Learning about social and political polarization using "How many X's do you know" surveys

Andrew Gelman

Dept of Statistics and Dept of Political Science

Columbia University

31 May 2007

- Social and political polarization
- "How many X's do you know" surveys
- ▶ 3 models and Bayesian inference
- Our research plan
- collaborators:
 - Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - others in our research group
 - Peter Killworth and Chris McCarty shared their survey data

Social and political polarization

- "How many X's do you know" surveys
- 3 models and Bayesian inference
- ▶ Our research plan
- collaborators
 - ▶ Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - others in our research group
 - Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference
- Our research plan
- collaborators
 - ▶ Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - ▶ Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - others in our research group
 - Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- 3 models and Bayesian inference
- Our research plan
- collaborators:
 - ► Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - ▶ Tom DiPrete, Dept of Sociology, Columbia University
 - Julien Teitler, School of Social Work, Columbia University
 - others in our research group
 - ▶ Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- ▶ 3 models and Bayesian inference
- Our research plan
- collaborators:
 - ▶ Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - ▶ Tom DiPrete, Dept of Sociology, Columbia University
 - ▶ Julien Teitler, School of Social Work, Columbia University
 - others in our research group
 - Peter Killworth and Chris McCarty shared their survey data

- Social and political polarization
- "How many X's do you know" surveys
- ▶ 3 models and Bayesian inference
- Our research plan
- collaborators:
 - Tian Zheng, Dept of Statistics, Columbia University
 - Matt Salganik, Dept of Sociology, Columbia University
 - ► Tom DiPrete, Dept of Sociology, Columbia University
 - ▶ Julien Teitler, School of Social Work, Columbia University
 - others in our research group
 - Peter Killworth and Chris McCarty shared their survey data

Increasing social/economic heterogeneity in U.S. since 1950s?

Next

Social polarization:

- More variety in domestic arrangements
- Greater income inequality
- We tend to know people of similar social class to ourselves
- Counter-trend: more interracial marriages
- Decline in social capital

Increasing social/economic heterogeneity in U.S. since 1950s?

Next

- ► Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - ▶ We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- ▶ Decline in social capital

Increasing social/economic heterogeneity in U.S. since 1950s?

Next

- ► Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - ▶ We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital

Increasing social/economic heterogeneity in U.S. since 1950s?

Next

- ► Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - ▶ We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- Decline in social capital

Increasing social/economic heterogeneity in U.S. since 1950s?

Next

- ► Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - ▶ We tend to know people of similar social class to ourselves
 - ► Counter-trend: more interracial marriages
- ▶ Decline in social capital:

- ► Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - ▶ We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- ▶ Decline in social capital:
 - ► Later marriage, fewer children
 - "Bowling alone" (Putnam)
 - Less involvement in community groups, labor unions, . . .

- Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- ▶ Decline in social capital:
 - Later marriage, fewer children
 - ▶ "Bowling alone" (Putnam)
 - Less involvement in community groups, labor unions, . . .

- ► Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- ▶ Decline in social capital:
 - ► Later marriage, fewer children
 - "Bowling alone" (Putnam)
 - Less involvement in community groups, labor unions, ...

- ► Social polarization:
 - More variety in domestic arrangements
 - Greater income inequality
 - ▶ We tend to know people of similar social class to ourselves
 - Counter-trend: more interracial marriages
- ▶ Decline in social capital:
 - ► Later marriage, fewer children
 - "Bowling alone" (Putnam)
 - Less involvement in community groups, labor unions, . . .

Increasing political polarization in U.S. since 1970s?

▶ Polarization in political opinions:

- More extreme liberals, more extreme conservatives, fewer moderates
- "Stubborn American voter" (Joe Bafumi): politics affects economic views
- ► Connection to economic and social networks:

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- ► Connection to economic and social networks:

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- ► Connection to economic and social networks:

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - ▶ Democrats know Democrats, Republicans know Republicans
 - Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - ▶ Democrats know Democrats, Republicans know Republicans
 - Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- ▶ Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - ▶ Democrats know Democrats, Republicans know Republicans
 - Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- Polarization in political opinions:
 - More extreme liberals, more extreme conservatives, fewer moderates
 - "Stubborn American voter" (Joe Bafumi): politics affects economic views
- Connection to economic and social networks:
 - ▶ Democrats know Democrats, Republicans know Republicans
 - Partisanship is correlated with income, religiosity
 - Diffusion of information and attitudes through social networks

- ▶ Lots and lots has been done; this is an incomplete review
- ► Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held,
 - GSS, NES questions on values (White, Brooks, ...)
 - General Social Survey: questions about your close contacts of Children in American
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- ► Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- ► Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam. . . .)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ► GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, ...)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - ► General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, . . .)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - ► Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, ...)
- ▶ Political polarization

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, . . .)
 - ► GSS, NES questions on values (White, Brooks, ...)
 - Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization
 - ► Congressional votes (McCarty, Poole, Rosenthal, . . .)
 - ▶ NES and commercial polls (Page and Shapiro, Bafumi, . . .

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, . . .)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, ...)
- Political polarization
 - Congressional votes (McCarty, Poole, Rosenthal, . . .)
 - ▶ NES and commercial polls (Page and Shapiro, Bafumi, ...)

- ▶ Lots and lots has been done; this is an incomplete review
- Social polarization, social capital:
 - Census data on family characteristics (Cherlin, Mayer, Held, . . .)
 - ▶ GSS, NES questions on values (White, Brooks, ...)
 - Community surveys (Putnam, ...)
 - General Social Survey: questions about your close contacts (DiMaggio, . . .)
- Political polarization
 - Congressional votes (McCarty, Poole, Rosenthal, . . .)
 - ▶ NES and commercial polls (Page and Shapiro, Bafumi, ...)

Example analysis: regression of residuals for "How many prisoners do you know?"

How many people do you know? Demonstration

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- How many peon alo you know who were rebbed in the past year?

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- How many people to you know who were rebbed in the past

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- How many people to you know who were rebbed in the past

How many people do you know? Demonstration

- ► How many people do you know named Nicole?
- ► How many people do you know named Anthony?
- ► How many lawyers do you know?
- ► How many people do you know who were robbed in the past year?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 0.8/0.0031 = 260 people
- ▶ Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 0.8/0.0031 = 260 people
- ▶ Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ► Estimate: on average, you know 0.6/0.0013 = 450 people
- ▶ On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- \triangleright Estimate: on average, you know 0.8/0.0031 = 260 people
- ▶ Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- ▶ On average, you know 0.8 Anthonys
- 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 0.8/0.0031 = 260 people
- ▶ Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 0.8/0.0031 = 260 people
- ▶ Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- Estimate: on average, you know 0.8/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 0.8/0.0031 = 260 people
- ▶ Why do these differ?

- ▶ On average, you knew 0.6 Nicoles
- ▶ 0.13% of Americans are named Nicole
- ► Assume 0.13% of your acquaintances are Nicoles
- ▶ Estimate: on average, you know 0.6/0.0013 = 450 people
- On average, you know 0.8 Anthonys
- ▶ 0.31% of Americans are named Anthony
- ▶ Estimate: on average, you know 0.8/0.0031 = 260 people
- Why do these differ?

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ► Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ▶ Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- ▶ On average, you know 0.25 people who were robbed last year
- **Estimate:** $\frac{0.25}{450} \cdot 290$ million = 160,000 people robbed

- ▶ On average, you know 2.6 lawyers
- ► Assume average network size is 450 people
- ► Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S

- ▶ On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.23}{450} \cdot 290$ million = 160,000 people robbedd

- ▶ On average, you know 2.6 lawyers
- ► Assume average network size is 450 people
- ▶ Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ▶ Estimate: $0.0058 \cdot 290 \text{ million} = 1.7 \text{ million lawyers in the U.S.}$

- ▶ On average, you know 0.25 people who were robbed last year
- ► Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ▶ Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- ▶ On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ▶ Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ▶ On average, you know 2.6 lawyers
- Assume average network size is 450 people
- ▶ Estimate: lawyers represent 2.6/450 = 0.58% of the network
- ► Estimate: 0.0058 · 290 million = 1.7 million lawyers in the U.S.

- On average, you know 0.25 people who were robbed last year
- Estimate: $\frac{0.25}{450} \cdot 290 \text{ million} = 160,000 \text{ people robbed}$

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- ► Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- ► Christopher, David, Anthony, Robert, James, Michael
- Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- ► Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- ► Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- ► Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- Christopher, David, Anthony, Robert, James, Michael
- ► Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

- ► How many X's do you know?
- Stephanie, Jacqueline, Kimberly, Nicole, Christina, Jennifer
- ► Christopher, David, Anthony, Robert, James, Michael
- ► Twin, woman adopted kid in past year, gave birth in past year, widow(er) under 65
- ► Commercial pilot, gun dealer, postal worker, member of Jaycees, opened business in past year, American Indian
- Suicide in past year, died in auto accident, diabetic, kidney dialysis, AIDS, HIV-positive, rape victim, homicide victim, male in prison, homeless

Fitting our model Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- ► Erdos-Renyi model: random links
- ▶ Our null model: some people are more popular than others
- Our overdispersed model
- ► More general models . .

Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

- ► Erdos-Renyi model: random links
- ▶ Our null model: some people are more popular than others
- Our overdispersed model
- ► More general models ...

3 models Fitting our model Results: how many people do you know?

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- ► Erdos-Renyi model: random links
- ▶ Our null model: some people are more popular than others
- Our overdispersed model
- More general models . . .

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Erdos-Renyi model

- y_{ik} = number of persons in group k known by person i
- Erdos-Renyi model: random links
- \triangleright $y_{ik} \sim \text{Poisson}(b_k)$, where $b_k = \text{size}$ of group k
- Unrealistic: some eople have many more friends than others

3 models Fitting our model Results: how many people do you know?

Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Erdos-Renyi model

- $\triangleright y_{ik}$ = number of persons in group k known by person i
- ► Erdos-Renyi model: random links
- $y_{ik} \sim \text{Poisson}(b_k)$, where $b_k = \text{size of group k}$
- ▶ Unrealistic: some people have many more friends than others

3 models Fitting our model Results: how many people do you know?

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Erdos-Renyi model

- y_{ik} = number of persons in group k known by person i
- ► Erdos-Renyi model: random links
- $y_{ik} \sim \text{Poisson}(b_k)$, where $b_k = \text{size of group k}$
- ▶ Unrealistic: some people have many more friends than others

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- $\triangleright y_{ik} \sim \text{Poisson}(a_k b_k)$
- $\triangleright a_i = e^{\alpha_i}$, "gregariousness" of person
- $\triangleright b_k = e^{-k}$, size of soup k in the social network
- (for exampl
 - for example, 90

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- $\triangleright y_{ik} \sim Poisson(a_i b_k)$
- α_i , "gregariousness" of permi

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- \triangleright y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- $ightharpoonup y_{ik} \sim \mathsf{Poisson}(a_i b_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- ▶ b_k | et, size of youp k in the social network
- Unrealistic: data are actually overdispersed

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- $\triangleright y_{ik} \sim Poisson(a_i b_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network

3 models Fitting our model Results: how many people do you know?

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- \rightarrow y_{ik} = number of persons in group k known by person i
- Our null model: some people are more popular than others
- \triangleright $y_{ik} \sim \text{Poisson}(a_i b_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- ► Unrealistic: data are actually overdispersed (for example, do χ^2 test)

3 models Fitting our model

Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Our overdispersed model

- y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Our overdispersed model

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- e^{ct}, "gregariousness" of person

3 models Fitting our model

Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

- \rightarrow y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "grega<mark>riousness" of person i</mark>
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_k$ is overdispersion of group

3 models

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $\rightarrow y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_{k}$ is overdispersion of group

- \rightarrow y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_k$ is overdispersion of group k
 - $\omega_k = 1$ is no overdispersion (Poisson model)
 - \blacktriangleright Higher values of ω_k show overdispersion
- Overdispersion represents social structure

- \rightarrow y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- \triangleright $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\blacktriangleright \omega_k$ is overdispersion of group k
 - $\boldsymbol{\omega}_k = 1$ is no overdispersion (Poisson model)
 - \triangleright Higher values of ω_k show overdispersion
- Overdispersion represents social structure

- y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\blacktriangleright \omega_k$ is overdispersion of group k
 - $\omega_k = 1$ is no overdispersion (Poisson model)
 - Higher values of ω_k show overdispersion
- Overdispet in represents social structure

3 models

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- \triangleright y_{ik} = number of persons in group k known by person i
- Our overdispersed model: groups are not randomly spread in the population
- $\rightarrow y_{ik} \sim \text{Negative-binomial}(a_i b_k, \omega_k)$
- $ightharpoonup a_i = e^{\alpha_i}$, "gregariousness" of person i
- $b_k = e^{\beta_k}$, size of group k in the social network
- $\triangleright \omega_k$ is overdispersion of group k
 - $\omega_k = 1$ is no overdispersion (Poisson model)
 - Higher values of ω_k show overdispersion
- Overdispersion represents social structure

3 models Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- ▶ Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ▶ 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

- ▶ Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ▶ 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

- Negative-binomial data model allowing overdispersion
- ▶ Hierarchical models for gregariousness, group-size, and overdispersion parameters
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate

3 models

- ▶ Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ightharpoonup 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

- Negative-binomial data model allowing overdispersion
- Hierarchical models for gregariousness, group-size, and overdispersion parameters
- ▶ 1370 + 32 + 32 + 4 parameters to estimate
- Computation using the Gibbs/Metropolis sampler
- Adaptive (self-tuning) algorithm implemented using Jouni Kerman's Umacs function in R

w on

Fitting our model

3 models

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists

$$\sim \alpha_i \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$$
, for $i = 1, ..., 1370$

$$\beta_k \sim N(\mu_\beta, \sigma_\beta^2)$$
, for $k = 1, \dots, 32$

•
$$\omega_k \sim U(1,20)$$
, for $k = 1, ..., 32$

- ▶ hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- \triangleright Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - \bullet $\alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for i = 1, ..., 1370
 - $\beta_k \sim N(\mu_\beta, \sigma_\beta^2)$, for $k = 1, \dots, 32$
 - $\omega_k \sim U(1,20)$, for k = 1, ..., 32
- ▶ hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- ▶ Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - \bullet $\alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for $i = 1, \dots, 1370$
 - $\beta_k \sim N(\mu_\beta, \sigma_\beta^2)$, for $k = 1, \dots, 32$
 - $\omega_k \sim U(1,20)$, for k = 1, ..., 32
- hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- ▶ Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - \bullet $\alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for i = 1, ..., 1370
 - $\beta_k \sim N(\mu_\beta, \sigma_\beta^2)$, for k = 1, ..., 32
 - $\omega_k \sim U(1,20)$, for k = 1, ..., 32
- ▶ hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- ▶ Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

- ▶ data model: $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$, for i = 1, ..., 1370, k = 1, ..., 32
- prior dists
 - $\sim \alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$, for i = 1, ..., 1370
 - $\beta_k \sim N(\mu_\beta, \sigma_\beta^2)$, for $k = 1, \dots, 32$
 - $\omega_k \sim U(1, 20)$, for k = 1, ..., 32
- hyperprior dist: $p(\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta}) \propto 1$
- \triangleright 1370 + 32 + 32 + 4 parameters to estimate
- ▶ Nonidentifiability in $\alpha + \beta$ (to be discussed soon)

Gibbs-Metropolis algorithm: updating α, β, ω

- ► For each *i*, update α_i using Metropolis with jumping dist. $\alpha_i^* \sim N(\alpha_i^{(t-1)}, (\text{jumping scale of } \alpha_i)^2).$
- For each k, update β_k using Metropolis with jumping dist. $\beta_k^* \sim N(\beta_k^{(t-1)}, (\text{jumping scale of } \beta_k)^2).$
- For each k, update ω_k using Metropolis with jumping dist. $\omega_k^* \sim N(\omega_k^{(t-1)}, (\text{jumping scale of } \omega_k)^2)$. Reflect jumps off the edges:

Gibbs-Metropolis algorithm: updating α, β, ω

- ▶ For each *i*, update α_i using Metropolis with jumping dist. $\alpha_i^* \sim N(\alpha_i^{(t-1)}, (\text{jumping scale of } \alpha_i)^2).$
- ▶ For each k, update β_k using Metropolis with jumping dist. $\beta_k^* \sim N(\beta_k^{(t-1)}, (\text{jumping scale of } \beta_k)^2)$.
- For each k, update ω_k using Metropolis with jumping dist. $\omega_k^* \sim N(\omega_k^{(t-1)}, (\text{jumping scale of } \omega_k)^2)$. Reflect jumps off the edges:

Gibbs-Metropolis algorithm: updating α, β, ω

- ▶ For each *i*, update α_i using Metropolis with jumping dist. $\alpha_i^* \sim N(\alpha_i^{(t-1)}, (\text{jumping scale of } \alpha_i)^2).$
- ▶ For each k, update β_k using Metropolis with jumping dist. $\beta_k^* \sim N(\beta_k^{(t-1)}, (\text{jumping scale of } \beta_k)^2)$.
- ▶ For each k, update ω_k using Metropolis with jumping dist. $\omega_k^* \sim N(\omega_k^{(t-1)}, (\text{jumping scale of } \omega_k)^2)$. Reflect jumps off the edges:

Gibbs-Metropolis algorithm: updating hyperparameters

3 models

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n} \alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ► Similarly with μ_{β} , σ_{β}
- ightharpoonup Renormalize to identify the α 's and β 's . . .

Gibbs-Metropolis algorithm: updating hyperparameters

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n}\alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ► Similarly with μ_{β} , σ_{β}
- ightharpoonup Renormalize to identify the α 's and β 's . . .

Gibbs-Metropolis algorithm: updating hyperparameters

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n} \alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ▶ Similarly with $\mu_{\beta}, \sigma_{\beta}$
- ▶ Renormalize to identify the α 's and β 's . . .

Gibbs-Metropolis algorithm: updating hyperparameters

- ▶ Update $\mu_{\alpha} \sim N\left(\frac{1}{n}\sum_{i=1}^{n} \alpha_{i}, \frac{1}{n}\sigma^{2}\right)$
- ▶ Update $\sigma_{\alpha}^2 \sim \text{Inv-}\chi^2\left(n-1, \frac{1}{n}\sum_{i=1}^n (\alpha_i \mu_{\alpha})^2\right)$
- ▶ Similarly with $\mu_{\beta}, \sigma_{\beta}$
- ▶ Renormalize to identify the α 's and β 's . . .

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set α₁ = 0 (for example)
 Renormalize a group of parameters: set Σⁿ, α_i = 0
- Our solution: rescale so that the b_k's for the names (Nicole Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - ▶ Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k's for the names (Nicole Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - ▶ Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, $y_{ik} \sim \text{Negative-binomial}(e^{\alpha_i + \beta_k}, \omega_k)$
- Possible solutions:
 - ▶ Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha}=0$
- Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - ightharpoonup Compute $C = \log \left(\sum_{k=1}^{\infty} e^{\beta_k} / 0.069 \right)$
 - \blacktriangleright Add C to all the α_i 's and μ_{α}
 - Subtract C from all the eta_k 's and μ_B

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - ▶ Anchor the prior distribution: set $\mu_{\alpha} = 0$
- ▶ Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_o
 - ▶ Subtract C from all the β_k 's and μ_{β}

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- ▶ Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_{α}
 - ▶ Subtract C from all the β_k 's and μ_{β}

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - ightharpoonup Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_{α}
 - ▶ Subtract C from all the β_k 's and μ_{β}

- ▶ Problem: α_i 's and β_k 's are not separately identified in the model, y_{ik} ~ Negative-binomial($e^{\alpha_i + \beta_k}, \omega_k$)
- Possible solutions:
 - ▶ Choose a "baseline" value: set $\alpha_1 = 0$ (for example)
 - ▶ Renormalize a group of parameters: set $\sum_{i=1}^{n} \alpha_i = 0$
 - Anchor the prior distribution: set $\mu_{\alpha} = 0$
- Our solution: rescale so that the b_k 's for the names (Nicole, Anthony, etc.) equal their proportion in the population:
 - ightharpoonup Compute $C = \log \left(\sum_{k=1}^{12} e^{\beta_k} / 0.069 \right)$
 - ▶ Add C to all the α_i 's and μ_{α}
 - ▶ Subtract *C* from all the β_k 's and μ_β

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\text{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - ▶ Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(p_{\text{jump}}) \approx 0.23$
- More effective adaptation uses avg. squared jumped distances

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha, eta, \omega$
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\text{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - ▶ Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- If we had vector jumps, we would adapt the scale so that $E(p_{\text{jump}}) \approx 0.23$
- More effective adaptation uses avg. squared jumped distances

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\text{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- ► After burn-in, stop adapting
- ▶ If we had vector jumps, we would adapt the scale so that $E(p_{\text{jump}}) \approx 0.23$
- ▶ More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\mathrm{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - ▶ Where avg p_{jump} < 0.44, decrease the jump scale
- After burn-in, stop adapting
- If we had vector jumps, we would adapt the scale so that $E(p_{\rm jump}) \approx 0.23$
- ▶ More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- lacktriangle Parallel scalar updating of the components of $lpha,eta,\omega$
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\mathrm{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - Where avg $p_{\text{jump}} < 0.44$, decrease the jump scale
- After burn-in, stop adapting
- If we had vector jumps, we would adapt the scale so that $E(p_{\mathrm{jump}}) \approx 0.23$
- ▶ More effective adaptation uses avg. squared jumped distance

Adaptive Metropolis jumping

- ▶ Parallel scalar updating of the components of α, β, ω
- Adapt each of 1370 + 32 + 32 jumping scales to have $E(p_{\mathrm{jump}}) \approx 0.44$
- Save p_{jump} from each Metropolis step, then average them and rescale every 50 iterations:
 - Where avg $p_{\text{jump}} > 0.44$, increase the jump scale
 - Where avg $p_{\text{jump}} < 0.44$, decrease the jump scale
- After burn-in, stop adapting
- If we had vector jumps, we would adapt the scale so that $E(p_{\mathrm{jump}}) \approx 0.23$
- ▶ More effective adaptation uses avg. squared jumped distance

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- ▶ Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- ▶ Renormalization step
- Result is a set of posterior simulations

Computation in R

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment

3 models

- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- Result is a set of posterior simulations

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- ► Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- Result is a set of posterior simulations

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- lacktriangle Bounds on overdispersion parameters $\omega \in [1,20]$
- Renormalization step
- Result is a set of posterior simulations

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- Result is a set of posterior simulations

- ▶ BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- Renormalization step
- ▶ Result is a set of posterior simulations

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- ► Renormalization step
- Result is a set of posterior simulations

- BUGS was too slow (over 1400 parameters)
- Programming from scratch in R is awkward, buggy
- Instead, we use our general Gibbs/Metropolis programming environment
- Set up MCMC object
- Specify Gibbs updates
- Log-posterior density for Metropolis steps
- ▶ Bounds on overdispersion parameters $\omega \in [1, 20]$
- ► Renormalization step
- Result is a set of posterior simulations


```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
network.1 <- mcmcEngine (network.data, network.init,</pre>
  update=network.update, n.iter=1000, n.chains=3)
network.update <- list(</pre>
  alpha = Metropolis (f.logpost.alpha),
  beta = Metropolis (f.logpost.beta),
  omega = Metropolis (f.logpost.omega,
    jump=Jump("omega.jump", lower=1.01, upper=20)),
  mu.alpha = Gibbs (mu.alpha.update),
  mu.beta = Gibbs (mu.beta.update),
  sigma.alpha = Gibbs (sigma.alpha.update),
  sigma.beta = Gibbs (sigma.beta.update),
  renorm.network)
```

```
y <- as.matrix (read.dta ("social.dta"))
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
y <- as.matrix (read.dta ("social.dta"))
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
y <- as.matrix (read.dta ("social.dta"))
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
v <- as.matrix (read.dta ("social.dta"))</pre>
y \leftarrow y[1:50,]
network.data <- list (y=y, data.n=nrow(y),</pre>
  data.j=ncol(y))
network.init <- function(){</pre>
  alpha <- rnorm(data.n)
  beta <- rnorm(data.j)</pre>
  omega <- runif(data.j,1.01,20)
  mu.alpha <- rnorm(1)</pre>
  mu.beta <- rnorm(1)</pre>
  sigma.alpha <- runif(1)</pre>
  sigma.beta <- runif(1)}
```

```
mu.alpha.update <- function()
    rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
    rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
    sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
    sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

```
mu.alpha.update <- function()
    rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
    rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
    sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
    sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

```
mu.alpha.update <- function()
    rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
    rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
    sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
    sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

```
mu.alpha.update <- function()
  rnorm (1, mean(alpha), sigma.alpha/sqrt(data.n))
mu.beta.update <- function()
  rnorm (1, mean(beta), sigma.beta/sqrt(data.j))
sigma.alpha.update <- function()
  sqrt (sum((alpha-mu.alpha)^2)/rchisq(1, data.n-1))
sigma.beta.update <- function()
  sqrt (sum((beta-mu.beta)^2)/rchisq(1, data.j-1))</pre>
```

Log-likelihood for each data point

```
f.loglik <- function (y, alpha, beta, omega, data.n) {
  theta.mat <- exp(outer(alpha, beta, "+"))
  omega.mat <- outer(rep(0, data.n), omega, "+")
  dnbinom (y, theta.mat/(omega.mat-1), 1/omega.mat,
    log=T) }</pre>
```

Log-posterior density for each vector parameter

```
f.logpost.alpha <- function() {
  loglik <- f.loglik (y, alpha, beta, omega, data.n)</pre>
  rowSums (loglik, na.rm=TRUE) +
    dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=TRUE) +
    dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=T)}
```

Log-posterior density for each vector parameter

```
f.logpost.alpha <- function() {
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  rowSums (loglik, na.rm=TRUE) +
    dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=TRUE) +
    dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=T)}
```

Log-posterior density for each vector parameter

```
f.logpost.alpha <- function() {
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  rowSums (loglik, na.rm=TRUE) +
    dnorm (alpha, mu.alpha, sigma.alpha, log=TRUE)}
f.logpost.beta <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=TRUE) +
    dnorm (beta, mu.beta, sigma.beta, log=TRUE)}
f.logpost.omega <- function() {</pre>
  loglik <- f.loglik (y, alpha, beta, omega, data.n)
  colSums (loglik, na.rm=T)}
```

Bounded jumping for the ω_k 's

Customized Metropolis jumping rule for the components of ω :

```
omega.jump <- function (omega, sigma) {
  reflect (rnorm (length(omega), omega, sigma),
     .lower, .upper)}</pre>
```

Renormalization of the α_i 's and β_k 's

```
renorm.network <- function() {
  const <- log (sum(exp(beta[1:12]))/0.069)
  alpha <- alpha + const
  mu.alpha <- mu.alpha + const
  beta <- beta - const
  mu.beta <- mu.beta - const}</pre>
```

net <- run(network.1)
attach (as.rv (net))</pre>

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Running MCMC and looking at the output

```
Some output:
                    sd
                         25% 50% 75%
                                           Rhat.
name
          mean
beta[1]
          -5.1
                 0.1
                       (-5.4 - 5.2 - 5.1)
                                            1.0
beta[2]
                       (-6.9 -6.7 -6.5)
                                            1.2
          -6.4
                 0.1
beta[3]
          -6.1
                 0.1
                       (-6.5 - 6.3 - 6.2)
                                            1.1
beta[4]
          -7.0
                 0.2 \quad (-7.6 \quad -7.4 \quad -7.1)
                                            1.0
beta[5]
          -5.1
                 0.1
                       (-5.4 - 5.3 - 5.2)
                                            1.2
beta[6]
                 0.2 \quad (-6.1 - 5.9 - 5.8)
                                            1.0
          -5.6
```

net <- run(network.1)
attach (as.rv (net))</pre>

-5.1

-5.6

beta[5]

beta[6]

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Running MCMC and looking at the output

```
Some output:
                    sd
                         25% 50% 75%
                                           Rhat.
name
          mean
beta[1]
          -5.1
                 0.1
                       (-5.4 - 5.2 - 5.1)
                                             1.0
beta[2]
                       (-6.9 -6.7 -6.5)
                                             1.2
          -6.4
                 0.1
beta[3]
          -6.1
                 0.1
                       (-6.5 - 6.3 - 6.2)
                                             1.1
beta[4]
          -7.0
                 0.2 \quad (-7.6 \quad -7.4 \quad -7.1)
                                             1.0
```

(-5.4 - 5.3 - 5.2)

 $0.2 \quad (-6.1 - 5.9 - 5.8)$

0.1

1.2

1.0

net <- run(network.1)
attach (as.rv (net))</pre>

3 models
Fitting our model
Results: how many people do you know?
Results: group sizes and overdispersions
Confidence building and model extensions

Running MCMC and looking at the output

```
Some output:
                  sd
                        25% 50% 75%
                                         Rhat
name
          mean
beta[1]
          -5.1
                0.1
                      (-5.4 - 5.2 - 5.1)
                                          1.0
beta[2]
         -6.4
                0.1
                      (-6.9 - 6.7 - 6.5)
                                          1.2
beta[3]
         -6.1
                0.1
                      (-6.5 - 6.3 - 6.2)
                                          1.1
beta[4]
         -7.0
                0.2
                      (-7.6 - 7.4 - 7.1)
                                          1.0
beta[5]
         -5.1
                0.1
                      (-5.4 - 5.3 - 5.2)
                                          1.2
beta[6]
         -5.6
                0.2 \quad (-6.1 - 5.9 - 5.8)
                                          1.0
```

Estimated distributions of network sizes for men and women

Regression of log(gregariousness)

- Subpopulations
 - ► Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters

Parameter estimates for the 32 subpopulations

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters

Proportion of the social network, e^{βk}
 Overdispersion, ω_k

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters
 - ▶ Proportion of the social network, e^{β_k}
 - Overdispersion, ω_k

- Subpopulations
 - ► Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters
 - Proportion of the social network, e^{β_k}
 - ightharpoonup Overdispersion, ω_k

- Subpopulations
 - Names (Stephanie, Michael, etc.)
 - Other groups (pilots, diabetics, etc.)
- Parameters
 - Proportion of the social network, e^{β_k}
 - Overdispersion, ω_k

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups

Explanations

Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

- Names
 - ► Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups

Explanations

Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations

▶ Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network

Other groups

- ▶ Rare groups (homicide, accident, etc.) are over-recalled
- Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations

▶ Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations

▶ Recall Nicole and Anthony from the demo!

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Difficulty recalling all the Michaels you know
- ▶ Recall Nicole and Anthony from the demo!

Comparing estimated and actual group sizes

Names

- Rare names (Stephanie, Nicole, etc.) fit their population frequencies
- ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - ▶ Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Difficulty recalling all the Michaels you know
 - ► Salience of rare events in memory
- ▶ Recall Nicole and Anthony from the demo!

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - ▶ Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Difficulty recalling all the Michaels you know
 - Salience of rare events in memory
- ▶ Recall Nicole and Anthony from the demo!

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - ▶ Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Difficulty recalling all the Michaels you know
 - Salience of rare events in memory
- ▶ Recall Nicole and Anthony from the demo!

- Names
 - Rare names (Stephanie, Nicole, etc.) fit their population frequencies
 - ► Common names (Michael, Robert, etc.) are underrepresented in the friendship network
- Other groups
 - ▶ Rare groups (homicide, accident, etc.) are over-recalled
 - Common groups (new mothers, diabetics, etc.) are under-recalled
- Explanations
 - Difficulty recalling all the Michaels you know
 - Salience of rare events in memory
- Recall Nicole and Anthony from the demo!

Postal Worker Gun Dealer Javcees

HIV positive

Homicide Homeless Rape Sulcide Auto Accident

Fitting our model

Results: how many people do you know? Results: group sizes and overdispersions Confidence building and model extensions

Correlations in the residuals

$$r_{ik} = \sqrt{y_{ik}} - \sqrt{\hat{a}_i \hat{b}_k}$$

negative experience

- ► Posterior predictive checking: compare data to simulated replications from the model
 - ► Model fit is good, not perfect
 - Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

- ► Posterior predictive checking: compare data to simulated replications from the model
 - ▶ Model fit is good, not perfect
 - Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- ► Checking parameter estimates under fake-data simulation

- ► Posterior predictive checking: compare data to simulated replications from the model
 - ► Model fit is good, not perfect
 - Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- Checking parameter estimates under fake-data simulation

- ► Posterior predictive checking: compare data to simulated replications from the model
 - ► Model fit is good, not perfect
 - ▶ Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- ► Checking parameter estimates under fake-data simulation

- ► Posterior predictive checking: compare data to simulated replications from the model
 - ► Model fit is good, not perfect
 - Consistent patterns with names compared to other groups
 - Many fewer 9's and more 10's in data than predicted by the model
- ► Checking parameter estimates under fake-data simulation

Actual vs. simulated proportions of y = 0, 1, ...

Do you know 0, 1, 2, or 3 or more Nicoles?

► Censored-data model

- $y_{ik} = 0, 1, 2, \text{ or } \ge 3$
- Use negative-binomial likelihood function: Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)
- ▶ Gibbs-Metropolis algorithm is otherwise unchanged
- Check with our data: parameter estimates are similar but problems with model fit for high values of v

- ► Censored-data model
- ▶ $y_{ik} = 0$, 1, 2, or ≥ 3
- Use negative-binomial likelihood function: Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)
- Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *v*

- Censored-data model
- ▶ $y_{ik} = 0$, 1, 2, or ≥ 3
- Use negative-binomial likelihood function: Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)
- ▶ Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *y*

- Censored-data model
- ▶ $y_{ik} = 0, 1, 2, \text{ or } \ge 3$
- Use negative-binomial likelihood function: Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)
- ▶ Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *v*

- Censored-data model
- ▶ $y_{ik} = 0$, 1, 2, or ≥ 3
- Use negative-binomial likelihood function: Pr(y=0), Pr(y=1), Pr(y=2), 1 - Pr(y=0) - Pr(y=1) - Pr(y=2)
- Gibbs-Metropolis algorithm is otherwise unchanged
- ► Check with our data: parameter estimates are similar but problems with model fit for high values of *y*

Evaluation of inferences using fake data

Running the demo

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- ► Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - iterations (80 seconds)
 - Altering the presentation: 15 minutes
- lacktriangle Results for social network sizes, lpha
- Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

Running the demo

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- ► Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- Results for social network sizes, c
- \triangleright Results for group sizes, β
- \triangleright Results for overdispersions, ω

Running the demo

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- Results for social network sizes, a
- \triangleright Results for group sizes, β
- \triangleright Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - ► Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- Results for social network sizes, a
- ightharpoonup Results for group sizes, β
- \triangleright Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- Results for social network sizes, α
- ightharpoonup Results for group sizes, β
- Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- ightharpoonup Results for social network sizes, α
- ightharpoonup Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - ▶ Altering the presentation: 15 minutes!
- ightharpoonup Results for social network sizes, α
- ightharpoonup Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- Results for social network sizes, α
- Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ▶ How many Nicoles, Anthonys, lawyers, people robbed?
- Real-time data analysis
 - Entering in the data: 20 minutes
 - Running the program: 500 iterations (40 seconds), 1000 iterations (80 seconds)
 - ▶ Real-time debugging: 15 minutes!
 - Altering the presentation: 15 minutes!
- Results for social network sizes, α
- Results for group sizes, β
- ightharpoonup Results for overdispersions, ω

- ightharpoonup Social network sizes, α
 - \blacktriangleright Mean network size estimated at 370 \pm 20
 - We don't really believe this precision!
 - Implicit hierarchical model

- ightharpoonup Social network sizes, α
 - Mean network size estimated at 370 ± 20
 - We don't really believe this precision!
 - Implicit hierarchical model

- ightharpoonup Social network sizes, α
 - Mean network size estimated at 370 ± 20
 - We don't really believe this precision!
 - Implicit hierarchical model

- ightharpoonup Social network sizes, α
 - Mean network size estimated at 370 ± 20
 - We don't really believe this precision!
 - Implicit hierarchical model

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up

- Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ► Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up

Results of the demo

- Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - ▶ Nicole: 500,000
 - ▶ Anthony: 800,000

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ▶ Anthony: 0.27% of the social network
 - ▶ Lawyers: 0.90% of the social network
 - Robbed last year: 0.20% of the social network
- Scale-up
 - Nicole: 500,000
 - ► Anthony: 800,000
 - Lawyers: 2.6 million
 - Robbed last year: 200,000

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ▶ Anthony: 0.27% of the social network
 - ▶ Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - Nicole: 500,000
 - ► Anthony: 800,000
 - ► Lawyers: 2.6 million
 - ▶ Robbed last year: 200,000

- Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ▶ Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - Robbed last year: 0.20% of the social network
- Scale-up
 - Nicole: 500,000Anthony: 800,000
 - ► Lawyers: 2.6 million
 - ▶ Robbed last year: 200,000

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ▶ Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - Robbed last year: 0.20% of the social network
- Scale-up
 - Nicole: 500,000Anthony: 800,000
 - ▶ Lawyers: 2.6 million
 - ▶ Robbed last year: 200,000

- ▶ Group sizes, β
 - ▶ Nicole: 0.17% of the social network
 - ▶ Anthony: 0.27% of the social network
 - ► Lawyers: 0.90% of the social network
 - ▶ Robbed last year: 0.20% of the social network
- Scale-up
 - Nicole: 500,000Anthony: 800,000
 - ► Lawyers: 2.6 million
 - ▶ Robbed last year: 200,000

Results of the demo

ightharpoonup Overdispersions, ω

Nicole: 1.1 ± 0.1

▶ Lawvers: 4.2 ± 0.9

▶ Robbed last year: 1.3 ± 0.3.

Results of the demo

ightharpoonup Overdispersions, ω

▶ Nicole: 1.1 ± 0.1

Anthony: 1.2 ± 0.1

Lawyers: 4.2 ± 0.9

 \blacktriangleright Robbed last year: 1.3 ± 0.3

Results of the demo

ightharpoonup Overdispersions, ω

▶ Nicole: 1.1 ± 0.1

 \blacktriangleright Anthony: 1.2 ± 0.1

▶ Lawyers: 4.2 ± 0.9

Robbed last year: 1.3 ± 0.3

Results of the demo

ightharpoonup Overdispersions, ω

Nicole: 1.1 ± 0.1
 Anthony: 1.2 ± 0.1

► Lawyers: 4.2 ± 0.9

ightharpoonup Robbed last year: 1.3 ± 0.3

Results of the demo

ightharpoonup Overdispersions, ω

Nicole: 1.1 ± 0.1

Anthony: 1.2 ± 0.1
 Lawyers: 4.2 ± 0.9

▶ Robbed last year: 1.3 ± 0.3

- ► Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- ▶ Plan of future research

- ► Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- ▶ Plan of future research

- ► Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research

- ► Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- ▶ Plan of future research

- ► Bayesian data analysis
- What we learned about social networks
- Advantages of "How many X's" surveys
- Plan of future research.

- ▶ Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- ▶ Computation using automated Metropolis algorithm
- ▶ Inferences summarized graphically . . .

- ▶ Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- ► Computation using automated Metropolis algorithm
- ▶ Inferences summarized graphically . . .

- ▶ Model-building motivated by failures of simpler models
- ► Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- ► Computation using automated Metropolis algorithm
- ▶ Inferences summarized graphically . . .

- ▶ Model-building motivated by failures of simpler models
- ► Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- ► Computation using automated Metropolis algorithm
- ▶ Inferences summarized graphically . . .

- ▶ Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- ▶ Inferences summarized graphically . . .

- ▶ Model-building motivated by failures of simpler models
- Checking model by comparing data to predictive replications
- Checking computer program by checking inferences from fake data
- Computation using automated Metropolis algorithm
- Inferences summarized graphically . . .

Regression of log(gregariousness): as a table

Coefficient	Estimate (s.e.)
female	-0.11 (0.03)
nonwhite	0.06 (0.04)
age < 30	-0.02(0.04)
age > 65	-0.14(0.05)
married	0.04 (0.05)
college educated	0.11 (0.03)
employed	0.13 (0.04)
income < \$20,000	-0.18(0.05)
income $>$ \$80,000	0.18 (0.05)

Regression of log(gregariousness): as a graph

What have we learned about social networks

Network size

- On average, people know about 750 people
- Distribution is similar for men and women
- Overdispersion

- Network size
 - ▶ On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion

What have we learned about social networks

- Network size
 - On average, people know about 750 people
 - ▶ Distribution is similar for men and women
- Overdispersion

Names are roughly uniformly distributed Some other groups show more structure

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

- Network size
 - On average, people know about 750 people
 - Distribution is similar for men and women
- Overdispersion
 - Names are roughly uniformly distributed
 - Some other groups show more structure
 - Potential for regression models (with geographic and social predictors)

▶ Network info from a non-network sample

- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners)...)
- ▶ Difficulty with recall
- Potential design using partial information:

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- ▶ Potentially useful for small or hard-to-reach groups (prisoners, . . .)
- Difficulty with recall
- Potential design using partial information:

- Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners...)
- Difficulty with recall
- Potential design using partial information:

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- ▶ Potentially useful for small or hard-to-reach groups (prisoners, ...)
- ▶ Difficulty with recall
- Potential design using partial information:

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- ▶ Potential design using partial information:

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
 - ▶ Do you know any Nicoles?
 - ▶ Do you know 0, 1, 2, or 3 or more Nicoles?

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
 - Do you know any Nicoles?
 - ▶ Do you know 0, 1, 2, or 3 or more Nicoles?

- ▶ Network info from a non-network sample
- ▶ We can even learn about small groups, less than 0.3% of population
- ▶ Implicit survey of $1500 \times 750 = 1$ *million* people!
- Characterising people by how they are perceived
- Potentially useful for small or hard-to-reach groups (prisoners, ...)
- Difficulty with recall
- Potential design using partial information:
 - Do you know any Nicoles?
 - ▶ Do you know 0, 1, 2, or 3 or more Nicoles?

- Developing an instrument to measure network size
- Studying political polarization in social networks
- Regression models of # known and individual characteristics and attitudes
- Studying other patterns (comparing residents of cities and suburbs, etc.)
- Questions on General Social Survey, Polimetrix survey, Italiannessurvey, . . .

- Developing an instrument to measure network size
- Studying political polarization in social networks
- Regression models of # known and individual characteristics and attitudes
- Studying other patterns (comparing residents of cities and suburbs, etc.)
- Questions on General Social Survey, Polimetrix survey, Italiannessurvey, . . .

- Developing an instrument to measure network size
- Studying political polarization in social networks
- Regression models of # known and individual characteristics and attitudes
- Studying other patterns (comparing residents of cities and suburbs, etc.)
- Questions on General Social Survey, Polimetrix survey, Italian survey, . . .

- Developing an instrument to measure network size
- Studying political polarization in social networks
- Regression models of # known and individual characteristics and attitudes
- Studying other patterns (comparing residents of cities and suburbs, etc.)
- Questions on General Social Survey, Polimetrix survey, Italian survey, . . .

- Developing an instrument to measure network size
- Studying political polarization in social networks
- Regression models of # known and individual characteristics and attitudes
- Studying other patterns (comparing residents of cities and suburbs, etc.)
- Questions on General Social Survey, Polimetrix survey, Italian survey, . . .

- Developing an instrument to measure network size
- Studying political polarization in social networks
- Regression models of # known and individual characteristics and attitudes
- Studying other patterns (comparing residents of cities and suburbs, etc.)
- Questions on General Social Survey, Polimetrix survey, Italian survey, . . .

- ▶ Design and analysis of "How many X's" surveys
 - ▶ Ask about 0/1+, or 0/1/2+, or . . . ?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with Lots of parameters
- Technical challenges

- ▶ Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - ▶ Use rare names to normalize?
 - ▶ Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- lechnical challenges

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - ▶ Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- lechnical challenges

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - ▶ Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - ▶ Hierarchical regression models with lots of parameters
- Technical challenges

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - ▶ Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - ► Hierarchical regression models with lots of parameters
- Technical challenges

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - ▶ Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- ► Technical challenges
 - Recall with large groups

40.40.45.45. 5 .000

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - ▶ Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Technical challenges
 - Recall with large groups
 - Estimating the "transition matrix" of who knows whom

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - ▶ Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Technical challenges
 - Recall with large groups
 - Estimating the "transition matrix" of who knows whom

- Design and analysis of "How many X's" surveys
 - Ask about 0/1+, or 0/1/2+, or ...?
 - Use rare names to normalize?
 - Efficient estimation given fixed respondent time
 - Hierarchical regression models with lots of parameters
- Technical challenges
 - Recall with large groups
 - Estimating the "transition matrix" of who knows whom

- ► Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- Polarization and political attitudes

- ► Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- Polarization and political attitudes

- ► Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- Polarization and political attitudes

- ▶ Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- Polarization and political attitudes

◆□ → ◆□ → ◆□ → ◆□ → ○○○○

- ► Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- ▶ Polarization and political attitudes
 - Republicans are more politically homogeneous than Democrats in their social networks
 - Compare networks of people who live in areas with more Democrats or more Republicans
 - City-dwellers have more friends but fewer close friends?

- ► Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- ▶ Polarization and political attitudes
 - Republicans are more politically homogeneous than Democrats in their social networks
 - ► Compare networks of people who live in areas with more Democrats or more Republicans
 - City-dwellers have more friends but fewer close friends?

- ▶ Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- ▶ Polarization and political attitudes
 - Republicans are more politically homogeneous than Democrats in their social networks
 - ► Compare networks of people who live in areas with more Democrats or more Republicans
 - City-dwellers have more friends but fewer close friends?

- ► Geographic and social polarization
 - Proportion of Democrats and Republicans in nation, state, neighborhood, acquaintances, close friends, family
 - Parallel analysis with groups defined based on sex, ethnicity, occupation, and social class
- ▶ Polarization and political attitudes
 - Republicans are more politically homogeneous than Democrats in their social networks
 - ► Compare networks of people who live in areas with more Democrats or more Republicans
 - City-dwellers have more friends but fewer close friends?

