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SAT coaching in 8 schools

Estimated Standard error
treatment of effect

School effect, yj estimate, σj

A 28 15
B 8 10
C −3 16
D 7 11
E −1 9
F 1 11
G 18 10
H 12 18

I Separate experiment in each school
I Variation in treatment effects is indistinguishable from 0
I Multilevel Bayes analysis

I Overlappling confidence intervals for the 8 school effects
I Statements such as Pr (effect in A > effect in C)= 0.7
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I Background: electromagnetic fields and cancer
I Original article summarized using p-values
I Confidence intervals show comparisons more clearly
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Separate estimates and hierarchical Bayes estimates
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I Most comparisons are no longer statistically significant
I “Multiple comparisons” is less of a concern
I We moved the intervals together instead of widening them!
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Teacher and school effects in NYC schools

I Goal is to estimate range of variation
(How important are teachers? Schools?)

I Key statistic is year-to-year persistence (e.g., for teachers
ranked in top 25% one year, how well do they do the next?)

I The “multiple comparisons” issue never arises!
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Grades and classroom seating

I Classroom demonstration

I Assign students random numbers as “grades”

I Ask students with “grades” 0–25 to raise one finger,
students with “grades” 75–100 to raise one hand

I Instructor scans the room to find a statistically significant
comparison (e.g., “boys on the left side of the classroom have
higher grades than girls in the back row”)

I This is a pure multiple comparisons problem!
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Beautiful parents have more daughters

I S. Kanazawa (2007). Beautiful parents have more daughters:
a further implication of the generalized Trivers-Willard
hypothesis. Journal of Theoretical Biology.

I Attractiveness was measured on a 1–5 scale
(“very unattractive” to “very attractive”)

I 56% of children of parents in category 5 were girls
I 48% of children of parents in categories 1–4 were girls

I Statistically significant (2.44 s.e.’s from zero, p = 1.5%)

I But the simple regression of sex ratio on attractiveness is not
significant (estimate is 1.5 with s.e. of 1.4)

I Multiple comparisons problem: 5 natural comparisons × 4
possible time summaries!
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Comparing test scores across states

I National Assessment of Educational Progress (NAEP)

I Comparing states: which comparisons are statistically
significant?

I 50× 49/2: a classic multiple comparions problem!

I Our multilevel inferences
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Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

SAT coaching in 8 schools
Effects of electromagnetic fields at 38 frequencies
Teacher and school effects in NYC schools
Grades and classroom seating
Beautiful parents have more daughters
Comparing test scores across states

Classical inferences for NAEP: close-up
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Multilevel inferences for NAEP: close-up
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Comparisons of Average Mathematics Scale Schores for
Grade 4 Public Schools in Participating Jurisdictions
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Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

SAT coaching in 8 schools
Effects of electromagnetic fields at 38 frequencies
Teacher and school effects in NYC schools
Grades and classroom seating
Beautiful parents have more daughters
Comparing test scores across states

NAEP: classical vs. multilevel

I Both procedures are algorithmic (“push a button”)

I Both procedures treat 50 states exchangeably

I Multilevel inferences are sharper (more comparisons are
“statistically significant”)

I How can this be?
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Statistical framework and multilevel modeling

SAT coaching in 8 schools
Effects of electromagnetic fields at 38 frequencies
Teacher and school effects in NYC schools
Grades and classroom seating
Beautiful parents have more daughters
Comparing test scores across states

Something for nothing? A free lunch?

I Classical multiple comparisons worries about
θ1 = θ2 = · · · = θ50

I Not an issue with NAEP

I Multilevel model estimates the group-level variance, decides
based on the data how much to adjust

I Classical procedure does not learn from the data
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Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

Message from the examples
Statistical framework
Conclusions

Message from the examples

I Classical multiple comparisons corrections don’t seem so
important when we fit hierarchical models

I But they can be crucial for classical comparisons
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Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

Message from the examples
Statistical framework
Conclusions

Statistical framework

I Goal is to estimate θj , for j = 1, . . . , J (for example, effects of
J schools)

I Comparisons have the form, θj − θk .

I For simplicity, suppose data come from J separate experiments

I Type S errors

I Multilevel modeling as a solution to the multiple comparisons
issue
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Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

Message from the examples
Statistical framework
Conclusions

Type S (sign) errors

I I’ve never made a Type 1 error in my life
I Type 1 error is θj = θk , but I claim they’re different
I I’ve never studied anything where θj = θk

I I’ve never made a Type 2 error in my life
I Type 2 error is θj 6= θk , but I claim they’re the same
I I’ve never claimed that θj = θk

I But I make errors all the time!

I Type S error: θ1 > θ2, but I claim that θ2 > θ1 (or vice versa)

I Type S errors can occur when we make claims with confidence
(i.e., have confidence intervals for θj − θk that exclude zero)

I We want to make fewer claims with confidence when we are
less certain about the ranking of the θj ’s
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I I’ve never studied anything where θj = θk

I I’ve never made a Type 2 error in my life
I Type 2 error is θj 6= θk , but I claim they’re the same
I I’ve never claimed that θj = θk

I But I make errors all the time!

I Type S error: θ1 > θ2, but I claim that θ2 > θ1 (or vice versa)

I Type S errors can occur when we make claims with confidence
(i.e., have confidence intervals for θj − θk that exclude zero)

I We want to make fewer claims with confidence when we are
less certain about the ranking of the θj ’s
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Message from the examples
Statistical framework
Conclusions

Multilevel (hierarchical) modeling

I Key parameter: σθ, the sd of the true θj ’s
I Understand through special cases:

I σθ ≈ 0: no variation
I Multilevel model pools the estimated θj ’s toward each other
I “Multiple comparisons” correction is done by shrinking

comparisons
I Very few claims with confidence (far fewer than 5%)

I σθ →∞: large variation
I Multilevel model is equivalent to estimating each θj separately
I “Multiple comparisons” corrections are not needed

I Bayesian multilevel modeling bounds the Type S error rate by
automatically restricting the rate of claims with confidence
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Conclusions

I “Multiple comparisons” is a real concern, but . . .

I Don’t “fix” by altering p-values or (equivalently) by making
confidence intervals wider

I Instead, multilevel modeling does partial pooling where
necessary (especially when much of the variation in the data
can be explained by noise), so that few claims can be made
with confidence

I “Adjustments” are a dead end; “modeling” is forward-looking

Andrew Gelman, Jennifer Hill, and Masanao Yajima Multiple comparisons using multilevel models



Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

Message from the examples
Statistical framework
Conclusions

Conclusions

I “Multiple comparisons” is a real concern, but . . .

I Don’t “fix” by altering p-values or (equivalently) by making
confidence intervals wider

I Instead, multilevel modeling does partial pooling where
necessary (especially when much of the variation in the data
can be explained by noise), so that few claims can be made
with confidence

I “Adjustments” are a dead end; “modeling” is forward-looking

Andrew Gelman, Jennifer Hill, and Masanao Yajima Multiple comparisons using multilevel models



Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

Message from the examples
Statistical framework
Conclusions

Conclusions

I “Multiple comparisons” is a real concern, but . . .

I Don’t “fix” by altering p-values or (equivalently) by making
confidence intervals wider

I Instead, multilevel modeling does partial pooling where
necessary (especially when much of the variation in the data
can be explained by noise), so that few claims can be made
with confidence

I “Adjustments” are a dead end; “modeling” is forward-looking

Andrew Gelman, Jennifer Hill, and Masanao Yajima Multiple comparisons using multilevel models



Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

Message from the examples
Statistical framework
Conclusions

Conclusions

I “Multiple comparisons” is a real concern, but . . .

I Don’t “fix” by altering p-values or (equivalently) by making
confidence intervals wider

I Instead, multilevel modeling does partial pooling where
necessary (especially when much of the variation in the data
can be explained by noise), so that few claims can be made
with confidence

I “Adjustments” are a dead end; “modeling” is forward-looking

Andrew Gelman, Jennifer Hill, and Masanao Yajima Multiple comparisons using multilevel models



Issues specific to correlations in medical imaging
What is the multiple comparisons problem?

Why don’t I (usually) care?
Some stories

Statistical framework and multilevel modeling

Message from the examples
Statistical framework
Conclusions

Conclusions

I “Multiple comparisons” is a real concern, but . . .

I Don’t “fix” by altering p-values or (equivalently) by making
confidence intervals wider

I Instead, multilevel modeling does partial pooling where
necessary (especially when much of the variation in the data
can be explained by noise), so that few claims can be made
with confidence

I “Adjustments” are a dead end; “modeling” is forward-looking

Andrew Gelman, Jennifer Hill, and Masanao Yajima Multiple comparisons using multilevel models


	Issues specific to correlations in medical imaging
	What is the multiple comparisons problem?
	Why don't I (usually) care?
	Some stories
	SAT coaching in 8 schools
	Effects of electromagnetic fields at 38 frequencies
	Teacher and school effects in NYC schools
	Grades and classroom seating
	Beautiful parents have more daughters
	Comparing test scores across states

	Statistical framework and multilevel modeling
	Message from the examples
	Statistical framework
	Conclusions


