicole,
Anthony, etc.) equal their proportion in the population:

I Compute C = log
(∑12

k=1 eβk /0.069
)

I Add C to all the αi ’s and µα

I Subtract C from all the βk ’s and µβ
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Adaptive Metropolis jumping

I Parallel scalar updating of the components of α, β, ω

I Adapt each of 1370 + 32 + 32 jumping scales to have
E (pjump) ≈ 0.44

I Save pjump from each Metropolis step, then average them and
rescale every 50 iterations:

I Where avg pjump > 0.44, increase the jump scale
I Where avg pjump < 0.44, decrease the jump scale

I After burn-in, stop adapting

I If we had vector jumps, we would adapt the scale so that
E (pjump) ≈ 0.23

I More effective adaptation uses avg. squared jumped distance
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Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Computation in R

I BUGS was too slow (over 1400 parameters)

I Programming from scratch in R is awkward, buggy

I Instead, we use our general Gibbs/Metropolis programming
environment

I Set up MCMC object

I Specify Gibbs updates

I Log-posterior density for Metropolis steps

I Bounds on overdispersion parameters ω ∈ [1, 20]

I Renormalization step

I Result is a set of posterior simulations
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Background: how many people do you know?
Learning from “How many X’s do you know” surveys

Next

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Setting up the MCMC object

network.1 <- mcmcEngine (network.data, network.init,
update=network.update, n.iter=1000, n.chains=3)

network.update <- list(
alpha = Metropolis (f.logpost.alpha),
beta = Metropolis (f.logpost.beta),
omega = Metropolis (f.logpost.omega,
jump=Jump("omega.jump", lower=1.01, upper=20)),

mu.alpha = Gibbs (mu.alpha.update),
mu.beta = Gibbs (mu.beta.update),
sigma.alpha = Gibbs (sigma.alpha.update),
sigma.beta = Gibbs (sigma.beta.update),
renorm.network)
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Next

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Data and initial values

y <- as.matrix (read.dta ("social.dta"))
y <- y[1:50,]
network.data <- list (y=y, data.n=nrow(y),

data.j=ncol(y))
network.init <- function(){

alpha <- rnorm(data.n)
beta <- rnorm(data.j)
omega <- runif(data.j,1.01,20)
mu.alpha <- rnorm(1)
mu.beta <- rnorm(1)
sigma.alpha <- runif(1)
sigma.beta <- runif(1)}
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Gibbs samplers for the hyperparameters

mu.alpha.update <- function()
rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))

mu.beta.update <- function()
rnorm (1, mean(beta), sigma.beta/sqrt(data.j))

sigma.alpha.update <- function()
sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))

sigma.beta.update <- function()
sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))
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Fitting our model
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Results: group sizes and overdispersions
Confidence building and model extensions

Log-likelihood for each data point

f.loglik <- function (y, alpha, beta, omega, data.n){
theta.mat <- exp(outer(alpha, beta, "+"))
omega.mat <- outer(rep(0, data.n), omega, "+")
dnbinom (y, theta.mat/(omega.mat-1), 1/omega.mat,

log=T)}

Gelman, DiPrete, Salganik, Teitler, Zheng Studying polarization using surveys



Overview
Social and political polarization

Background: how many people do you know?
Learning from “How many X’s do you know” surveys

Next

3 models
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Log-posterior density for each vector parameter

f.logpost.alpha <- function() {
loglik <- f.loglik (y, alpha, beta, omega, data.n)
rowSums (loglik, na.rm=TRUE) +

dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {

loglik <- f.loglik (y, alpha, beta, omega, data.n)
colSums (loglik, na.rm=TRUE) +

dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {

loglik <- f.loglik (y, alpha, beta, omega, data.n)
colSums (loglik, na.rm=T)}
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Bounded jumping for the ωk ’s

Customized Metropolis jumping rule for the components of ω:

omega.jump <- function (omega, sigma) {
reflect (rnorm (length(omega), omega, sigma),

.lower, .upper)}

Gelman, DiPrete, Salganik, Teitler, Zheng Studying polarization using surveys



Overview
Social and political polarization

Background: how many people do you know?
Learning from “How many X’s do you know” surveys

Next

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Renormalization of the αi ’s and βk ’s

renorm.network <- function() {
const <- log (sum(exp(beta[1:12]))/0.069)
alpha <- alpha + const
mu.alpha <- mu.alpha + const
beta <- beta - const
mu.beta <- mu.beta - const}
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Running MCMC and looking at the output

net <- run(network.1)
attach (as.rv (net))

Some output:
name mean sd 25% 50% 75% Rhat
beta[1] -5.1 0.1 (-5.4 -5.2 -5.1) 1.0
beta[2] -6.4 0.1 (-6.9 -6.7 -6.5) 1.2
beta[3] -6.1 0.1 (-6.5 -6.3 -6.2) 1.1
beta[4] -7.0 0.2 (-7.6 -7.4 -7.1) 1.0
beta[5] -5.1 0.1 (-5.4 -5.3 -5.2) 1.2
beta[6] -5.6 0.2 (-6.1 -5.9 -5.8) 1.0
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Estimated distributions of network sizes for men and
women
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gregariousness parameters, ai
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gregariousness parameters, ai
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Coefficient Estimate
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Group, j percentage of network, eβj overdispersion, ωj
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David
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Robert
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Woman adopted kid in past yr
Gave birth in past yr
Woman raped

Commercial pilot
Gun dealer
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Male in prison
Member of Jaycees

Suicide in past yr
Twin
Died in auto accident in past yr
Opened business in past yr
Diabetic
On kidney dialysis
Postal worker
Homicide victim in past yr
Widow(er) under 65
American Indian
Homeless
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7
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10
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Background: how many people do you know?
Learning from “How many X’s do you know” surveys

Next

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
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Comparing estimated and actual group sizes

I Names
I Rare names (Stephanie, Nicole, etc.) fit their population

frequencies
I Common names (Michael, Robert, etc.) are underrepresented

in the friendship network

I Other groups
I Rare groups (homicide, accident, etc.) are over-recalled
I Common groups (new mothers, diabetics, etc.) are

under-recalled

I Explanations
I Difficulty recalling all the Michaels you know
I Salience of rare events in memory

I Recall Nicole and Anthony from the demo!
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Confidence building

I Posterior predictive checking: compare data to simulated
replications from the model

I Model fit is good, not perfect
I Consistent patterns with names compared to other groups
I Many fewer 9’s and more 10’s in data than predicted by the

model

I Checking parameter estimates under fake-data simulation
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Overview
Social and political polarization

Background: how many people do you know?
Learning from “How many X’s do you know” surveys

Next

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Do you know 0, 1, 2, or 3 or more Nicoles?

I Censored-data model

I yik = 0, 1, 2, or ≥ 3

I Use negative-binomial likelihood function:
Pr(y =0), Pr(y =1), Pr(y =2),
1− Pr(y =0)− Pr(y =1)− Pr(y =2)

I Gibbs-Metropolis algorithm is otherwise unchanged

I Check with our data: parameter estimates are similar but
problems with model fit for high values of y
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I How many Nicoles, Anthonys, lawyers, people robbed?
I Real-time data analysis

I Entering in the data: 20 minutes
I Running the program: 500 iterations (40 seconds), 1000

iterations (80 seconds)
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Regression of log(gregariousness): as a table

Coefficient Estimate (s.e.)
female −0.11 (0.03)
nonwhite 0.06 (0.04)
age < 30 −0.02 (0.04)
age > 65 −0.14 (0.05)
married 0.04 (0.05)
college educated 0.11 (0.03)
employed 0.13 (0.04)
income < $20, 000 −0.18 (0.05)
income > $80, 000 0.18 (0.05)
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What have we learned about social networks

I Network size
I On average, people know about 750 people
I Distribution is similar for men and women

I Overdispersion
I Names are roughly uniformly distributed
I Some other groups show more structure
I Potential for regression models (with geographic and social

predictors)
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Learning from “How many X’s” surveys

I Network info from a non-network sample

I We can even learn about small groups, less than 0.3% of
population

I Implicit survey of 1500× 750 = 1 million people!

I Characterising people by how they are perceived

I Potentially useful for small or hard-to-reach groups (prisoners,
. . . )

I Difficulty with recall
I Potential design using partial information:

I Do you know any Nicoles?
I Do you know 0, 1, 2, or 3 or more Nicoles?
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Learning from “How many X’s do you know” surveys

Next

Measuring network size
Political polarization in social networks

Our research goals

I Developing an instrument to measure network size

I Studying political polarization in social networks

I Regression models of # known and individual characteristics
and attitudes

I Studying other patterns (comparing residents of cities and
suburbs, etc.)

I Questions on General Social Survey, Polimetrix survey, Italian
survey, . . .
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Measuring network size
Political polarization in social networks

Developing an instrument to measure network size

I Design and analysis of “How many X’s” surveys
I Ask about 0/1+, or 0/1/2+, or . . . ?
I Use rare names to normalize?
I Efficient estimation given fixed respondent time
I Hierarchical regression models with lots of parameters

I Technical challenges
I Recall with large groups
I Estimating the “transition matrix” of who knows whom
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Measuring network size
Political polarization in social networks

Political polarization in social networks

I Geographic and social polarization
I Proportion of Democrats and Republicans in nation, state,

neighborhood, acquaintances, close friends, family
I Parallel analysis with groups defined based on sex, ethnicity,

occupation, and social class

I Polarization and political attitudes
I Republicans are more politically homogeneous than Democrats

in their social networks
I Compare networks of people who live in areas with more

Democrats or more Republicans
I City-dwellers have more friends but fewer close friends?
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